One-Pot Sonochemical Synthesis of ZnO Nanoparticles for Photocatalytic Applications, Modelling and Optimization

. 2019 Dec 18 ; 13 (1) : . [epub] 20191218

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31861406

This present study proposed a successful one pot synthesis of zinc oxide nanoparticles (ZnO NPs) and their optimisation for photocatalytic applications. Zinc chloride (ZnCl2) and sodium hydroxide (NaOH) were selected as chemical reagents for the proposed study. The design of this experiment was based on the reagents' amounts and the ultrasonic irradiations' time. The results regarding scanning electron microscopy (SEM), X-ray diffraction (XRD) and Raman spectroscopy confirmed the presence of ZnO NPs with pure hexagonal wurtzite crystalline structure in all synthesised samples. Photocatalytic activity of the developed samples was evaluated against methylene blue dye solution. The rapid removal of methylene blue dye indicated the higher photocatalytic activity of the developed samples than untreated samples. Moreover, central composite design was utilised for statistical analysis regarding the obtained results. A mathematical model for the optimisation of input conditions was designed to predict the results at any given point. The role of crystallisation on the photocatalytic performance of developed samples was discussed in detail in this novel study.

Zobrazit více v PubMed

Abadi P.G.-S., Shirazi F.H., Joshaghani M., Moghimi H.R. Ag+-promoted zinc oxide [Zn (O): Ag]: A novel structure for safe protection of human skin against UVA radiation. Toxicol. In Vitro. 2018;50:318–327. doi: 10.1016/j.tiv.2018.02.016. PubMed DOI

Ahmad R., Majhi S.M., Zhang X., Swager T.M., Salama K.N. Recent progress and perspectives of gas sensors based on vertically oriented ZnO nanomaterials. Adv. Colloid Interface Sci. 2019;270:1–27. doi: 10.1016/j.cis.2019.05.006. PubMed DOI

Appiah-Ntiamoah R., Baye A.F., Gadisa B.T., Abebe M.W., Kim H. In-situ prepared ZnO-ZnFe2O4 with 1-D nanofiber network structure: An effective adsorbent for toxic dye effluent treatment. J. Hazard. Mater. 2019;373:459–467. doi: 10.1016/j.jhazmat.2019.03.108. PubMed DOI

Boscarino S., Filice S., Sciuto A., Libertino S., Scuderi M., Galati C., Scalese S. Investigation of ZnO-decorated CNTs for UV Light Detection Applications. Nanomaterials. 2019;9:1099. doi: 10.3390/nano9081099. PubMed DOI PMC

Buşilă M., Muşat V., Textor T., Mahltig B. Synthesis and characterization of antimicrobial textile finishing based on Ag: ZnO nanoparticles/chitosan biocomposites. RSC Adv. 2015;5:21562–21571. doi: 10.1039/C4RA13918F. DOI

Costa S., Ferreira D., Ferreira A., Vaz F., Fangueiro R. Multifunctional flax fibres based on the combined effect of silver and zinc oxide (Ag/ZnO) nanostructures. Nanomaterials. 2018;8:1069. doi: 10.3390/nano8121069. PubMed DOI PMC

Hao N., Xu Z., Nie Y., Jin C., Closson A.B., Zhang M., Zhang J.X. Microfluidics-enabled rational design of ZnO micro-/nanoparticles with enhanced photocatalysis, cytotoxicity, and piezoelectric properties. Chem. Eng. J. 2019;378:122222. doi: 10.1016/j.cej.2019.122222. PubMed DOI PMC

Iyigundogdu Z.U., Demir O., Asutay A.B., Sahin F. Developing novel antimicrobial and antiviral textile products. Appl. Biochem. Biotechnol. 2017;181:1155–1166. doi: 10.1007/s12010-016-2275-5. PubMed DOI PMC

Ling C., Guo T., Shan M., Zhao L., Sui H., Ma S., Xue Q. Oxygen vacancies enhanced photoresponsive performance of ZnO nanoparticles thin film/Si heterojunctions for ultraviolet/infrared photodetector. J. Alloys Compd. 2019;797:1224–1231. doi: 10.1016/j.jallcom.2019.05.150. DOI

