Prediction of Methylene Blue Removal by Nano TiO2 Using Deep Neural Network

. 2021 Sep 15 ; 13 (18) : . [epub] 20210915

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34578005

Grantová podpora
CZ.02.1.01/0.0/0.0/16_025/0007293 the Ministry of Education, Youth and Sports of the Czech Republic and the European Union (European Structural and Investment Funds-Operational Programme Research, Development and Education)

This paper deals with the prediction of methylene blue (MB) dye removal under the influence of titanium dioxide nanoparticles (TiO2 NPs) through deep neural network (DNN). In the first step, TiO2 NPs were prepared and their morphological properties were analysed by scanning electron microscopy. Later, the influence of as synthesized TiO2 NPs was tested against MB dye removal and in the final step, DNN was used for the prediction. DNN is an efficient machine learning tools and widely used model for the prediction of highly complex problems. However, it has never been used for the prediction of MB dye removal. Therefore, this paper investigates the prediction accuracy of MB dye removal under the influence of TiO2 NPs using DNN. Furthermore, the proposed DNN model was used to map out the complex input-output conditions for the prediction of optimal results. The amount of chemicals, i.e., amount of TiO2 NPs, amount of ehylene glycol and reaction time were chosen as input variables and MB dye removal percentage was evaluated as a response. DNN model provides significantly high performance accuracy for the prediction of MB dye removal and can be used as a powerful tool for the prediction of other functional properties of nanocomposites.

Zobrazit více v PubMed

Ashraf M., Wiener J., Farooq A., Šašková J., Noman M. Development of Maghemite Glass Fibre Nanocomposite for Adsorptive Removal of Methylene Blue. Fibers Polym. 2018;19:1735–1746. doi: 10.1007/s12221-018-8264-2. DOI

Waqas H., Farooq U., Shah Z., Kumam P., Shutaywi M. Second-order slip effect on bio-convectional viscoelastic nanofluid flow through a stretching cylinder with swimming microorganisms and melting phenomenon. Sci. Rep. 2021;11:11208. doi: 10.1038/s41598-021-90671-z. PubMed DOI PMC

Azeem M., Noman M.T., Wiener J., Petru M., Louda P. Structural design of efficient fog collectors: A review. Environ. Technol. Innov. 2020;20:101169. doi: 10.1016/j.eti.2020.101169. DOI

Mansoor T., Hes L., Bajzik V., Noman M.T. Novel method on thermal resistance prediction and thermo-physiological comfort of socks in a wet state. Text. Res. J. 2020;90:1987–2006. doi: 10.1177/0040517520902540. DOI

Noman M.T., Petru M., Militký J., Azeem M., Ashraf M.A. One-Pot Sonochemical Synthesis of ZnO Nanoparticles for Photocatalytic Applications, Modelling and Optimization. Materials. 2020;13:14. doi: 10.3390/ma13010014. PubMed DOI PMC

Mahmood A., Noman M.T., Pechočiaková M., Amor N., Petrů M., Abdelkader M., Militký J., Sozcu S., Hassan S.Z.U. Geopolymers and Fiber-Reinforced Concrete Composites in Civil Engineering. Polymers. 2021;13:2099. doi: 10.3390/polym13132099. PubMed DOI PMC

Wang J., Li M., Feng J., Yan X., Chen H., Han R. Effects of TiO2-NPs pretreatment on UV-B stress tolerance in Arabidopsis thaliana. Chemosphere. 2021;281:130809. doi: 10.1016/j.chemosphere.2021.130809. PubMed DOI

Pourhashem S., Duan J., Zhou Z., Ji X., Sun J., Dong X., Wang L., Guan F., Hou B. Investigating the effects of chitosan solution and chitosan modified TiO2 nanotubes on the corrosion protection performance of epoxy coatings. Mater. Chem. Phys. 2021;270:124751. doi: 10.1016/j.matchemphys.2021.124751. DOI

Lee K.H., Chu J.Y., Kim A.R., Kim H.G., Yoo D.J. Functionalized TiO2 mediated organic-inorganic composite membranes based on quaternized poly(arylene ether ketone) with enhanced ionic conductivity and alkaline stability for alkaline fuel cells. J. Membr. Sci. 2021;634:119435. doi: 10.1016/j.memsci.2021.119435. DOI

Yuan N., Cai H., Liu T., Huang Q., Zhang X. Adsorptive removal of methylene blue from aqueous solution using coal fly ash-derived mesoporous silica material. Adsorpt. Sci. Technol. 2019;37:333–348. doi: 10.1177/0263617419827438. DOI

