Flexible Hybrid and Single-Component Aerogels: Synthesis, Characterization, and Applications
Status PubMed-not-MEDLINE Language English Country United States Media print-electronic
Document type Journal Article
PubMed
37955990
PubMed Central
PMC10688192
DOI
10.1021/acs.langmuir.3c01811
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
The inherent disadvantages of traditional nonflexible aerogels, such as high fragility and moisture sensitivity, severely restrict their applications. To address these issues, different techniques have been used to incorporate the flexibility in aerogel materials; hence, the term "flexible aerogels" was introduced. In the case of introducing flexibility, the organic part is induced with the inorganic part (flexible hybrid aerogels). Additionally, some more modern research is also available in the fabrication of hybrid flexible aerogels (based on organic-organic), the combination of two organic polymers. Moreover, a new type (single-component flexible aerogels) are quite a new category composed of only single materials; this category is very limited, charming to make the flexible aerogels pure from single polymers. The present review is composed of modern techniques and studies available to fabricate hybrid and single-component flexible aerogels. Their synthesis, factors affecting their parameters, and limitations associated with them are explained deeply. Moreover, a comparative analysis of drying methods and their effectiveness in the development of structures are described in detail. The further sections explain their properties and characterization methods. Eventually, their applications in a variety of multifunctional fields are covered. This article will support to introduce the roadmap pointing to a future direction in the production of the single-component flexible aerogel materials and their applications.
Department of Material Sciences Technical University of Liberec 461 17 Liberec Czech Republic
Department of Materials and Nanotechnology SINTEF Industry Forskningsveien 1 0373 Oslo Norway
See more in PubMed
Mazrouei-Sebdani Z.; Begum H.; Schoenwald S.; Horoshenkov K. V.; Malfait W. J. A review on silica aerogel-based materials for acoustic applications. J. Non-Cryst. Solids 2021, 562, 120770.10.1016/j.jnoncrysol.2021.120770. DOI
Duan Y.; Jana S. C.; Lama B.; Espe M. P. Reinforcement of silica aerogels using silane-end-capped polyurethanes. Langmuir 2013, 29, 6156–6165. 10.1021/la4007394. PubMed DOI
Parale V. G.; Lee K.-Y.; Park H.-H. Flexible and transparent silica aerogels: An overview. J. Korean Ceram. Soc. 2017, 54, 184–199. 10.4191/kcers.2017.54.3.12. DOI
Zhong L.; Chen X.; Song H.; Guo K.; Hu Z. Highly flexible silica aerogels derived from methyltriethoxysilane and polydimethylsiloxane. New J. Chem. 2015, 39, 7832–7838. 10.1039/C5NJ01477H. DOI
Fattahi H. Polymeric aerogels: preparation, properties, and applications. Basparesh 2015, 5, 89–102. 10.22063/basparesh.2015.1250. DOI
Zhu Y.; Hu H.; Li W.-C.; Zhang X. Cresol-formaldehyde based carbon aerogel as electrode material for electrochemical capacitor. J. Power Sources 2006, 162, 738–742. 10.1016/j.jpowsour.2006.06.049. DOI
Yamashita J.; Ojima T.; Shioya M.; Hatori H.; Yamada Y. Organic and carbon aerogels derived from poly (vinyl chloride). Carbon 2003, 41, 285–294. 10.1016/S0008-6223(02)00289-0. DOI