Messih M.A., Shalan A.E., Sanad M.F., Ahmed M. Facile approach to prepare ZnO@ SiO2 nanomaterials for photocatalytic degradation of some organic pollutant models. J. Mater. Sci. Mater. Electron. 2019;30:14291–14299. doi: 10.1007/s10854-019-01798-9. DOI

Norek M. Approaches to enhance UV light emission in ZnO nanomaterials. Curr. Appl. Phys. 2019;19:867–883. doi: 10.1016/j.cap.2019.05.006. DOI

Rong P., Ren S., Yu Q. Fabrications and Applications of ZnO Nanomaterials in Flexible Functional Devices—A Review. Crit. Rev. Anal. Chem. 2019;49:336–349. doi: 10.1080/10408347.2018.1531691. PubMed DOI

Jung H.J., Koutavarapu R., Lee S., Kim J.H., Choi H.C., Choi M.Y. Enhanced photocatalytic degradation of lindane using metal–semiconductor Zn@ ZnO and ZnO/Ag nanostructures. J. Environ. Sci. 2018;74:107–115. doi: 10.1016/j.jes.2018.02.014. PubMed DOI

Khavar A.H.C., Moussavi G., Mahjoub A.R., Luque R., Rodríguez-Padrón D., Sattari M. Enhanced visible light photocatalytic degradation of acetaminophen with Ag2S-ZnO@ rGO core-shell microsphere as a novel catalyst: Catalyst preparation and characterization and mechanistic catalytic experiments. Sep. Purif. Technol. 2019;229:115803. doi: 10.1016/j.seppur.2019.115803. DOI

Lee S.J., Jung H.J., Koutavarapu R., Lee S.H., Arumugam M., Kim J.H., Choi M.Y. ZnO supported Au/Pd bimetallic nanocomposites for plasmon improved photocatalytic activity for methylene blue degradation under visible light irradiation. Appl. Surf. Sci. 2019;496:143665. doi: 10.1016/j.apsusc.2019.143665. DOI

Wang X., Li Q., Zhou C., Cao Z., Zhang R. ZnO rod/reduced graphene oxide sensitized by α-Fe2O3 nanoparticles for effective visible-light photoreduction of CO2. J. Colloid Interface Sci. 2019;554:335–343. doi: 10.1016/j.jcis.2019.07.014. PubMed DOI

Taherkhani M., Naderi N., Fallahazad P., Eshraghi M.J., Kolahi A. Development and Optical Properties of ZnO Nanoflowers on Porous Silicon for Photovoltaic Applications. J. Electron. Mater. 2019;48:6647–6653. doi: 10.1007/s11664-019-07484-0. DOI

Young S.-J., Yuan K.-W. ZnO Nanorod Humidity Sensor and Dye-Sensitized Solar Cells as a Self-Powered Device. IEEE Trans. Electron Devices. 2019;66:3978–3981. doi: 10.1109/TED.2019.2926021. DOI

Zhang W., Chang S., Yao S., Wang H. Preparation and Characterization of Submicron Star-Like ZnO as Light Scattering Centers for Combination with ZnO Nanoparticles for Dye-Sensitized Solar Cells. J. Electron. Mater. 2019;48:4895–4901. doi: 10.1007/s11664-019-07278-4. DOI

Zhu L., Chen C., Weng Y., Li F., Lou Q. Enhancing the performance of inverted perovskite solar cells by inserting a ZnO: TIPD film between PCBM layer and Ag electrode. Sol. Energy Mater. Sol. Cells. 2019;198:11–18. doi: 10.1016/j.solmat.2019.04.007. DOI

Beyene Z., Ghosh R. Effect of zinc oxide addition on antimicrobial and antibiofilm activity of hydroxyapatite: A potential nanocomposite for biomedical applications. Mater. Today Commun. 2019;21:100612. doi: 10.1016/j.mtcomm.2019.100612. DOI

