• This record comes from PubMed

Flexible Hybrid and Single-Component Aerogels: Synthesis, Characterization, and Applications

. 2023 Nov 28 ; 39 (47) : 16760-16775. [epub] 20231113

Status PubMed-not-MEDLINE Language English Country United States Media print-electronic

Document type Journal Article

The inherent disadvantages of traditional nonflexible aerogels, such as high fragility and moisture sensitivity, severely restrict their applications. To address these issues, different techniques have been used to incorporate the flexibility in aerogel materials; hence, the term "flexible aerogels" was introduced. In the case of introducing flexibility, the organic part is induced with the inorganic part (flexible hybrid aerogels). Additionally, some more modern research is also available in the fabrication of hybrid flexible aerogels (based on organic-organic), the combination of two organic polymers. Moreover, a new type (single-component flexible aerogels) are quite a new category composed of only single materials; this category is very limited, charming to make the flexible aerogels pure from single polymers. The present review is composed of modern techniques and studies available to fabricate hybrid and single-component flexible aerogels. Their synthesis, factors affecting their parameters, and limitations associated with them are explained deeply. Moreover, a comparative analysis of drying methods and their effectiveness in the development of structures are described in detail. The further sections explain their properties and characterization methods. Eventually, their applications in a variety of multifunctional fields are covered. This article will support to introduce the roadmap pointing to a future direction in the production of the single-component flexible aerogel materials and their applications.

See more in PubMed

Mazrouei-Sebdani Z.; Begum H.; Schoenwald S.; Horoshenkov K. V.; Malfait W. J. A review on silica aerogel-based materials for acoustic applications. J. Non-Cryst. Solids 2021, 562, 120770.10.1016/j.jnoncrysol.2021.120770. DOI

Duan Y.; Jana S. C.; Lama B.; Espe M. P. Reinforcement of silica aerogels using silane-end-capped polyurethanes. Langmuir 2013, 29, 6156–6165. 10.1021/la4007394. PubMed DOI

Parale V. G.; Lee K.-Y.; Park H.-H. Flexible and transparent silica aerogels: An overview. J. Korean Ceram. Soc. 2017, 54, 184–199. 10.4191/kcers.2017.54.3.12. DOI

Zhong L.; Chen X.; Song H.; Guo K.; Hu Z. Highly flexible silica aerogels derived from methyltriethoxysilane and polydimethylsiloxane. New J. Chem. 2015, 39, 7832–7838. 10.1039/C5NJ01477H. DOI

Fattahi H. Polymeric aerogels: preparation, properties, and applications. Basparesh 2015, 5, 89–102. 10.22063/basparesh.2015.1250. DOI

Zhu Y.; Hu H.; Li W.-C.; Zhang X. Cresol-formaldehyde based carbon aerogel as electrode material for electrochemical capacitor. J. Power Sources 2006, 162, 738–742. 10.1016/j.jpowsour.2006.06.049. DOI

Yamashita J.; Ojima T.; Shioya M.; Hatori H.; Yamada Y. Organic and carbon aerogels derived from poly (vinyl chloride). Carbon 2003, 41, 285–294. 10.1016/S0008-6223(02)00289-0. DOI

Wu D.; Fu R.; Zhang S.; Dresselhaus M. S.; Dresselhaus G. Preparation of low-density carbon aerogels by ambient pressure drying. Carbon 2004, 42, 2033–2039. 10.1016/j.carbon.2004.04.003. DOI

Wu D.; Fu R.; Zhang S.; Dresselhaus M. S. G.; Dresselhaus G. The preparation of carbon aerogels based upon the gelation of resorcinol-furfural in isopropanol with organic base catalyst. J. Non-Cryst. Solids 2004, 336, 26–31. 10.1016/j.jnoncrysol.2003.12.051. DOI

Diascorn N.; Calas S.; Sallée H.; Achard P.; Rigacci A. Polyurethane aerogels synthesis for thermal insulation-textural, thermal and mechanical properties. J. Supercrit. Fluids 2015, 106, 76–84. 10.1016/j.supflu.2015.05.012. DOI