Wu D.; Fu R.; Zhang S.; Dresselhaus M. S.; Dresselhaus G. Preparation of low-density carbon aerogels by ambient pressure drying. Carbon 2004, 42, 2033–2039. 10.1016/j.carbon.2004.04.003. DOI
Wu D.; Fu R.; Zhang S.; Dresselhaus M. S. G.; Dresselhaus G. The preparation of carbon aerogels based upon the gelation of resorcinol-furfural in isopropanol with organic base catalyst. J. Non-Cryst. Solids 2004, 336, 26–31. 10.1016/j.jnoncrysol.2003.12.051. DOI
Diascorn N.; Calas S.; Sallée H.; Achard P.; Rigacci A. Polyurethane aerogels synthesis for thermal insulation-textural, thermal and mechanical properties. J. Supercrit. Fluids 2015, 106, 76–84. 10.1016/j.supflu.2015.05.012. DOI
Mi Q.; Ma S.; Yu J.; He J.; Zhang J. Flexible and transparent cellulose aerogels with uniform nanoporous structure by a controlled regeneration process. ACS Sustain. Chem. Eng. 2016, 4, 656–660. 10.1021/acssuschemeng.5b01079. DOI
Salam A.; Venditti R. A.; Pawlak J. J.; El-Tahlawy K. Crosslinked hemicellulose citrate-chitosan aerogel foams. Carbohydr. Polym. 2011, 84, 1221–1229. 10.1016/j.carbpol.2011.01.008. DOI
Li X.; Dong G.; Liu Z.; Zhang X. Polyimide aerogel fibers with superior flame resistance, strength, hydrophobicity, and flexibility made via a universal sol-gel confined transition strategy. ACS Nano 2021, 15, 4759–4768. 10.1021/acsnano.0c09391. PubMed DOI
Maleki H.; Durães L.; Portugal A. An overview on silica aerogels synthesis and different mechanical reinforcing strategies. J. Non-Cryst. Solids 2014, 385, 55–74. 10.1016/j.jnoncrysol.2013.10.017. DOI
Rahmanian V.; Pirzada T.; Wang S.; Khan S. A. Cellulose-Based Hybrid Aerogels: Strategies toward Design and Functionality. Adv. Mater. 2021, 33, 2102892.10.1002/adma.202102892. PubMed DOI
Smirnova I.; Gurikov P. Aerogel production: Current status, research directions, and future opportunities. J. Supercrit. Fluids 2018, 134, 228–233. 10.1016/j.supflu.2017.12.037. DOI
Yahya E. B.; Jummaat F.; Amirul A. A.; Adnan A. S.; Olaiya N. G.; Abdullah C. K.; Rizal S.; Mohamad Haafiz M. K.; Khalil H. P. S. A. A review on revolutionary natural biopolymer-based aerogels for antibacterial delivery. Antibiotics 2020, 9, 648.10.3390/antibiotics9100648. PubMed DOI PMC
Hoffmann F.; Cornelius M.; Morell J.; Fröba M. Silica-based mesoporous organic-inorganic hybrid materials. Angew. Chem., Int. Ed. 2006, 45, 3216–3251. 10.1002/anie.200503075. PubMed DOI
Jia F.; Wu R.; Liu C.; Lan J.; Lin Y. H.; Yang X. High Thermoelectric and Flexible PEDOT/SWCNT/BC Nanoporous Films Derived from Aerogels. ACS Sustain. Chem. Eng. 2019, 7, 12591–12600. 10.1021/acssuschemeng.9b02518. DOI
Liu M.; Wang Z.; Song P.; Yang Z.; Wang Q. Flexible MXene/rGO/CuO hybrid aerogels for high performance acetone sensing at room temperature. Sens. Actuators, B 2021, 340, 129946.10.1016/j.snb.2021.129946. DOI
Zhou L.; Zhai Y. M.; Yang M. B.; Yang W. Flexible and Tough Cellulose Nanocrystal/Polycaprolactone Hybrid Aerogel Based on the Strategy of Macromolecule Cross-Linking via Click Chemistry. ACS Sustain. Chem. Eng. 2019, 7, 15617–15627. 10.1021/acssuschemeng.9b03640. DOI
Rezaei S.; Zolali A. M.; Jalali A.; Park C. B. Novel and simple design of nanostructured, super-insulative and flexible hybrid silica aerogel with a new macromolecular polyether-based precursor. J. Colloid Interface Sci. 2020, 561, 890–901. 10.1016/j.jcis.2019.11.072. PubMed DOI