Feng J.N., Guo X.P., Chen Y.R., Lu D.P., Niu Z.S., Tou F.Y., Hou L.J., Xu J., Liu M., Yang Y. Time-dependent effects of ZnO nanoparticles on bacteria in an estuarine aquatic environment. Sci. Total Environ. 2019:134298. doi: 10.1016/j.scitotenv.2019.134298. PubMed DOI

Ghosh M., Mandal S., Roy A., Chakrabarty S., Chakrabarti G., Pradhan S.K. Enhanced antifungal activity of fluconazole conjugated with Cu-Ag-ZnO nanocomposite. Mater. Sci. Eng. C. 2019:110160. doi: 10.1016/j.msec.2019.110160. PubMed DOI

Lozhkomoev A., Kazantsev S., Kondranova A., Fomenko A., Pervikov A., Rodkevich N., Bakina O. Design of antimicrobial composite nanoparticles ZnxMe (100-x)/O by electrical explosion of two wires in the oxygen-containing atmosphere. Mater. Des. 2019;183:108099. doi: 10.1016/j.matdes.2019.108099. DOI

Chaudhary S., Umar A., Bhasin K., Baskoutas S. Chemical sensing applications of ZnO nanomaterials. Materials. 2018;11:287. doi: 10.3390/ma11020287. PubMed DOI PMC

Prabhu S., Megala S., Harish S., Navaneethan M., Maadeswaran P., Sohila S., Ramesh R. Enhanced photocatalytic activities of ZnO dumbbell/reduced graphene oxide nanocomposites for degradation of organic pollutants via efficient charge separation pathway. Appl. Surf. Sci. 2019;487:1279–1288. doi: 10.1016/j.apsusc.2019.05.086. DOI

Segovia M., Alegría M., Aliaga J., Celedon S., Ballesteros L., Sotomayor-Torres C., González G., Benavente E. Heterostructured 2D ZnO hybrid nanocomposites sensitized with cubic Cu2O nanoparticles for sunlight photocatalysis. J. Mater. Sci. 2019;54:13523–13536. doi: 10.1007/s10853-019-03878-x. DOI

Selvaraj S., Mohan M.K., Navaneethan M., Ponnusamy S., Muthamizhchelvan C. Synthesis and photocatalytic activity of Gd doped ZnO nanoparticles for enhanced degradation of methylene blue under visible light. Mater. Sci. Semicond. Process. 2019;103:104622. doi: 10.1016/j.mssp.2019.104622. DOI

Shetti N.P., Bukkitgar S.D., Kakarla R.R., Reddy C., Aminabhavi T.M. ZnO-based nanostructured electrodes for electrochemical sensors and biosensors in biomedical applications. Biosens. Bioelectron. 2019;141:111417. doi: 10.1016/j.bios.2019.111417. PubMed DOI

Taylor C.M., Ramirez-Canon A., Wenk J., Mattia D. Enhancing the Photo-corrosion Resistance of ZnO Nanowire Photocatalysts. J. Hazard. Mater. 2019;378:120799. doi: 10.1016/j.jhazmat.2019.120799. PubMed DOI

Umar A., Kim S., Kumar R., Al-Assiri M., Al-Salami A., Ibrahim A., Baskoutas S. In-doped ZnO hexagonal stepped nanorods and nanodisks as potential scaffold for highly-sensitive phenyl hydrazine chemical sensors. Materials. 2017;10:1337. doi: 10.3390/ma10111337. PubMed DOI PMC

Khoa N.T., Kim S.W., Yoo D.-H., Cho S., Kim E.J., Hahn S.H. Fabrication of Au/graphene-wrapped ZnO-nanoparticle-assembled hollow spheres with effective photoinduced charge transfer for photocatalysis. ACS Appl. Mater. Interfaces. 2015;7:3524–3531. doi: 10.1021/acsami.5b00152. PubMed DOI

