Functional Properties of Sonochemically Synthesized Zinc Oxide Nanoparticles and Cotton Composites
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
Reg. No. CZ.02.1.01/0.0/0.0/16_025/0007293
European Union (European Structural and Investment Funds - Operational Programme Research, Development and Education)
PubMed
32854195
PubMed Central
PMC7557743
DOI
10.3390/nano10091661
PII: nano10091661
Knihovny.cz E-zdroje
- Klíčová slova
- C-nZnO composites, functional properties, leaching durability, nZnO, washing stability,
- Publikační typ
- časopisecké články MeSH
In this study, zinc oxide nanoparticles (nZnO) were synthesized, deposited, and successfully used for surface modification of cotton to enhance antimicrobial properties. An in situ ultrasonic acoustic method was applied to anchor nZnO on cotton. The results of scanning electron microscopy, energy dispersive X-ray spectroscopy, and X-ray diffraction confirmed the presence of nZnO on cotton. A homogenous distribution of nZnO with an average particle size 27.4 nm was found during the analysis of results. Antimicrobial performance of cotton-nZnO (C-nZnO) composites was evaluated against Gram-negative and Gram-positive microbes. The deposited amount of nZnO on C-nZnO composites was determined by volumetric titration through inductive couple plasma atomic emission spectroscopy. C-nZnO composites showed excellent antimicrobial performance especially against both Staphylococcus aureus (Gram-positive) and Escherichia coli. The durability and stability of C-nZnO composites were tested against leaching and washing. No significant fluctuation was found on deposited amount of nZnO before and after washing test for optimized sample. The results demonstrate that synthesized C-nZnO composite samples can be used as an alternative for antimicrobial bandages.
Zobrazit více v PubMed
Nie X., Wu S., Mensah A., Wang Q., Huang F., Li D., Wei Q. Insight into light-driven antibacterial cotton fabrics decorated by in situ growth strategy. J. Colloid Interface Sci. 2020;579:233–242. doi: 10.1016/j.jcis.2020.06.038. PubMed DOI
Montaser A., Rehan M., El-Senousy W., Zaghloul S. Designing strategy for coating cotton gauze fabrics and its application in wound healing. Carbohydr. Polym. 2020;244:116479. doi: 10.1016/j.carbpol.2020.116479. PubMed DOI
Jabli M., Al-Ghamdi Y.O., Sebeia N., Almalki S.G., Alturaiki W., Khaled J.M., Mubarak A.S., Algethami F.K. Green synthesis of colloid metal oxide nanoparticles using Cynomorium coccineum: Application for printing cotton and evaluation of the antimicrobial activities. Mater. Chem. Phys. 2020;249:123171. doi: 10.1016/j.matchemphys.2020.123171. DOI
Zhang M., Wang C., Ma Y., Du X., Shi Y., Li J., Shi J. Fabrication of superwetting, antimicrobial and conductive fibrous membranes for removing/collecting oil contaminants. RSC Adv. 2020;10:21636–21642. doi: 10.1039/D0RA02704A. PubMed DOI PMC
Noman M.T., Ashraf M.A., Jamshaid H., Ali A. A novel green stabilization of TiO2 nanoparticles onto cotton. Fibers Polym. 2018;19:2268–2277. doi: 10.1007/s12221-018-8693-y. DOI
Willers C., Wentzel J.F., Du Plessis L.H., Gouws C., Hamman J.H. Efflux as a mechanism of antimicrobial drug resistance in clinical relevant microorganisms: The role of efflux inhibitors. Expert Opin. Ther. Targets. 2017;21:23–36. doi: 10.1080/14728222.2017.1265105. PubMed DOI
Delezuk J.A., Ramírez-Herrera D.E., de Ávila B.E.-F., Wang J. Chitosan-based water-propelled micromotors with strong antibacterial activity. Nanoscale. 2017;9:2195–2200. doi: 10.1039/C6NR09799E. PubMed DOI
Hassan M.M. Binding of a quaternary ammonium polymer-grafted-chitosan onto a chemically modified wool fabric surface: Assessment of mechanical, antibacterial and antifungal properties. RSC Adv. 2015;5:35497–35505. doi: 10.1039/C5RA03073K. DOI