Zhang X.; Li W.; Song P.; You B.; Sun G. Double-cross-linking strategy for preparing flexible, robust, and multifunctional polyimide aerogel. Chem. Eng. J. 2020, 381, 122784.10.1016/j.cej.2019.122784. DOI
Kistler S. S. Coherent expanded aerogels and jellies. Nature 1931, 127, 741.10.1038/127741a0. DOI
Qian F.; Lan P. C.; Freyman M. C.; Chen W.; Kou T.; Olson T. Y.; Zhu C.; Worsley M. A.; Duoss E. B.; Spadaccini C. M.; et al. Ultralight Conductive Silver Nanowire Aerogels. Nano Lett. 2017, 17, 7171–7176. 10.1021/acs.nanolett.7b02790. PubMed DOI
Ali A.; Baheti V.; Militky J.; Khan Z. Utility of silver-coated fabrics as electrodes in electrotherapy applications. J. Appl. Polym. Sci. 2018, 135, 135.10.1002/app.46357. DOI
Guo F.; Jiang Y.; Xu Z.; Xiao Y.; Fang B.; Liu Y.; Gao W.; Zhao P.; Wang H.; Gao C. Highly stretchable carbon aerogels. Nat. Commun. 2018, 9, 881–889. 10.1038/s41467-018-03268-y. PubMed DOI PMC
Li M.; Qin Z.; Cui Y.; Yang C.; Deng C.; Wang Y.; Kang J. S.; Xia H.; Hu Y. Ultralight and flexible monolithic polymer aerogel with extraordinary thermal insulation by a facile ambient process. Adv. Mater. Interfaces 2019, 6, 1900314.10.1002/admi.201900314. DOI
Qian F.; Lan P. C.; Freyman M. C.; Chen W.; Kou T.; Olson T. Y.; Zhu C.; Worsley M. A.; Duoss E. B.; Spadaccini C. M.; Baumann T.; Han T. Y.-J. Ultralight conductive silver nanowire aerogels. Nano Lett. 2017, 17, 7171–7176. 10.1021/acs.nanolett.7b02790. PubMed DOI
Jung S. M.; Jung H. Y.; Dresselhaus M. S.; Jung Y. J.; Kong J. A facile route for 3D aerogels from nanostructured 1D and 2D materials. Sci. Rep. 2012, 2, 849.10.1038/srep00849. PubMed DOI PMC
Nguyen B. N.; Meador M. A. B.; Scheiman D.; McCorkle L. Polyimide Aerogels Using Triisocyanate as Cross-linker. ACS Appl. Mater. Interfaces 2017, 9, 27313–27321. 10.1021/acsami.7b07821. PubMed DOI
Williams J. C.; Nguyen B. N.; McCorkle L.; Scheiman D.; Griffin J. S.; Steiner S. A.; Meador M. A. B. Highly Porous, Rigid-Rod Polyamide Aerogels with Superior Mechanical Properties and Unusually High Thermal Conductivity. ACS Appl. Mater. Interfaces 2017, 9, 1801–1809. 10.1021/acsami.6b13100. PubMed DOI
Meador M. A. B.; Malow E. J.; Silva R.; Wright S.; Quade D.; Vivod S. L.; Guo H.; Guo J.; Cakmak M. Mechanically Strong, Flexible Polyimide Aerogels Cross-Linked with Aromatic Triamine. ACS Appl. Mater. Interfaces 2012, 4, 536–544. 10.1021/am2014635. PubMed DOI
Nguyen B. N.; Meador M. A. B.; Scheiman D.; McCorkle L. Polyimide Aerogels Using Triisocyanate as Cross-linker. ACS Appl. Mater. Interfaces 2017, 9, 27313–27321. 10.1021/acsami.7b07821. PubMed DOI
Guo H.; Meador M. A. B.; Cashman J. L.; Tresp D.; Dosa B.; Scheiman D. A.; McCorkle L. S. Flexible Polyimide Aerogels with Dodecane Links in the Backbone Structure. ACS Appl. Mater. Interfaces 2020, 12, 33288–33296. 10.1021/acsami.0c09321. PubMed DOI
Wu T.; Dong J.; De France K.; Li M.; Zhao X.; Zhang Q. Fabrication of Polyimide Aerogels Cross-Linked by a Cost-Effective Amine-Functionalized Hyperbranched Polysiloxane (NH2-HBPSi). ACS Appl. Polym. Mater. 2020, 2, 3876–3885. 10.1021/acsapm.0c00563. DOI
Leven F.; Ulbricht M.; Limberg J.; Ostermann R. Novel finely structured polymer aerogels using organogelators as a structure-directing component. J. Mater. Chem. A 2021, 9, 20695–20702. 10.1039/D1TA06161E. DOI
Leventis N.; Lu H.. Polymer-crosslinked aerogels. In Aerogels Handbook; Springer, 2011; pp 251–285.