Mi Q.; Ma S.; Yu J.; He J.; Zhang J. Flexible and transparent cellulose aerogels with uniform nanoporous structure by a controlled regeneration process. ACS Sustain. Chem. Eng. 2016, 4, 656–660. 10.1021/acssuschemeng.5b01079. DOI

Salam A.; Venditti R. A.; Pawlak J. J.; El-Tahlawy K. Crosslinked hemicellulose citrate-chitosan aerogel foams. Carbohydr. Polym. 2011, 84, 1221–1229. 10.1016/j.carbpol.2011.01.008. DOI

Li X.; Dong G.; Liu Z.; Zhang X. Polyimide aerogel fibers with superior flame resistance, strength, hydrophobicity, and flexibility made via a universal sol-gel confined transition strategy. ACS Nano 2021, 15, 4759–4768. 10.1021/acsnano.0c09391. PubMed DOI

Maleki H.; Durães L.; Portugal A. An overview on silica aerogels synthesis and different mechanical reinforcing strategies. J. Non-Cryst. Solids 2014, 385, 55–74. 10.1016/j.jnoncrysol.2013.10.017. DOI

Rahmanian V.; Pirzada T.; Wang S.; Khan S. A. Cellulose-Based Hybrid Aerogels: Strategies toward Design and Functionality. Adv. Mater. 2021, 33, 2102892.10.1002/adma.202102892. PubMed DOI

Smirnova I.; Gurikov P. Aerogel production: Current status, research directions, and future opportunities. J. Supercrit. Fluids 2018, 134, 228–233. 10.1016/j.supflu.2017.12.037. DOI

Yahya E. B.; Jummaat F.; Amirul A. A.; Adnan A. S.; Olaiya N. G.; Abdullah C. K.; Rizal S.; Mohamad Haafiz M. K.; Khalil H. P. S. A. A review on revolutionary natural biopolymer-based aerogels for antibacterial delivery. Antibiotics 2020, 9, 648.10.3390/antibiotics9100648. PubMed DOI PMC

Hoffmann F.; Cornelius M.; Morell J.; Fröba M. Silica-based mesoporous organic-inorganic hybrid materials. Angew. Chem., Int. Ed. 2006, 45, 3216–3251. 10.1002/anie.200503075. PubMed DOI

Jia F.; Wu R.; Liu C.; Lan J.; Lin Y. H.; Yang X. High Thermoelectric and Flexible PEDOT/SWCNT/BC Nanoporous Films Derived from Aerogels. ACS Sustain. Chem. Eng. 2019, 7, 12591–12600. 10.1021/acssuschemeng.9b02518. DOI

Liu M.; Wang Z.; Song P.; Yang Z.; Wang Q. Flexible MXene/rGO/CuO hybrid aerogels for high performance acetone sensing at room temperature. Sens. Actuators, B 2021, 340, 129946.10.1016/j.snb.2021.129946. DOI

Zhou L.; Zhai Y. M.; Yang M. B.; Yang W. Flexible and Tough Cellulose Nanocrystal/Polycaprolactone Hybrid Aerogel Based on the Strategy of Macromolecule Cross-Linking via Click Chemistry. ACS Sustain. Chem. Eng. 2019, 7, 15617–15627. 10.1021/acssuschemeng.9b03640. DOI

Rezaei S.; Zolali A. M.; Jalali A.; Park C. B. Novel and simple design of nanostructured, super-insulative and flexible hybrid silica aerogel with a new macromolecular polyether-based precursor. J. Colloid Interface Sci. 2020, 561, 890–901. 10.1016/j.jcis.2019.11.072. PubMed DOI

Zhang X.; Li W.; Song P.; You B.; Sun G. Double-cross-linking strategy for preparing flexible, robust, and multifunctional polyimide aerogel. Chem. Eng. J. 2020, 381, 122784.10.1016/j.cej.2019.122784. DOI

