One-Pot Sonochemical Synthesis of ZnO Nanoparticles for Photocatalytic Applications, Modelling and Optimization
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
31861406
PubMed Central
PMC6981647
DOI
10.3390/ma13010014
PII: ma13010014
Knihovny.cz E-zdroje
- Klíčová slova
- ZnO, nanoparticles, optimisation, photocatalysis, ultrasonic,
- Publikační typ
- časopisecké články MeSH
This present study proposed a successful one pot synthesis of zinc oxide nanoparticles (ZnO NPs) and their optimisation for photocatalytic applications. Zinc chloride (ZnCl2) and sodium hydroxide (NaOH) were selected as chemical reagents for the proposed study. The design of this experiment was based on the reagents' amounts and the ultrasonic irradiations' time. The results regarding scanning electron microscopy (SEM), X-ray diffraction (XRD) and Raman spectroscopy confirmed the presence of ZnO NPs with pure hexagonal wurtzite crystalline structure in all synthesised samples. Photocatalytic activity of the developed samples was evaluated against methylene blue dye solution. The rapid removal of methylene blue dye indicated the higher photocatalytic activity of the developed samples than untreated samples. Moreover, central composite design was utilised for statistical analysis regarding the obtained results. A mathematical model for the optimisation of input conditions was designed to predict the results at any given point. The role of crystallisation on the photocatalytic performance of developed samples was discussed in detail in this novel study.
Zobrazit více v PubMed
Abadi P.G.-S., Shirazi F.H., Joshaghani M., Moghimi H.R. Ag+-promoted zinc oxide [Zn (O): Ag]: A novel structure for safe protection of human skin against UVA radiation. Toxicol. In Vitro. 2018;50:318–327. doi: 10.1016/j.tiv.2018.02.016. PubMed DOI
Ahmad R., Majhi S.M., Zhang X., Swager T.M., Salama K.N. Recent progress and perspectives of gas sensors based on vertically oriented ZnO nanomaterials. Adv. Colloid Interface Sci. 2019;270:1–27. doi: 10.1016/j.cis.2019.05.006. PubMed DOI
Appiah-Ntiamoah R., Baye A.F., Gadisa B.T., Abebe M.W., Kim H. In-situ prepared ZnO-ZnFe2O4 with 1-D nanofiber network structure: An effective adsorbent for toxic dye effluent treatment. J. Hazard. Mater. 2019;373:459–467. doi: 10.1016/j.jhazmat.2019.03.108. PubMed DOI
Boscarino S., Filice S., Sciuto A., Libertino S., Scuderi M., Galati C., Scalese S. Investigation of ZnO-decorated CNTs for UV Light Detection Applications. Nanomaterials. 2019;9:1099. doi: 10.3390/nano9081099. PubMed DOI PMC
Buşilă M., Muşat V., Textor T., Mahltig B. Synthesis and characterization of antimicrobial textile finishing based on Ag: ZnO nanoparticles/chitosan biocomposites. RSC Adv. 2015;5:21562–21571. doi: 10.1039/C4RA13918F. DOI
Costa S., Ferreira D., Ferreira A., Vaz F., Fangueiro R. Multifunctional flax fibres based on the combined effect of silver and zinc oxide (Ag/ZnO) nanostructures. Nanomaterials. 2018;8:1069. doi: 10.3390/nano8121069. PubMed DOI PMC
Hao N., Xu Z., Nie Y., Jin C., Closson A.B., Zhang M., Zhang J.X. Microfluidics-enabled rational design of ZnO micro-/nanoparticles with enhanced photocatalysis, cytotoxicity, and piezoelectric properties. Chem. Eng. J. 2019;378:122222. doi: 10.1016/j.cej.2019.122222. PubMed DOI PMC
Iyigundogdu Z.U., Demir O., Asutay A.B., Sahin F. Developing novel antimicrobial and antiviral textile products. Appl. Biochem. Biotechnol. 2017;181:1155–1166. doi: 10.1007/s12010-016-2275-5. PubMed DOI PMC
Ling C., Guo T., Shan M., Zhao L., Sui H., Ma S., Xue Q. Oxygen vacancies enhanced photoresponsive performance of ZnO nanoparticles thin film/Si heterojunctions for ultraviolet/infrared photodetector. J. Alloys Compd. 2019;797:1224–1231. doi: 10.1016/j.jallcom.2019.05.150. DOI