Noman M.T., Ashraf M.A., Ali A. Synthesis and applications of nano-TiO2: A review. Environ. Sci. Pollut. Res. 2019;26:3262–3291. doi: 10.1007/s11356-018-3884-z. PubMed DOI

Noman M.T., Ashraf M.A., Jamshaid H., Ali A. A novel green stabilization of TiO2 nanoparticles onto cotton. Fibers Polym. 2018;19:2268–2277. doi: 10.1007/s12221-018-8693-y. DOI

Ong C.B., Ng L.Y., Mohammad A.W. A review of ZnO nanoparticles as solar photocatalysts: Synthesis, mechanisms and applications. Renew. Sustain. Energy Rev. 2018;81:536–551. doi: 10.1016/j.rser.2017.08.020. DOI

Rehman S., Jermy B.R., Akhtar S., Borgio J.F., Abdul Azeez S., Ravinayagam V., Al Jindan R., Alsalem Z.H., Buhameid A., Gani A. Isolation and characterization of a novel thermophile; Bacillus haynesii, applied for the green synthesis of ZnO nanoparticles. Artif. Cells Nanomed. Biotechnol. 2019;47:2072–2082. doi: 10.1080/21691401.2019.1620254. PubMed DOI

Acosta-Humánez M., Montes-Vides L., Almanza-Montero O. Sol-gel synthesis of zinc oxide nanoparticle at three different temperatures and its characterization via XRD, IR and EPR. Dyna. 2016;83:224–228. doi: 10.15446/dyna.v83n195.50833. DOI

Jurablu S., Farahmandjou M., Firoozabadi T. Sol-gel synthesis of zinc oxide (ZnO) nanoparticles: Study of structural and optical properties. J. Sci. Islam. Repub. Iran. 2015;26:281–285.

Konne J.L., Christopher B.O. Sol-gel syntheses of zinc oxide and hydrogenated zinc oxide (ZnO: H) phases. J. Nanotechnol. 2017;2017:5219850. doi: 10.1155/2017/5219850. DOI

Gong B., Shi T., Liao G., Li X., Huang J., Zhou T., Tang Z. UV irradiation assisted growth of ZnO nanowires on optical fiber surface. Appl. Surf. Sci. 2017;406:294–300. doi: 10.1016/j.apsusc.2017.02.153. DOI

Ko R.-M., Lin Y.-R., Chen C.-Y., Tseng P.-F., Wang S.-J. Facilitating epitaxial growth of ZnO films on patterned GaN layers: A solution-concentration-induced successive lateral growth mechanism. Curr. Appl. Phys. 2018;18:1–11. doi: 10.1016/j.cap.2017.11.003. DOI

Lu P., Zhou W., Li Y., Wang J., Wu P. Abnormal room temperature ferromagnetism in CuO/ZnO nanocomposites via hydrothermal method. Appl. Surf. Sci. 2017;399:396–402. doi: 10.1016/j.apsusc.2016.12.113. DOI

Akhtari F., Zorriasatein S., Farahmandjou M., Elahi S.M. Synthesis and optical properties of Co2+-doped ZnO Network prepared by new precursors. Mater. Res. Express. 2018;5:065015. doi: 10.1088/2053-1591/aac6f1. DOI

Kumar K.M., Mandal B.K., Naidu E.A., Sinha M., Kumar K.S., Reddy P.S. Synthesis and characterisation of flower shaped zinc oxide nanostructures and its antimicrobial activity. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2013;104:171–174. doi: 10.1016/j.saa.2012.11.025. PubMed DOI

Lanje A.S., Sharma S.J., Ningthoujam R.S., Ahn J.-S., Pode R.B. Low temperature dielectric studies of zinc oxide (ZnO) nanoparticles prepared by precipitation method. Adv. Powder Technol. 2013;24:331–335. doi: 10.1016/j.apt.2012.08.005. DOI

Dobrucka R., Długaszewska J. Biosynthesis and antibacterial activity of ZnO nanoparticles using Trifolium pratense flower extract. Saudi J. Biol. Sci. 2016;23:517–523. doi: 10.1016/j.sjbs.2015.05.016. PubMed DOI PMC