Kistler S. S. Coherent expanded aerogels and jellies. Nature 1931, 127, 741.10.1038/127741a0. DOI

Qian F.; Lan P. C.; Freyman M. C.; Chen W.; Kou T.; Olson T. Y.; Zhu C.; Worsley M. A.; Duoss E. B.; Spadaccini C. M.; et al. Ultralight Conductive Silver Nanowire Aerogels. Nano Lett. 2017, 17, 7171–7176. 10.1021/acs.nanolett.7b02790. PubMed DOI

Ali A.; Baheti V.; Militky J.; Khan Z. Utility of silver-coated fabrics as electrodes in electrotherapy applications. J. Appl. Polym. Sci. 2018, 135, 135.10.1002/app.46357. DOI

Guo F.; Jiang Y.; Xu Z.; Xiao Y.; Fang B.; Liu Y.; Gao W.; Zhao P.; Wang H.; Gao C. Highly stretchable carbon aerogels. Nat. Commun. 2018, 9, 881–889. 10.1038/s41467-018-03268-y. PubMed DOI PMC

Li M.; Qin Z.; Cui Y.; Yang C.; Deng C.; Wang Y.; Kang J. S.; Xia H.; Hu Y. Ultralight and flexible monolithic polymer aerogel with extraordinary thermal insulation by a facile ambient process. Adv. Mater. Interfaces 2019, 6, 1900314.10.1002/admi.201900314. DOI

Qian F.; Lan P. C.; Freyman M. C.; Chen W.; Kou T.; Olson T. Y.; Zhu C.; Worsley M. A.; Duoss E. B.; Spadaccini C. M.; Baumann T.; Han T. Y.-J. Ultralight conductive silver nanowire aerogels. Nano Lett. 2017, 17, 7171–7176. 10.1021/acs.nanolett.7b02790. PubMed DOI

Jung S. M.; Jung H. Y.; Dresselhaus M. S.; Jung Y. J.; Kong J. A facile route for 3D aerogels from nanostructured 1D and 2D materials. Sci. Rep. 2012, 2, 849.10.1038/srep00849. PubMed DOI PMC

Nguyen B. N.; Meador M. A. B.; Scheiman D.; McCorkle L. Polyimide Aerogels Using Triisocyanate as Cross-linker. ACS Appl. Mater. Interfaces 2017, 9, 27313–27321. 10.1021/acsami.7b07821. PubMed DOI

Williams J. C.; Nguyen B. N.; McCorkle L.; Scheiman D.; Griffin J. S.; Steiner S. A.; Meador M. A. B. Highly Porous, Rigid-Rod Polyamide Aerogels with Superior Mechanical Properties and Unusually High Thermal Conductivity. ACS Appl. Mater. Interfaces 2017, 9, 1801–1809. 10.1021/acsami.6b13100. PubMed DOI

Meador M. A. B.; Malow E. J.; Silva R.; Wright S.; Quade D.; Vivod S. L.; Guo H.; Guo J.; Cakmak M. Mechanically Strong, Flexible Polyimide Aerogels Cross-Linked with Aromatic Triamine. ACS Appl. Mater. Interfaces 2012, 4, 536–544. 10.1021/am2014635. PubMed DOI

Nguyen B. N.; Meador M. A. B.; Scheiman D.; McCorkle L. Polyimide Aerogels Using Triisocyanate as Cross-linker. ACS Appl. Mater. Interfaces 2017, 9, 27313–27321. 10.1021/acsami.7b07821. PubMed DOI

Guo H.; Meador M. A. B.; Cashman J. L.; Tresp D.; Dosa B.; Scheiman D. A.; McCorkle L. S. Flexible Polyimide Aerogels with Dodecane Links in the Backbone Structure. ACS Appl. Mater. Interfaces 2020, 12, 33288–33296. 10.1021/acsami.0c09321. PubMed DOI