Messih M.A., Shalan A.E., Sanad M.F., Ahmed M. Facile approach to prepare ZnO@ SiO2 nanomaterials for photocatalytic degradation of some organic pollutant models. J. Mater. Sci. Mater. Electron. 2019;30:14291–14299. doi: 10.1007/s10854-019-01798-9. DOI
Norek M. Approaches to enhance UV light emission in ZnO nanomaterials. Curr. Appl. Phys. 2019;19:867–883. doi: 10.1016/j.cap.2019.05.006. DOI
Rong P., Ren S., Yu Q. Fabrications and Applications of ZnO Nanomaterials in Flexible Functional Devices—A Review. Crit. Rev. Anal. Chem. 2019;49:336–349. doi: 10.1080/10408347.2018.1531691. PubMed DOI
Jung H.J., Koutavarapu R., Lee S., Kim J.H., Choi H.C., Choi M.Y. Enhanced photocatalytic degradation of lindane using metal–semiconductor Zn@ ZnO and ZnO/Ag nanostructures. J. Environ. Sci. 2018;74:107–115. doi: 10.1016/j.jes.2018.02.014. PubMed DOI
Khavar A.H.C., Moussavi G., Mahjoub A.R., Luque R., Rodríguez-Padrón D., Sattari M. Enhanced visible light photocatalytic degradation of acetaminophen with Ag2S-ZnO@ rGO core-shell microsphere as a novel catalyst: Catalyst preparation and characterization and mechanistic catalytic experiments. Sep. Purif. Technol. 2019;229:115803. doi: 10.1016/j.seppur.2019.115803. DOI
Lee S.J., Jung H.J., Koutavarapu R., Lee S.H., Arumugam M., Kim J.H., Choi M.Y. ZnO supported Au/Pd bimetallic nanocomposites for plasmon improved photocatalytic activity for methylene blue degradation under visible light irradiation. Appl. Surf. Sci. 2019;496:143665. doi: 10.1016/j.apsusc.2019.143665. DOI
Wang X., Li Q., Zhou C., Cao Z., Zhang R. ZnO rod/reduced graphene oxide sensitized by α-Fe2O3 nanoparticles for effective visible-light photoreduction of CO2. J. Colloid Interface Sci. 2019;554:335–343. doi: 10.1016/j.jcis.2019.07.014. PubMed DOI
Taherkhani M., Naderi N., Fallahazad P., Eshraghi M.J., Kolahi A. Development and Optical Properties of ZnO Nanoflowers on Porous Silicon for Photovoltaic Applications. J. Electron. Mater. 2019;48:6647–6653. doi: 10.1007/s11664-019-07484-0. DOI
Young S.-J., Yuan K.-W. ZnO Nanorod Humidity Sensor and Dye-Sensitized Solar Cells as a Self-Powered Device. IEEE Trans. Electron Devices. 2019;66:3978–3981. doi: 10.1109/TED.2019.2926021. DOI
Zhang W., Chang S., Yao S., Wang H. Preparation and Characterization of Submicron Star-Like ZnO as Light Scattering Centers for Combination with ZnO Nanoparticles for Dye-Sensitized Solar Cells. J. Electron. Mater. 2019;48:4895–4901. doi: 10.1007/s11664-019-07278-4. DOI
Zhu L., Chen C., Weng Y., Li F., Lou Q. Enhancing the performance of inverted perovskite solar cells by inserting a ZnO: TIPD film between PCBM layer and Ag electrode. Sol. Energy Mater. Sol. Cells. 2019;198:11–18. doi: 10.1016/j.solmat.2019.04.007. DOI
Beyene Z., Ghosh R. Effect of zinc oxide addition on antimicrobial and antibiofilm activity of hydroxyapatite: A potential nanocomposite for biomedical applications. Mater. Today Commun. 2019;21:100612. doi: 10.1016/j.mtcomm.2019.100612. DOI
Feng J.N., Guo X.P., Chen Y.R., Lu D.P., Niu Z.S., Tou F.Y., Hou L.J., Xu J., Liu M., Yang Y. Time-dependent effects of ZnO nanoparticles on bacteria in an estuarine aquatic environment. Sci. Total Environ. 2019:134298. doi: 10.1016/j.scitotenv.2019.134298. PubMed DOI
Ghosh M., Mandal S., Roy A., Chakrabarty S., Chakrabarti G., Pradhan S.K. Enhanced antifungal activity of fluconazole conjugated with Cu-Ag-ZnO nanocomposite. Mater. Sci. Eng. C. 2019:110160. doi: 10.1016/j.msec.2019.110160. PubMed DOI