Jamdagni P., Khatri P., Rana J. Green synthesis of zinc oxide nanoparticles using flower extract of Nyctanthes arbor-tristis and their antifungal activity. J. King Saud Univ. Sci. 2018;30:168–175. doi: 10.1016/j.jksus.2016.10.002. DOI

Mirzaei H., Darroudi M. Zinc oxide nanoparticles: Biological synthesis and biomedical applications. Ceram. Int. 2017;43:907–914. doi: 10.1016/j.ceramint.2016.10.051. DOI

Slman D.K., Jalill R.D.A., Abd A.N. Biosynthesis of zinc oxide nanoparticles by hot aqueous extract of Allium sativum plants. J. Pharm. Sci. Res. 2018;10:1590–1596.

Pant B., Ojha G.P., Kim H.-Y., Park M., Park S.-J. Fly-ash-incorporated electrospun zinc oxide nanofibers: Potential material for environmental remediation. Environ. Pollut. 2019;245:163–172. doi: 10.1016/j.envpol.2018.10.122. PubMed DOI

Pant B., Park M., Kim H.-Y., Park S.-J. Ag-ZnO photocatalyst anchored on carbon nanofibers: Synthesis, characterization, and photocatalytic activities. Synth. Met. 2016;220:533–537. doi: 10.1016/j.synthmet.2016.07.027. DOI

Ezeh C.I., Yang X., He J., Snape C., Cheng X.M. Correlating ultrasonic impulse and addition of ZnO promoter with CO2 conversion and methanol selectivity of CuO/ZrO2 catalysts. Ultrason. Sonochem. 2018;42:48–56. doi: 10.1016/j.ultsonch.2017.11.013. PubMed DOI

Sebastian N., Yu W.-C., Hu Y.-C., Balram D., Yu Y.-H. Sonochemical synthesis of iron-graphene oxide/honeycomb-like ZnO ternary nanohybrids for sensitive electrochemical detection of antipsychotic drug chlorpromazine. Ultrason. Sonochem. 2019;59:104696. doi: 10.1016/j.ultsonch.2019.104696. PubMed DOI

Noman M.T., Wiener J., Saskova J., Ashraf M.A., Vikova M., Jamshaid H., Kejzlar P. In-situ development of highly photocatalytic multifunctional nanocomposites by ultrasonic acoustic method. Ultrason. Sonochem. 2018;40:41–56. doi: 10.1016/j.ultsonch.2017.06.026. PubMed DOI

Pholnak C., Sirisathitkul C., Danworaphong S., Harding D.J. Sonochemical synthesis of zinc oxide nanoparticles using an ultrasonic homogenizer. Ferroelectrics. 2013;455:15–20. doi: 10.1080/00150193.2013.843405. DOI

Luévano-Hipólito E., Torres-Martínez L. Sonochemical synthesis of ZnO nanoparticles and its use as photocatalyst in H2 generation. Mater. Sci. Eng. B. 2017;226:223–233. doi: 10.1016/j.mseb.2017.09.023. DOI

Ma Q.L., Xiong R., Zhai B.G., Huang Y.M. Ultrasonic synthesis of fern-like ZnO nanoleaves and their enhanced photocatalytic activity. Appl. Surf. Sci. 2015;324:842–848. doi: 10.1016/j.apsusc.2014.11.054. DOI

Mahmoodi N.M., Keshavarzi S., Ghezelbash M. Synthesis of nanoparticle and modelling of its photocatalytic dye degradation ability from colored wastewater. J. Environ. Chem. Eng. 2017;5:3684–3689. doi: 10.1016/j.jece.2017.07.010. DOI

Dhiman N., Singh A., Verma N.K., Ajaria N., Patnaik S. Statistical optimization and artificial neural network modeling for acridine orange dye degradation using in-situ synthesized polymer capped ZnO nanoparticles. J. Colloid Interface Sci. 2017;493:295–306. doi: 10.1016/j.jcis.2017.01.042. PubMed DOI