Wu T.; Dong J.; De France K.; Li M.; Zhao X.; Zhang Q. Fabrication of Polyimide Aerogels Cross-Linked by a Cost-Effective Amine-Functionalized Hyperbranched Polysiloxane (NH2-HBPSi). ACS Appl. Polym. Mater. 2020, 2, 3876–3885. 10.1021/acsapm.0c00563. DOI

Leven F.; Ulbricht M.; Limberg J.; Ostermann R. Novel finely structured polymer aerogels using organogelators as a structure-directing component. J. Mater. Chem. A 2021, 9, 20695–20702. 10.1039/D1TA06161E. DOI

Leventis N.; Lu H.. Polymer-crosslinked aerogels. In Aerogels Handbook; Springer, 2011; pp 251–285.

Hasegawa G.; Shimizu T.; Kanamori K.; Maeno A.; Kaji H.; Nakanishi K. Highly Flexible Hybrid Polymer Aerogels and Xerogels Based on Resorcinol-Formaldehyde with Enhanced Elastic Stiffness and Recoverability: Insights into the Origin of Their Mechanical Properties. Chem. Mater. 2017, 29, 2122–2134. 10.1021/acs.chemmater.6b04706. DOI

Wang Z.; Liu F.; Wei W.; Dong C.; Li Z.; Liu Z. Influence of supercritical fluid parameters on the polyimide aerogels in a high-efficiency supercritical drying process. Polymer 2023, 268, 125713.10.1016/j.polymer.2023.125713. DOI

Członka S.; Bertino M. F.; Kośny J.; Shukla N. Freeze-drying method as a new approach to the synthesis of polyurea aerogels from isocyanate and water. J. Solgel. Sci. Technol. 2018, 87, 685–695. 10.1007/s10971-018-4769-9. DOI

He H.; Geng L.; Liu F.; Ma B.; Huang W.; Qu L.; Xu B. Facile preparation of a phenolic aerogel with excellent flexibility for thermal insulation. Eur. Polym. J. 2022, 163, 110905.10.1016/j.eurpolymj.2021.110905. DOI

Sanchez C.; Ribot F. Design of hybrid organic-inorganic materials synthesized via sol-gel chemistry. New J. Chem. 1994, 18, 1007–1047.

Sanchez C.; Ribot F.; Lebeau B. Molecular design of hybrid organic-inorganic nanocomposites synthesized via sol-gel chemistry. J. Mater. Chem. 1999, 9, 35–44. 10.1039/a805538f. DOI

Leventis N.; Sotiriou-Leventis C.; Zhang G.; Rawashdeh A.-M. M. Nanoengineering strong silica aerogels. Nano Lett. 2002, 2, 957–960. 10.1021/nl025690e. DOI

Zhang G.; Dass A.; Rawashdeh A.-M. M.; Thomas J.; Counsil J. A.; Sotiriou-Leventis C.; Fabrizio E. F.; Ilhan F.; Vassilaras P.; Scheiman D. A.; McCorkle L.; Palczer A.; Johnston J. C.; Meador M. A.; et al. Isocyanate-crosslinked silica aerogel monoliths: preparation and characterization. J. Non-Cryst. Solids 2004, 350, 152–164. 10.1016/j.jnoncrysol.2004.06.041. DOI

Meador M. A. B.; Fabrizio E. F.; Ilhan F.; Dass A.; Zhang G.; Vassilaras P.; Johnston J. C.; Leventis N. Cross-linking amine-modified silica aerogels with epoxies: mechanically strong lightweight porous materials. Chem. Mater. 2005, 17, 1085–1098. 10.1021/cm048063u. DOI

Leventis N.; Sotiriou-Leventis C.; Mulik S.; Dass A.; Schnobrich J.; Hobbs A.; Fabrizio E. F.; Luo H.; Churu G.; Zhang Y.; Lu H. Polymer nanoencapsulated mesoporous vanadia with unusual ductility at cryogenic temperatures. J. Mater. Chem. 2008, 18, 2475–2482. 10.1039/b801770k. DOI