Hasegawa G.; Shimizu T.; Kanamori K.; Maeno A.; Kaji H.; Nakanishi K. Highly Flexible Hybrid Polymer Aerogels and Xerogels Based on Resorcinol-Formaldehyde with Enhanced Elastic Stiffness and Recoverability: Insights into the Origin of Their Mechanical Properties. Chem. Mater. 2017, 29, 2122–2134. 10.1021/acs.chemmater.6b04706. DOI
Wang Z.; Liu F.; Wei W.; Dong C.; Li Z.; Liu Z. Influence of supercritical fluid parameters on the polyimide aerogels in a high-efficiency supercritical drying process. Polymer 2023, 268, 125713.10.1016/j.polymer.2023.125713. DOI
Członka S.; Bertino M. F.; Kośny J.; Shukla N. Freeze-drying method as a new approach to the synthesis of polyurea aerogels from isocyanate and water. J. Solgel. Sci. Technol. 2018, 87, 685–695. 10.1007/s10971-018-4769-9. DOI
He H.; Geng L.; Liu F.; Ma B.; Huang W.; Qu L.; Xu B. Facile preparation of a phenolic aerogel with excellent flexibility for thermal insulation. Eur. Polym. J. 2022, 163, 110905.10.1016/j.eurpolymj.2021.110905. DOI
Sanchez C.; Ribot F. Design of hybrid organic-inorganic materials synthesized via sol-gel chemistry. New J. Chem. 1994, 18, 1007–1047.
Sanchez C.; Ribot F.; Lebeau B. Molecular design of hybrid organic-inorganic nanocomposites synthesized via sol-gel chemistry. J. Mater. Chem. 1999, 9, 35–44. 10.1039/a805538f. DOI
Leventis N.; Sotiriou-Leventis C.; Zhang G.; Rawashdeh A.-M. M. Nanoengineering strong silica aerogels. Nano Lett. 2002, 2, 957–960. 10.1021/nl025690e. DOI
Zhang G.; Dass A.; Rawashdeh A.-M. M.; Thomas J.; Counsil J. A.; Sotiriou-Leventis C.; Fabrizio E. F.; Ilhan F.; Vassilaras P.; Scheiman D. A.; McCorkle L.; Palczer A.; Johnston J. C.; Meador M. A.; et al. Isocyanate-crosslinked silica aerogel monoliths: preparation and characterization. J. Non-Cryst. Solids 2004, 350, 152–164. 10.1016/j.jnoncrysol.2004.06.041. DOI
Meador M. A. B.; Fabrizio E. F.; Ilhan F.; Dass A.; Zhang G.; Vassilaras P.; Johnston J. C.; Leventis N. Cross-linking amine-modified silica aerogels with epoxies: mechanically strong lightweight porous materials. Chem. Mater. 2005, 17, 1085–1098. 10.1021/cm048063u. DOI
Leventis N.; Sotiriou-Leventis C.; Mulik S.; Dass A.; Schnobrich J.; Hobbs A.; Fabrizio E. F.; Luo H.; Churu G.; Zhang Y.; Lu H. Polymer nanoencapsulated mesoporous vanadia with unusual ductility at cryogenic temperatures. J. Mater. Chem. 2008, 18, 2475–2482. 10.1039/b801770k. DOI
Ciftci D.; Ubeyitogullari A.; Huerta R. R.; Ciftci O. N.; Flores R. A.; Saldaña M. D. Lupin hull cellulose nanofiber aerogel preparation by supercritical CO2 and freeze drying. J. Supercrit. Fluids 2017, 127, 137–145. 10.1016/j.supflu.2017.04.002. DOI
Şahin İ.; Özbakır Y.; İnönü Z.; Ulker Z.; Erkey C. Kinetics of supercritical drying of gels. Gels 2017, 4, 3.10.3390/gels4010003. PubMed DOI PMC
Abbasi Moud A. Advanced cellulose nanocrystals (CNC) and cellulose nanofibrils (CNF) aerogels: Bottom-up assembly perspective for production of adsorbents. Int. J. Biol. Macromol. 2022, 222, 1–29. 10.1016/j.ijbiomac.2022.09.148. PubMed DOI
Pons A.; Casas L.; Estop E.; Molins E.; Harris K. D. M.; Xu M. A new route to aerogels: Monolithic silica cryogels. J. Non-Cryst. Solids 2012, 358, 461–469. 10.1016/j.jnoncrysol.2011.10.031. DOI
Yun S.; Luo H.; Gao Y. Ambient-pressure drying synthesis of large resorcinol-formaldehyde-reinforced silica aerogels with enhanced mechanical strength and superhydrophobicity. J. Mater. Chem. A 2014, 2, 14542–14549. 10.1039/C4TA02195A. DOI