Lozhkomoev A., Kazantsev S., Kondranova A., Fomenko A., Pervikov A., Rodkevich N., Bakina O. Design of antimicrobial composite nanoparticles ZnxMe (100-x)/O by electrical explosion of two wires in the oxygen-containing atmosphere. Mater. Des. 2019;183:108099. doi: 10.1016/j.matdes.2019.108099. DOI
Chaudhary S., Umar A., Bhasin K., Baskoutas S. Chemical sensing applications of ZnO nanomaterials. Materials. 2018;11:287. doi: 10.3390/ma11020287. PubMed DOI PMC
Prabhu S., Megala S., Harish S., Navaneethan M., Maadeswaran P., Sohila S., Ramesh R. Enhanced photocatalytic activities of ZnO dumbbell/reduced graphene oxide nanocomposites for degradation of organic pollutants via efficient charge separation pathway. Appl. Surf. Sci. 2019;487:1279–1288. doi: 10.1016/j.apsusc.2019.05.086. DOI
Segovia M., Alegría M., Aliaga J., Celedon S., Ballesteros L., Sotomayor-Torres C., González G., Benavente E. Heterostructured 2D ZnO hybrid nanocomposites sensitized with cubic Cu2O nanoparticles for sunlight photocatalysis. J. Mater. Sci. 2019;54:13523–13536. doi: 10.1007/s10853-019-03878-x. DOI
Selvaraj S., Mohan M.K., Navaneethan M., Ponnusamy S., Muthamizhchelvan C. Synthesis and photocatalytic activity of Gd doped ZnO nanoparticles for enhanced degradation of methylene blue under visible light. Mater. Sci. Semicond. Process. 2019;103:104622. doi: 10.1016/j.mssp.2019.104622. DOI
Shetti N.P., Bukkitgar S.D., Kakarla R.R., Reddy C., Aminabhavi T.M. ZnO-based nanostructured electrodes for electrochemical sensors and biosensors in biomedical applications. Biosens. Bioelectron. 2019;141:111417. doi: 10.1016/j.bios.2019.111417. PubMed DOI
Taylor C.M., Ramirez-Canon A., Wenk J., Mattia D. Enhancing the Photo-corrosion Resistance of ZnO Nanowire Photocatalysts. J. Hazard. Mater. 2019;378:120799. doi: 10.1016/j.jhazmat.2019.120799. PubMed DOI
Umar A., Kim S., Kumar R., Al-Assiri M., Al-Salami A., Ibrahim A., Baskoutas S. In-doped ZnO hexagonal stepped nanorods and nanodisks as potential scaffold for highly-sensitive phenyl hydrazine chemical sensors. Materials. 2017;10:1337. doi: 10.3390/ma10111337. PubMed DOI PMC
Khoa N.T., Kim S.W., Yoo D.-H., Cho S., Kim E.J., Hahn S.H. Fabrication of Au/graphene-wrapped ZnO-nanoparticle-assembled hollow spheres with effective photoinduced charge transfer for photocatalysis. ACS Appl. Mater. Interfaces. 2015;7:3524–3531. doi: 10.1021/acsami.5b00152. PubMed DOI
Noman M.T., Ashraf M.A., Ali A. Synthesis and applications of nano-TiO2: A review. Environ. Sci. Pollut. Res. 2019;26:3262–3291. doi: 10.1007/s11356-018-3884-z. PubMed DOI
Noman M.T., Ashraf M.A., Jamshaid H., Ali A. A novel green stabilization of TiO2 nanoparticles onto cotton. Fibers Polym. 2018;19:2268–2277. doi: 10.1007/s12221-018-8693-y. DOI
Ong C.B., Ng L.Y., Mohammad A.W. A review of ZnO nanoparticles as solar photocatalysts: Synthesis, mechanisms and applications. Renew. Sustain. Energy Rev. 2018;81:536–551. doi: 10.1016/j.rser.2017.08.020. DOI
Rehman S., Jermy B.R., Akhtar S., Borgio J.F., Abdul Azeez S., Ravinayagam V., Al Jindan R., Alsalem Z.H., Buhameid A., Gani A. Isolation and characterization of a novel thermophile; Bacillus haynesii, applied for the green synthesis of ZnO nanoparticles. Artif. Cells Nanomed. Biotechnol. 2019;47:2072–2082. doi: 10.1080/21691401.2019.1620254. PubMed DOI
Acosta-Humánez M., Montes-Vides L., Almanza-Montero O. Sol-gel synthesis of zinc oxide nanoparticle at three different temperatures and its characterization via XRD, IR and EPR. Dyna. 2016;83:224–228. doi: 10.15446/dyna.v83n195.50833. DOI
Jurablu S., Farahmandjou M., Firoozabadi T. Sol-gel synthesis of zinc oxide (ZnO) nanoparticles: Study of structural and optical properties. J. Sci. Islam. Repub. Iran. 2015;26:281–285.