Ciftci D.; Ubeyitogullari A.; Huerta R. R.; Ciftci O. N.; Flores R. A.; Saldaña M. D. Lupin hull cellulose nanofiber aerogel preparation by supercritical CO2 and freeze drying. J. Supercrit. Fluids 2017, 127, 137–145. 10.1016/j.supflu.2017.04.002. DOI

Şahin İ.; Özbakır Y.; İnönü Z.; Ulker Z.; Erkey C. Kinetics of supercritical drying of gels. Gels 2017, 4, 3.10.3390/gels4010003. PubMed DOI PMC

Abbasi Moud A. Advanced cellulose nanocrystals (CNC) and cellulose nanofibrils (CNF) aerogels: Bottom-up assembly perspective for production of adsorbents. Int. J. Biol. Macromol. 2022, 222, 1–29. 10.1016/j.ijbiomac.2022.09.148. PubMed DOI

Pons A.; Casas L.; Estop E.; Molins E.; Harris K. D. M.; Xu M. A new route to aerogels: Monolithic silica cryogels. J. Non-Cryst. Solids 2012, 358, 461–469. 10.1016/j.jnoncrysol.2011.10.031. DOI

Yun S.; Luo H.; Gao Y. Ambient-pressure drying synthesis of large resorcinol-formaldehyde-reinforced silica aerogels with enhanced mechanical strength and superhydrophobicity. J. Mater. Chem. A 2014, 2, 14542–14549. 10.1039/C4TA02195A. DOI

Giroux M.; Sahadeo E.; Libera R.; Maurizi A.; Giles I.; Marteel-Parrish A. An undergraduate research experience: synthesis, modification, and comparison of hydrophobicity of zeolites A and X. Polyhedron 2016, 114, 42–52. 10.1016/j.poly.2015.09.037. DOI

Alwin S.; Sahaya Shajan X. Aerogels: promising nanostructured materials for energy conversion and storage applications. Mater. Renew. Sustain. Energy. 2020, 9, 7–27. 10.1007/s40243-020-00168-4. DOI

El-Naggar M. E.; Othman S. I.; Allam A. A.; Morsy O. M. Synthesis, drying process and medical application of polysaccharide-based aerogels. Int. J. Biol. Macromol. 2020, 145, 1115–1128. 10.1016/j.ijbiomac.2019.10.037. PubMed DOI

Cole D. R.; Chialvo A. A.; Rother G.; Vlcek L.; Cummings P. T. Supercritical fluid behavior at nanoscale interfaces: Implications for CO2 sequestration in geologic formations. Philos. Mag. 2010, 90, 2339–2363. 10.1080/14786430903559458. DOI

El-Naggar M. E.; Othman S. I.; Allam A. A.; Morsy O. M. Synthesis, drying process and medical application of polysaccharide-based aerogels. Int. J. Biol. Macromol. 2020, 145, 1115–1128. 10.1016/j.ijbiomac.2019.10.037. PubMed DOI

Kayathi A.; Chakrabarti P. P.; Bonfim-Rocha L.; Cardozo-Filho L.; Jegatheesan V. Selective extraction of polar lipids of mango kernel using Supercritical Carbon dioxide (SC-CO2) extraction: Process optimization of extract yield/phosphorous content and economic evaluation. Chemosphere 2020, 260, 127639.10.1016/j.chemosphere.2020.127639. PubMed DOI

Mahadik D. B.; Lee Y. K.; Chavan N. K.; Mahadik S. A.; Park H.-H. Monolithic and shrinkage-free hydrophobic silica aerogels via new rapid supercritical extraction process. J. Supercrit. Fluids 2016, 107, 84–91. 10.1016/j.supflu.2015.08.020. DOI

Maleki H.; Durães L.; García-González C. A.; del Gaudio P.; Portugal A.; Mahmoudi M. Synthesis and biomedical applications of aerogels: Possibilities and challenges. Adv. Colloid Interface Sci. 2016, 236, 1–27. 10.1016/j.cis.2016.05.011. PubMed DOI