Malini M., Thirumavalavan M., Yang W.-Y., Lee J.-F., Annadurai G. A versatile chitosan/ZnO nanocomposite with enhanced antimicrobial properties. Int. J. Biol. Macromol. 2015;80:121–129. doi: 10.1016/j.ijbiomac.2015.06.036. PubMed DOI
Sathiya S., Okram G., Dhivya S.M., Manivannan G., Rajan M.J. Interaction of Chitosan/Zinc Oxide Nanocomposites and their Antibacterial Activities with Escherichia coli. Mater. Today Proc. 2016;3:3855–3860. doi: 10.1016/j.matpr.2016.11.040. DOI
Jennings M.C., Minbiole K.P., Wuest W.M. Quaternary ammonium compounds: An antimicrobial mainstay and platform for innovation to address bacterial resistance. ACS Infect. Dis. 2015;1:288–303. doi: 10.1021/acsinfecdis.5b00047. PubMed DOI
Zhang Y., He W., Li J., Wang K., Li J., Tan H., Fu Q. Gemini quaternary ammonium salt waterborne biodegradable polyurethanes with antibacterial and biocompatible properties. Mater. Chem. Front. 2017;1:361–368. doi: 10.1039/C6QM00039H. DOI
Li Z., Cheng J., Yang X., Liu H., Xu X., Ma L., Shang S., Song Z. Construction of antimicrobial and biocompatible cotton textile based on quaternary ammonium salt from rosin acid. Int. J. Biol. Macromol. 2020;150:1–8. doi: 10.1016/j.ijbiomac.2020.01.259. PubMed DOI
Zhang T., Gu J., Liu X., Wei D., Zhou H., Xiao H., Zhang Z., Yu H., Chen S. Bactericidal and antifouling electrospun PVA nanofibers modified with a quaternary ammonium salt and zwitterionic sulfopropylbetaine. Mater. Sci. Eng C. 2020;111:110855. doi: 10.1016/j.msec.2020.110855. PubMed DOI
Iyigundogdu Z.U., Demir O., Asutay A.B., Sahin F. Developing novel antimicrobial and antiviral textile products. Appl. Biochem. Biotechnol. 2017;181:1155–1166. doi: 10.1007/s12010-016-2275-5. PubMed DOI PMC
Jiang G., Zhang J., Ji D., Qin X., Ge Y., Xie S. A novel approach for fabricating antibacterial nanofiber/cotton hybrid yarns. Fibers Polym. 2017;18:987–992. doi: 10.1007/s12221-017-1194-6. DOI
Abadi P.G.-S., Shirazi F.H., Joshaghani M., Moghimi H.R. Ag+-promoted zinc oxide [Zn (O): Ag]: A novel structure for safe protection of human skin against UVA radiation. Toxicol. Vitr. 2018;50:318–327. doi: 10.1016/j.tiv.2018.02.016. PubMed DOI
Attia N.F., Moussa M., Sheta A.M., Taha R., Gamal H. Synthesis of effective multifunctional textile based on silica nanoparticles. Prog. Org. Coat. 2017;106:41–49. doi: 10.1016/j.porgcoat.2017.02.006. DOI
Ghayempour S., Montazer M. Ultrasound irradiation based in-situ synthesis of star-like Tragacanth gum/zinc oxide nanoparticles on cotton fabric. Ultrason. Sonochem. 2017;34:458–465. doi: 10.1016/j.ultsonch.2016.06.019. PubMed DOI
Milošević M., Krkobabić A., Radoičić M., Šaponjić Z., Radetić T., Radetić M. Biodegradation of cotton and cotton/polyester fabrics impregnated with Ag/TiO2 nanoparticles in soil. Carbohydr. Polym. 2017;158:77–84. doi: 10.1016/j.carbpol.2016.12.006. PubMed DOI
Wang Y.-W., Shen R., Wang Q., Vasquez Y. ZnO Microstructures as Flame-Retardant Coatings on Cotton Fabrics. ACS Omega. 2018;3:6330–6338. doi: 10.1021/acsomega.8b00371. PubMed DOI PMC
Dong S., Cui L., Tian Y., Xia L., Wu Y., Yu J., Bagley D.M., Sun J., Fan M. A novel and high-performance double Z-scheme photocatalyst ZnO-SnO2-Zn2SnO4 for effective removal of the biological toxicity of antibiotics. J. Hazard. Mater. 2020:123017. doi: 10.1016/j.jhazmat.2020.123017. PubMed DOI
Ashraf M.A., Wiener J., Farooq A., Saskova J., Noman M.T. Development of maghemite glass fibre nanocomposite for adsorptive removal of methylene blue. Fibers Polym. 2018;19:1735–1746. doi: 10.1007/s12221-018-8264-2. DOI