Konne J.L., Christopher B.O. Sol-gel syntheses of zinc oxide and hydrogenated zinc oxide (ZnO: H) phases. J. Nanotechnol. 2017;2017:5219850. doi: 10.1155/2017/5219850. DOI
Gong B., Shi T., Liao G., Li X., Huang J., Zhou T., Tang Z. UV irradiation assisted growth of ZnO nanowires on optical fiber surface. Appl. Surf. Sci. 2017;406:294–300. doi: 10.1016/j.apsusc.2017.02.153. DOI
Ko R.-M., Lin Y.-R., Chen C.-Y., Tseng P.-F., Wang S.-J. Facilitating epitaxial growth of ZnO films on patterned GaN layers: A solution-concentration-induced successive lateral growth mechanism. Curr. Appl. Phys. 2018;18:1–11. doi: 10.1016/j.cap.2017.11.003. DOI
Lu P., Zhou W., Li Y., Wang J., Wu P. Abnormal room temperature ferromagnetism in CuO/ZnO nanocomposites via hydrothermal method. Appl. Surf. Sci. 2017;399:396–402. doi: 10.1016/j.apsusc.2016.12.113. DOI
Akhtari F., Zorriasatein S., Farahmandjou M., Elahi S.M. Synthesis and optical properties of Co2+-doped ZnO Network prepared by new precursors. Mater. Res. Express. 2018;5:065015. doi: 10.1088/2053-1591/aac6f1. DOI
Kumar K.M., Mandal B.K., Naidu E.A., Sinha M., Kumar K.S., Reddy P.S. Synthesis and characterisation of flower shaped zinc oxide nanostructures and its antimicrobial activity. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2013;104:171–174. doi: 10.1016/j.saa.2012.11.025. PubMed DOI
Lanje A.S., Sharma S.J., Ningthoujam R.S., Ahn J.-S., Pode R.B. Low temperature dielectric studies of zinc oxide (ZnO) nanoparticles prepared by precipitation method. Adv. Powder Technol. 2013;24:331–335. doi: 10.1016/j.apt.2012.08.005. DOI
Dobrucka R., Długaszewska J. Biosynthesis and antibacterial activity of ZnO nanoparticles using Trifolium pratense flower extract. Saudi J. Biol. Sci. 2016;23:517–523. doi: 10.1016/j.sjbs.2015.05.016. PubMed DOI PMC
Jamdagni P., Khatri P., Rana J. Green synthesis of zinc oxide nanoparticles using flower extract of Nyctanthes arbor-tristis and their antifungal activity. J. King Saud Univ. Sci. 2018;30:168–175. doi: 10.1016/j.jksus.2016.10.002. DOI
Mirzaei H., Darroudi M. Zinc oxide nanoparticles: Biological synthesis and biomedical applications. Ceram. Int. 2017;43:907–914. doi: 10.1016/j.ceramint.2016.10.051. DOI
Slman D.K., Jalill R.D.A., Abd A.N. Biosynthesis of zinc oxide nanoparticles by hot aqueous extract of Allium sativum plants. J. Pharm. Sci. Res. 2018;10:1590–1596.