Noman M. T.; Amor N.; Ali A.; Petrik S.; Coufal R.; Adach K.; Fijalkowski M. Aerogels for Biomedical, Energy and Sensing Applications. Gels 2021, 7, 264.10.3390/gels7040264. PubMed DOI PMC

Groult S.; Buwalda S.; Budtova T. Pectin hydrogels, aerogels, cryogels and xerogels: Influence of drying on structural and release properties. Eur. Polym. J. 2021, 149, 110386.10.1016/j.eurpolymj.2021.110386. DOI

Huang J.; Wang H.; Liang B.; Etim U. J.; Liu Y.; Li Y.; Yan Z. Oriented freeze-casting fabrication of resilient copper nanowire-based aerogel as robust piezoresistive sensor. Chem. Eng. J. 2019, 364, 28–36. 10.1016/j.cej.2019.01.071. DOI

Leventis N. Three-Dimensional Core-Shell Superstructures: Mechanically Strong Aerogels. Acc. Chem. Res. 2007, 40, 874–884. 10.1021/ar600033s. PubMed DOI

Churu G.; Zupančič B.; Mohite D.; Wisner C.; Luo H.; Emri I.; Sotiriou-Leventis C.; Leventis N.; Lu H. Synthesis and mechanical characterization of mechanically strong, polyurea-crosslinked, ordered mesoporous silica aerogels. J. Solgel. Sci. Technol. 2015, 75, 98–123. 10.1007/s10971-015-3681-9. DOI

Yang H.; Kong X.; Zhang Y.; Wu C.; Cao E. Mechanical properties of polymer-modified silica aerogels dried under ambient pressure. J. Non-Cryst. Solids 2011, 357, 3447–3453. 10.1016/j.jnoncrysol.2011.06.017. DOI

Mandal C.; Donthula S.; Far H. M.; Saeed A. M.; Sotiriou-Leventis C.; Leventis N. Transparent, mechanically strong, thermally insulating cross-linked silica aerogels for energy-efficient windows. J. Solgel. Sci. Technol. 2019, 92, 84–100. 10.1007/s10971-019-05100-5. DOI

Venkateswara Rao A.; Bhagat S. D.; Hirashima H.; Pajonk G. M. Synthesis of flexible silica aerogels using methyltrimethoxysilane (MTMS) precursor. J. Colloid Interface Sci. 2006, 300, 279–285. 10.1016/j.jcis.2006.03.044. PubMed DOI

Jiang L.; Kato K.; Mayumi K.; Yokoyama H.; Ito K. One-Pot Synthesis and Characterization of Polyrotaxane-Silica Hybrid Aerogel. ACS Macro Lett. 2017, 6, 281–286. 10.1021/acsmacrolett.7b00014. PubMed DOI

Hayase G.; Kanamori K.; Fukuchi M.; Kaji H.; Nakanishi K. Facile Synthesis of Marshmallow-like Macroporous Gels Useable under Harsh Conditions for the Separation of Oil and Water. Angew. Chem., Int. Ed. 2013, 52, 1986–1989. 10.1002/anie.201207969. PubMed DOI

Kanamori K.; Aizawa M.; Nakanishi K.; Hanada T. Elastic organic-inorganic hybrid aerogels and xerogels. J. Solgel. Sci. Technol. 2008, 48, 172–181. 10.1007/s10971-008-1756-6. DOI

Nadargi D. Y.; Latthe S. S.; Hirashima H.; Rao A. V. Studies on rheological properties of methyltriethoxysilane (MTES) based flexible superhydrophobic silica aerogels. Microporous Mesoporous Mater. 2009, 117, 617–626. 10.1016/j.micromeso.2008.08.025. DOI

Mahadik D. B.; Jung H.-N.-R.; Han W.; Cho H. H.; Park H.-H. Flexible, elastic, and superhydrophobic silica-polymer composite aerogels by high internal phase emulsion process. Compos. Sci. Technol. 2017, 147, 45–51. 10.1016/j.compscitech.2017.04.036. DOI