Zhang X., Yuan N., Li Y., Han L., Wang Q. Fabrication of new MIL-53(Fe)@TiO2 visible-light responsive adsorptive photocatalysts for efficient elimination of tetracycline. Chem. Eng. J. 2021;428:131077. doi: 10.1016/j.cej.2021.131077. DOI

Noman M.T., Petrů M., Amor N., Yang T., Mansoor T. Thermophysiological comfort of sonochemically synthesized nano TiO2 coated woven fabrics. Sci. Rep. 2020;10:17204. doi: 10.1038/s41598-020-74357-6. PubMed DOI PMC

Noman M.T., Ashraf M.A., Jamshaid H., Ali A. A Novel Green Stabilization of TiO2 Nanoparticles onto Cotton. Fibers Polym. 2018;19:2268–2277. doi: 10.1007/s12221-018-8693-y. DOI

Noman M.T., Militky J., Wiener J., Saskova J., Ashraf M.A., Jamshaid H., Azeem M. Sonochemical synthesis of highly crystalline photocatalyst for industrial applications. Ultrasonics. 2018;83:203–213. doi: 10.1016/j.ultras.2017.06.012. PubMed DOI

Noman M.T., Wiener J., Saskova J., Ashraf M.A., Vikova M., Jamshaid H., Kejzlar P. In-situ development of highly photocatalytic multifunctional nanocomposites by ultrasonic acoustic method. Ultrason. Sonochem. 2018;40:41–56. doi: 10.1016/j.ultsonch.2017.06.026. PubMed DOI

Chen R., Mihaylova L., Zhu H., Bouaynaya N. A Deep Learning Framework for Joint Image Restoration and Recognition. Circuits Syst. Signal Process. 2020;39:1561–1580. doi: 10.1007/s00034-019-01222-x. DOI

Vahid A., Mückschel M., Stober S., Stock A., Beste C. Applying deep learning to single-trial EEG data provides evidence for complementary theories on action control. Commun. Biol. 2020;3:112. doi: 10.1038/s42003-020-0846-z. PubMed DOI PMC

Zazoum B., Triki E., Bachri A. Modeling of Mechanical Properties of Clay-Reinforced Polymer Nanocomposites Using Deep Neural Network. Materials. 2020;13:4266. doi: 10.3390/ma13194266. PubMed DOI PMC

Low C.Y., Park J., Teoh A.B.J. Stacking-Based Deep Neural Network: Deep Analytic Network for Pattern Classification. IEEE Trans. Cybern. 2020;50:5021–5034. doi: 10.1109/TCYB.2019.2908387. PubMed DOI

Ha M.H., Chen O.T.C. Deep Neural Networks Using Capsule Networks and Skeleton-Based Attentions for Action Recognition. IEEE Access. 2021;9:6164–6178. doi: 10.1109/ACCESS.2020.3048741. DOI

Amor N., Noman M.T., Petru M. Classification of Textile Polymer Composites: Recent Trends and Challenges. Polymers. 2021;13:2592. doi: 10.3390/polym13162592. PubMed DOI PMC

Liu X., Gasco F., Goodsell J., Yu W. Initial failure strength prediction of woven composites using a new yarn failure criterion constructed by deep learning. Compos. Struct. 2019;230:111505. doi: 10.1016/j.compstruct.2019.111505. DOI

Khude P., Majumdar A., Butola B.S. Modelling and prediction of antibacterial activity of knitted fabrics made from silver nanocomposite fibres using soft computing approaches. Neural Comput. Appl. 2019;32:9509–9519. doi: 10.1007/s00521-019-04463-8. DOI

Altarazi S., Allaf R., Alhindawi F. Machine Learning Models for Predicting and Classifying the Tensile Strength of Polymeric Films Fabricated via Different Production Processes. Materials. 2019;12:1475. doi: 10.3390/ma12091475. PubMed DOI PMC

Yang C.S., Lin C., Chen W. Using deep principal components analysis-based neural networks for fabric pilling classification. Electronics. 2019;8:474. doi: 10.3390/electronics8050474. DOI

Li Y., Zhao W., Pan J. Deformable Patterned Fabric Defect Detection With Fisher Criterion-Based Deep Learning. IEEE Trans. Autom. Sci. Eng. 2017;14:1256–1264. doi: 10.1109/TASE.2016.2520955. DOI

Ni C., Li Z., Zhang X., Sun X., Huang Y., Zhao L., Zhu T., Wang D. Online Sorting of the Film on Cotton Based on Deep Learning and Hyperspectral Imaging. IEEE Access. 2020;8:93028–93038. doi: 10.1109/ACCESS.2020.2994913. DOI

Lazzús J.A. Neural network-particle swarm modeling to predict thermal properties. Math. Comput. Model. 2013;57:2408–2418. doi: 10.1016/j.mcm.2012.01.003. DOI