Pant B., Ojha G.P., Kim H.-Y., Park M., Park S.-J. Fly-ash-incorporated electrospun zinc oxide nanofibers: Potential material for environmental remediation. Environ. Pollut. 2019;245:163–172. doi: 10.1016/j.envpol.2018.10.122. PubMed DOI
Pant B., Park M., Kim H.-Y., Park S.-J. Ag-ZnO photocatalyst anchored on carbon nanofibers: Synthesis, characterization, and photocatalytic activities. Synth. Met. 2016;220:533–537. doi: 10.1016/j.synthmet.2016.07.027. DOI
Ezeh C.I., Yang X., He J., Snape C., Cheng X.M. Correlating ultrasonic impulse and addition of ZnO promoter with CO2 conversion and methanol selectivity of CuO/ZrO2 catalysts. Ultrason. Sonochem. 2018;42:48–56. doi: 10.1016/j.ultsonch.2017.11.013. PubMed DOI
Sebastian N., Yu W.-C., Hu Y.-C., Balram D., Yu Y.-H. Sonochemical synthesis of iron-graphene oxide/honeycomb-like ZnO ternary nanohybrids for sensitive electrochemical detection of antipsychotic drug chlorpromazine. Ultrason. Sonochem. 2019;59:104696. doi: 10.1016/j.ultsonch.2019.104696. PubMed DOI
Noman M.T., Wiener J., Saskova J., Ashraf M.A., Vikova M., Jamshaid H., Kejzlar P. In-situ development of highly photocatalytic multifunctional nanocomposites by ultrasonic acoustic method. Ultrason. Sonochem. 2018;40:41–56. doi: 10.1016/j.ultsonch.2017.06.026. PubMed DOI
Pholnak C., Sirisathitkul C., Danworaphong S., Harding D.J. Sonochemical synthesis of zinc oxide nanoparticles using an ultrasonic homogenizer. Ferroelectrics. 2013;455:15–20. doi: 10.1080/00150193.2013.843405. DOI
Luévano-Hipólito E., Torres-Martínez L. Sonochemical synthesis of ZnO nanoparticles and its use as photocatalyst in H2 generation. Mater. Sci. Eng. B. 2017;226:223–233. doi: 10.1016/j.mseb.2017.09.023. DOI
Ma Q.L., Xiong R., Zhai B.G., Huang Y.M. Ultrasonic synthesis of fern-like ZnO nanoleaves and their enhanced photocatalytic activity. Appl. Surf. Sci. 2015;324:842–848. doi: 10.1016/j.apsusc.2014.11.054. DOI
Mahmoodi N.M., Keshavarzi S., Ghezelbash M. Synthesis of nanoparticle and modelling of its photocatalytic dye degradation ability from colored wastewater. J. Environ. Chem. Eng. 2017;5:3684–3689. doi: 10.1016/j.jece.2017.07.010. DOI
Dhiman N., Singh A., Verma N.K., Ajaria N., Patnaik S. Statistical optimization and artificial neural network modeling for acridine orange dye degradation using in-situ synthesized polymer capped ZnO nanoparticles. J. Colloid Interface Sci. 2017;493:295–306. doi: 10.1016/j.jcis.2017.01.042. PubMed DOI
Rodrigues J., Hatami T., Rosa J.M., Tambourgi E.B., Mei L.H.I. Photocatalytic degradation using ZnO for the treatment of RB 19 and RB 21 dyes in industrial effluents and mathematical modeling of the process. Chem. Eng. Res. Des. 2020;153:294–305. doi: 10.1016/j.cherd.2019.10.021. DOI
Noman M.T., Militky J., Wiener J., Saskova J., Ashraf M.A., Jamshaid H., Azeem M. Sonochemical synthesis of highly crystalline photocatalyst for industrial applications. Ultrasonics. 2018;83:203–213. doi: 10.1016/j.ultras.2017.06.012. PubMed DOI
Schneider J.R.J., Hoffmann R.C., Engstler J.R., Klyszcz A., Erdem E., Jakes P., Eichel R.D.-A., Pitta-Bauermann L., Bill J. Synthesis, characterization, defect chemistry, and FET properties of microwave-derived nanoscaled zinc oxide. Chem. Mater. 2010;22:2203–2212. doi: 10.1021/cm902300q. DOI
Rakhshaei R., Namazi H., Hamishehkar H., Kafil H.S., Salehi R. In situ synthesized chitosan–gelatin/ZnO nanocomposite scaffold with drug delivery properties: Higher antibacterial and lower cytotoxicity effects. J. Appl. Polym. Sci. 2019;136:47590. doi: 10.1002/app.47590. DOI
Aerogels for Biomedical, Energy and Sensing Applications
Prediction of Methylene Blue Removal by Nano TiO2 Using Deep Neural Network
Classification of Textile Polymer Composites: Recent Trends and Challenges
Combined Use of Modal Analysis and Machine Learning for Materials Classification
Geopolymers and Fiber-Reinforced Concrete Composites in Civil Engineering
Photocatalytic Behaviour of Zinc Oxide Nanostructures on Surface Activation of Polymeric Fibres
Current Strategies for Noble Metal Nanoparticle Synthesis
Thermophysiological comfort of zinc oxide nanoparticles coated woven fabrics
Enhanced Mechanical Properties of Eucalyptus-Basalt-Based Hybrid-Reinforced Cement Composites
Thermophysiological comfort of sonochemically synthesized nano TiO2 coated woven fabrics
Functional Properties of Sonochemically Synthesized Zinc Oxide Nanoparticles and Cotton Composites
Effect of Sonication and Nano TiO2 on Thermophysiological Comfort Properties of Woven Fabrics