Mandal C.; Donthula S.; Far H. M.; Saeed A. M.; Sotiriou-Leventis C.; Leventis N. Transparent, mechanically strong, thermally insulating cross-linked silica aerogels for energy-efficient windows. J. Solgel. Sci. Technol. 2019, 92, 84–100. 10.1007/s10971-019-05100-5. DOI

Mahadik D. B.; Venkateswara Rao A.; Parale V. G.; Kavale M. S.; Wagh P. B.; Ingale S. V.; Gupta S. C. Effect of surface composition and roughness on the apparent surface free energy of silica aerogel materials. Appl. Phys. Lett. 2011, 99, 104104.10.1063/1.3635398. DOI

Shimizu T.; Kanamori K.; Maeno A.; Kaji H.; Doherty C. M.; Falcaro P.; Nakanishi K. Transparent, Highly Insulating Polyethyl- and Polyvinylsilsesquioxane Aerogels: Mechanical Improvements by Vulcanization for Ambient Pressure Drying. Chem. Mater. 2016, 28, 6860–6868. 10.1021/acs.chemmater.6b01936. DOI

Aravind P. R.; Niemeyer P.; Ratke L. Novel flexible aerogels derived from methyltrimethoxysilane/3-(2, 3-epoxypropoxy)propyltrimethoxysilane co-precursor. Microporous Mesoporous Mater. 2013, 181, 111–115. 10.1016/j.micromeso.2013.07.025. DOI

Li Z.; Gong L.; Cheng X.; He S.; Li C.; Zhang H. Flexible silica aerogel composites strengthened with aramid fibers and their thermal behavior. Mater. Des. 2016, 99, 349–355. 10.1016/j.matdes.2016.03.063. DOI

Cashman J. L.; Nguyen B. N.; Dosa B.; Meador M. A. B. Flexible Polyimide Aerogels Derived from the Use of a Neopentyl Spacer in the Backbone. ACS Appl. Polym. Mater. 2020, 2, 2179–2189. 10.1021/acsapm.0c00153. DOI

Rege A.; Preibisch I.; Schestakow M.; Ganesan K.; Gurikov P.; Milow B.; Smirnova I.; Itskov M. Correlating Synthesis Parameters to Morphological Entities: Predictive Modeling of Biopolymer Aerogels. Materials 2018, 11, 1670.10.3390/ma11091670. PubMed DOI PMC

Jang W.-Y.; Kyriakides S. On the crushing of aluminum open-cell foams: Part II analysis. Int. J. Solids Struct. 2009, 46, 635–650. 10.1016/j.ijsolstr.2008.10.016. DOI

Rege A.; Schwan M.; Chernova L.; Hillgärtner M.; Itskov M.; Milow B. Microstructural and mechanical characterization of carbon aerogels: An in-situ and digital image correlation-based study. J. Non-Cryst. Solids 2020, 529, 119568.10.1016/j.jnoncrysol.2019.119568. DOI

Rege A.; Aney S.; Milow B. Influence of pore-size distributions and pore-wall mechanics on the mechanical behavior of cellular solids like aerogels. Phys. Rev. E 2021, 103, 043001.10.1103/PhysRevE.103.043001. PubMed DOI

Qian Z.; Wang Z.; Zhao N.; Xu J. Aerogels Derived from Polymer Nanofibers and Their Applications. Macromol. Rapid Commun. 2018, 39, 1700724.10.1002/marc.201700724. PubMed DOI

Ghaffari-Mosanenzadeh S.; Aghababaei Tafreshi O.; Karamikamkar S.; Saadatnia Z.; Rad E.; Meysami M.; Naguib H. E. Recent advances in tailoring and improving the properties of polyimide aerogels and their application. Adv. Colloid Interface Sci. 2022, 304, 102646.10.1016/j.cis.2022.102646. PubMed DOI