Rodrigues J., Hatami T., Rosa J.M., Tambourgi E.B., Mei L.H.I. Photocatalytic degradation using ZnO for the treatment of RB 19 and RB 21 dyes in industrial effluents and mathematical modeling of the process. Chem. Eng. Res. Des. 2020;153:294–305. doi: 10.1016/j.cherd.2019.10.021. DOI

Noman M.T., Militky J., Wiener J., Saskova J., Ashraf M.A., Jamshaid H., Azeem M. Sonochemical synthesis of highly crystalline photocatalyst for industrial applications. Ultrasonics. 2018;83:203–213. doi: 10.1016/j.ultras.2017.06.012. PubMed DOI

Schneider J.R.J., Hoffmann R.C., Engstler J.R., Klyszcz A., Erdem E., Jakes P., Eichel R.D.-A., Pitta-Bauermann L., Bill J. Synthesis, characterization, defect chemistry, and FET properties of microwave-derived nanoscaled zinc oxide. Chem. Mater. 2010;22:2203–2212. doi: 10.1021/cm902300q. DOI

Rakhshaei R., Namazi H., Hamishehkar H., Kafil H.S., Salehi R. In situ synthesized chitosan–gelatin/ZnO nanocomposite scaffold with drug delivery properties: Higher antibacterial and lower cytotoxicity effects. J. Appl. Polym. Sci. 2019;136:47590. doi: 10.1002/app.47590. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Comfort evaluation of ZnO coated fabrics by artificial neural network assisted with golden eagle optimizer model

. 2022 Apr 15 ; 12 (1) : 6350. [epub] 20220415

Aerogels for Biomedical, Energy and Sensing Applications

. 2021 Dec 14 ; 7 (4) : . [epub] 20211214

Prediction of Methylene Blue Removal by Nano TiO2 Using Deep Neural Network

. 2021 Sep 15 ; 13 (18) : . [epub] 20210915

Classification of Textile Polymer Composites: Recent Trends and Challenges

. 2021 Aug 04 ; 13 (16) : . [epub] 20210804

Combined Use of Modal Analysis and Machine Learning for Materials Classification

. 2021 Jul 30 ; 14 (15) : . [epub] 20210730

Neural network-crow search model for the prediction of functional properties of nano TiO2 coated cotton composites

. 2021 Jul 01 ; 11 (1) : 13649. [epub] 20210701

Geopolymers and Fiber-Reinforced Concrete Composites in Civil Engineering

. 2021 Jun 25 ; 13 (13) : . [epub] 20210625

Prediction of functional properties of nano [Formula: see text] coated cotton composites by artificial neural network

. 2021 Jun 10 ; 11 (1) : 12235. [epub] 20210610

Photocatalytic Behaviour of Zinc Oxide Nanostructures on Surface Activation of Polymeric Fibres

. 2021 Apr 10 ; 13 (8) : . [epub] 20210410

Current Strategies for Noble Metal Nanoparticle Synthesis

. 2021 Mar 15 ; 16 (1) : 47. [epub] 20210315

Thermophysiological comfort of zinc oxide nanoparticles coated woven fabrics

. 2020 Dec 03 ; 10 (1) : 21080. [epub] 20201203

Enhanced Mechanical Properties of Eucalyptus-Basalt-Based Hybrid-Reinforced Cement Composites

. 2020 Nov 28 ; 12 (12) : . [epub] 20201128

Thermophysiological comfort of sonochemically synthesized nano TiO2 coated woven fabrics

. 2020 Oct 14 ; 10 (1) : 17204. [epub] 20201014

Functional Properties of Sonochemically Synthesized Zinc Oxide Nanoparticles and Cotton Composites

. 2020 Aug 25 ; 10 (9) : . [epub] 20200825

Effect of Sonication and Nano TiO2 on Thermophysiological Comfort Properties of Woven Fabrics

. 2020 May 26 ; 5 (20) : 11481-11490. [epub] 20200512

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...