Malik S.A., Gereke T., Farooq A., Aibibu D., Cherif C. Prediction of yarn crimp in PES multifilament woven barrier fabrics using artificial neural network. J. Text. Inst. 2018;109:942–951. doi: 10.1080/00405000.2017.1393786. DOI

Lu D., Yu W. Predicting the tensile strength of single wool fibers using artificial neural network and multiple linear regression models based on acoustic emission. Text. Res. J. 2021;91:533–542. doi: 10.1177/0040517520948200. DOI

Tadesse M.G., Loghin E., Pislaru M., Wang L., Chen Y., Nierstrasz V., Loghin C. Prediction of the tactile comfort of fabrics from functional finishing parameters using fuzzy logic and artificial neural network models. Text. Res. J. 2019;89:4083–4094. doi: 10.1177/0040517519829008. DOI

Mishra S. Prediction of Yarn Strength Utilization in Cotton Woven Fabrics using Artificial Neural Network. J. Inst. Eng. Ser. E. 2015;96:151–157. doi: 10.1007/s40034-014-0049-6. DOI

El-Geiheini A., ElKateb S., Abd-Elhamied M.R. Yarn Tensile Properties Modeling Using Artificial Intelligence. Alex. Eng. J. 2020;59:4435–4440. doi: 10.1016/j.aej.2020.07.049. DOI

Erbil Y., Babaarslan O., Ilhan İ. A comparative prediction for tensile properties of ternary blended open-end rotor yarns using regression and neural network models. J. Text. Inst. 2018;109:560–568. doi: 10.1080/00405000.2017.1361164. DOI

Noman M.T., Amor N., Petru M., Mahmood A., Kejzlar P. Photocatalytic Behaviour of Zinc Oxide Nanostructures on Surface Activation of Polymeric Fibres. Polymers. 2021;13:1227. doi: 10.3390/polym13081227. PubMed DOI PMC

Wang F., Chen Z., Wu C., Yang Y., Zhang D., Li S. A model for predicting the tensile strength of ultrafine glass fiber felts with mathematics and artificial neural network. J. Text. Inst. 2021;112:783–791. doi: 10.1080/00405000.2020.1779167. DOI

Unal P., Üreyen M., Mecit D. Predicting properties of single jersey fabrics using regression and artificial neural network models. Fibers Polym. 2012;13:87–95. doi: 10.1007/s12221-012-0087-y. DOI

Amor N., Noman M.T., Petru M. Prediction of functional properties of nano TiO2 coated cotton composites by artificial neural network. Sci. Rep. 2021;11 doi: 10.1038/s41598-021-91733-y. PubMed DOI PMC

Amor N., Noman M.T., Petrů M., Mahmood A., Ismail A. Neural network-crow search model for the prediction of functional properties of nano TiO2 coated cotton composites. Sci. Rep. 2021;11:1–13. doi: 10.1038/s41598-021-93108-9. PubMed DOI PMC

Breuer K., Stommel M. Prediction of Short Fiber Composite Properties by an Artificial Neural Network Trained on an RVE Database. Fibers. 2021;9:8. doi: 10.3390/fib9020008. DOI

Xie Q., Suvarna M., Li J., Zhu X., Cai J., Wang X. Online prediction of mechanical properties of hot rolled steel plate using machine learning. Mater. Des. 2021;197:109201. doi: 10.1016/j.matdes.2020.109201. DOI

Wang Z., Di Massimo C., Tham M.T., Julian Morris A. A procedure for determining the topology of multilayer feedforward neural networks. Neural Netw. 1994;7:291–300. doi: 10.1016/0893-6080(94)90023-X. DOI

Rojas R. Neural Networks—A Systematic Introduction. Springer; Berlin/Heidelberg, Germany: 1996.

Sze V., Chen Y.H., Yang T.J., Emer J.S. Efficient Processing of Deep Neural Networks: A Tutorial and Survey. Proc. IEEE. 2017;105:2295–2329. doi: 10.1109/JPROC.2017.2761740. DOI

Chang C.H. Deep and Shallow Architecture of Multilayer Neural Networks. IEEE Trans. Neural Netw. Learn. Syst. 2015;26:2477–2486. doi: 10.1109/TNNLS.2014.2387439. PubMed DOI

Noman M.T., Amor N., Petru M. Synthesis and applications of ZnO nanostructures (ZONSs): A review. Crit. Rev. Solid State Mater. Sci. 2021;2:1–44. doi: 10.1080/10408436.2021.1886041. DOI

Noman M.T., Petrů M., Amor N., Louda P. Thermophysiological comfort of zinc oxide nanoparticles coated woven fabrics. Sci. Rep. 2020;10:21080. doi: 10.1038/s41598-020-78305-2. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...