Ali A., Nguyen N.H., Baheti V., Ashraf M., Militky J., Mansoor T., Noman M.T., Ahmad S. Electrical conductivity and physiological comfort of silver coated cotton fabrics. J. Text. Inst. 2018;109:620–628. doi: 10.1080/00405000.2017.1362148. DOI
Rakhshaei R., Namazi H., Hamishehkar H., Kafil H.S., Salehi R. In situ synthesized chitosan–gelatin/ZnO nanocomposite scaffold with drug delivery properties: Higher antibacterial and lower cytotoxicity effects. J. Appl. Polym. Sci. 2019;136:47590. doi: 10.1002/app.47590. DOI
Maleki A., Safari M., Rezaee R., Cheshmeh Soltani R.D., Shahmoradi B., Zandsalimi Y. Photocatalytic degradation of humic substances in the presence of ZnO nanoparticles immobilized on glass plates under ultraviolet irradiation. Sep. Sci. Technol. 2016;51:2484–2489. doi: 10.1080/01496395.2016.1213746. DOI
Salehi K., Daraei H., Teymouri P., Shahmoradi B., Maleki A. Cu-doped ZnO nanoparticle for removal of reactive black 5: Application of artificial neural networks and multiple linear regression for modeling and optimization. Desalin. Water Treat. 2016;57:22074–22080. doi: 10.1080/19443994.2015.1130658. DOI
Noman M.T., Petru M. Effect of Sonication and Nano TiO2 on Thermophysiological Comfort Properties of Woven Fabrics. ACS Omega. 2020;5:11481–11490. doi: 10.1021/acsomega.0c00572. PubMed DOI PMC
Noman M.T., Petru M., Militký J., Azeem M., Ashraf M.A. One-Pot Sonochemical Synthesis of ZnO Nanoparticles for Photocatalytic Applications, Modelling and Optimization. Material. 2020;13:14. doi: 10.3390/ma13010014. PubMed DOI PMC
Noman M.T., Wiener J., Saskova J., Ashraf M.A., Vikova M., Jamshaid H., Kejzlar P. In-situ development of highly photocatalytic multifunctional nanocomposites by ultrasonic acoustic method. Ultrason. Sonochem. 2018;40:41–56. doi: 10.1016/j.ultsonch.2017.06.026. PubMed DOI
Noman M.T., Ashraf M.A., Ali A. Synthesis and applications of nano-TiO2: A review. Environ. Sci. Pollut. Res. 2019;26:3262–3291. doi: 10.1007/s11356-018-3884-z. PubMed DOI
Noman M.T., Militky J., Wiener J., Saskova J., Ashraf M.A., Jamshaid H., Azeem M. Sonochemical synthesis of highly crystalline photocatalyst for industrial applications. Ultrasonics. 2018;83:203–213. doi: 10.1016/j.ultras.2017.06.012. PubMed DOI
Shateri-Khalilabad M., Yazdanshenas M.E. Bifunctionalization of cotton textiles by ZnO nanostructures: Antimicrobial activity and ultraviolet protection. Text. Res. J. 2013;83:993–1004. doi: 10.1177/0040517512468812. DOI
Pandiyarasan V., Suhasini S., Archana J., Navaneethan M., Majumdar A., Hayakawa Y., Ikeda H. Fabrication of hierarchical ZnO nanostructures on cotton fabric for wearable device applications. Appl. Surf. Sci. 2017;418:352–361. doi: 10.1016/j.apsusc.2016.12.202. DOI
Ran J., He M., Li W., Cheng D., Wang X. Growing ZnO nanoparticles on polydopamine-templated cotton fabrics for durable antimicrobial activity and UV protection. Polymers. 2018;10:495. doi: 10.3390/polym10050495. PubMed DOI PMC
Zhang S., He Y., Sen B., Wang G. Reactive oxygen species and their applications toward enhanced lipid accumulation in oleaginous microorganisms. Bioresour. Technol. 2020;307:123234. doi: 10.1016/j.biortech.2020.123234. PubMed DOI
Aerogels for Biomedical, Energy and Sensing Applications
Classification of Textile Polymer Composites: Recent Trends and Challenges
Combined Use of Modal Analysis and Machine Learning for Materials Classification
Geopolymers and Fiber-Reinforced Concrete Composites in Civil Engineering
Photocatalytic Behaviour of Zinc Oxide Nanostructures on Surface Activation of Polymeric Fibres
Thermophysiological comfort of zinc oxide nanoparticles coated woven fabrics
Enhanced Mechanical Properties of Eucalyptus-Basalt-Based Hybrid-Reinforced Cement Composites
Thermophysiological comfort of sonochemically synthesized nano TiO2 coated woven fabrics