Tian J.; Yang Y.; Xue T.; Chao G.; Fan W.; Liu T. Highly flexible and compressible polyimide/silica aerogels with integrated double network for thermal insulation and fire-retardancy. J. Mater. Sci. Technol. 2022, 105, 194–202. 10.1016/j.jmst.2021.07.030. DOI

Muñoz-Ruíz A.; Escobar-García D. M.; Quintana M.; Pozos-Guillén A.; Flores H. Synthesis and Characterization of a New Collagen-Alginate Aerogel for Tissue Engineering. J. Nanomater. 2019, 2019, 1–10. 10.1155/2019/2875375. DOI

Groult S.; Buwalda S.; Budtova T. Pectin hydrogels, aerogels, cryogels and xerogels: Influence of drying on structural and release properties. Eur. Polym. J. 2021, 149, 110386.10.1016/j.eurpolymj.2021.110386. DOI

Kaushika N. D.; Sumathy K. Solar transparent insulation materials: a review. Renewable Sustainable Energy Rev. 2003, 7, 317–351. 10.1016/S1364-0321(03)00067-4. DOI

Ali A.; Baheti V.; Militky J. Energy harvesting performance of silver electroplated fabrics. Mater. Chem. Phys. 2019, 231, 33–40. 10.1016/j.matchemphys.2019.02.063. DOI

Reim M.; Körner W.; Manara J.; Korder S.; Arduini-Schuster M.; Ebert H.-P.; Fricke J. Silica aerogel granulate material for thermal insulation and daylighting. Sol. Energy 2005, 79, 131–139. 10.1016/j.solener.2004.08.032. DOI

Amor N.; Noman M. T.; Petru M. Prediction of Methylene Blue Removal by Nano TiO2 Using Deep Neural Network. Polymers 2021, 13, 3104.10.3390/polym13183104. PubMed DOI PMC

Han L.; Dong L.; Zhang H.; Li F.; Tian L.; Li G.; Jia Q.; Zhang S. Thermal insulation TiN aerogels prepared by a combined freeze-casting and carbothermal reduction-nitridation technique. J. Eur. Ceram. Soc. 2021, 41, 5127–5137. 10.1016/j.jeurceramsoc.2021.01.037. DOI

Long S.; Feng Y.; He F.; Zhao J.; Bai T.; Lin H.; Cai W.; Mao C.; Chen Y.; Gan L.; Liu J.; Ye M.; Zeng X.; Long M. Biomass-derived, multifunctional and wave-layered carbon aerogels toward wearable pressure sensors, supercapacitors and triboelectric nanogenerators. Nano Energy 2021, 85, 105973.10.1016/j.nanoen.2021.105973. DOI

Yang Z.; Li H.; Zhang S.; Lai X.; Zeng X. Superhydrophobic MXene@carboxylated carbon nanotubes/carboxymethyl chitosan aerogel for piezoresistive pressure sensor. Chem. Eng. J. 2021, 425, 130462.10.1016/j.cej.2021.130462. DOI

Alizadeh T.; Ahmadian F. Thiourea-treated graphene aerogel as a highly selective gas sensor for sensing of trace level of ammonia. Anal. Chim. Acta 2015, 897, 87–95. 10.1016/j.aca.2015.09.031. PubMed DOI

Bi Y.; Hei Y.; Wang N.; Liu J.; Ma C.-B. Synthesis of a clustered carbon aerogel interconnected by carbon balls from the biomass of taros for construction of a multi-functional electrochemical sensor. Anal. Chim. Acta 2021, 1164, 338514.10.1016/j.aca.2021.338514. PubMed DOI

Coffman B. E.; Fesmire J. E.; White S.; Gould G.; Augustynowicz S.; Weisend J. G.. Aerogels blanket insulation materials for cryogenic applications. AIP Conference Proceedings; American Institute of Physics, 2010; pp 913–920.

Riffat S. B.; Qiu G. A review of state-of-the-art aerogel applications in buildings. Int. J. Low-Carbon Technol. 2013, 8, 1–6. 10.1093/ijlct/cts001. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...