Giroux M.; Sahadeo E.; Libera R.; Maurizi A.; Giles I.; Marteel-Parrish A. An undergraduate research experience: synthesis, modification, and comparison of hydrophobicity of zeolites A and X. Polyhedron 2016, 114, 42–52. 10.1016/j.poly.2015.09.037. DOI
Alwin S.; Sahaya Shajan X. Aerogels: promising nanostructured materials for energy conversion and storage applications. Mater. Renew. Sustain. Energy. 2020, 9, 7–27. 10.1007/s40243-020-00168-4. DOI
El-Naggar M. E.; Othman S. I.; Allam A. A.; Morsy O. M. Synthesis, drying process and medical application of polysaccharide-based aerogels. Int. J. Biol. Macromol. 2020, 145, 1115–1128. 10.1016/j.ijbiomac.2019.10.037. PubMed DOI
Cole D. R.; Chialvo A. A.; Rother G.; Vlcek L.; Cummings P. T. Supercritical fluid behavior at nanoscale interfaces: Implications for CO2 sequestration in geologic formations. Philos. Mag. 2010, 90, 2339–2363. 10.1080/14786430903559458. DOI
El-Naggar M. E.; Othman S. I.; Allam A. A.; Morsy O. M. Synthesis, drying process and medical application of polysaccharide-based aerogels. Int. J. Biol. Macromol. 2020, 145, 1115–1128. 10.1016/j.ijbiomac.2019.10.037. PubMed DOI
Kayathi A.; Chakrabarti P. P.; Bonfim-Rocha L.; Cardozo-Filho L.; Jegatheesan V. Selective extraction of polar lipids of mango kernel using Supercritical Carbon dioxide (SC-CO2) extraction: Process optimization of extract yield/phosphorous content and economic evaluation. Chemosphere 2020, 260, 127639.10.1016/j.chemosphere.2020.127639. PubMed DOI
Mahadik D. B.; Lee Y. K.; Chavan N. K.; Mahadik S. A.; Park H.-H. Monolithic and shrinkage-free hydrophobic silica aerogels via new rapid supercritical extraction process. J. Supercrit. Fluids 2016, 107, 84–91. 10.1016/j.supflu.2015.08.020. DOI
Maleki H.; Durães L.; García-González C. A.; del Gaudio P.; Portugal A.; Mahmoudi M. Synthesis and biomedical applications of aerogels: Possibilities and challenges. Adv. Colloid Interface Sci. 2016, 236, 1–27. 10.1016/j.cis.2016.05.011. PubMed DOI
Noman M. T.; Amor N.; Ali A.; Petrik S.; Coufal R.; Adach K.; Fijalkowski M. Aerogels for Biomedical, Energy and Sensing Applications. Gels 2021, 7, 264.10.3390/gels7040264. PubMed DOI PMC
Groult S.; Buwalda S.; Budtova T. Pectin hydrogels, aerogels, cryogels and xerogels: Influence of drying on structural and release properties. Eur. Polym. J. 2021, 149, 110386.10.1016/j.eurpolymj.2021.110386. DOI
Huang J.; Wang H.; Liang B.; Etim U. J.; Liu Y.; Li Y.; Yan Z. Oriented freeze-casting fabrication of resilient copper nanowire-based aerogel as robust piezoresistive sensor. Chem. Eng. J. 2019, 364, 28–36. 10.1016/j.cej.2019.01.071. DOI
Leventis N. Three-Dimensional Core-Shell Superstructures: Mechanically Strong Aerogels. Acc. Chem. Res. 2007, 40, 874–884. 10.1021/ar600033s. PubMed DOI
Churu G.; Zupančič B.; Mohite D.; Wisner C.; Luo H.; Emri I.; Sotiriou-Leventis C.; Leventis N.; Lu H. Synthesis and mechanical characterization of mechanically strong, polyurea-crosslinked, ordered mesoporous silica aerogels. J. Solgel. Sci. Technol. 2015, 75, 98–123. 10.1007/s10971-015-3681-9. DOI
Yang H.; Kong X.; Zhang Y.; Wu C.; Cao E. Mechanical properties of polymer-modified silica aerogels dried under ambient pressure. J. Non-Cryst. Solids 2011, 357, 3447–3453. 10.1016/j.jnoncrysol.2011.06.017. DOI
Mandal C.; Donthula S.; Far H. M.; Saeed A. M.; Sotiriou-Leventis C.; Leventis N. Transparent, mechanically strong, thermally insulating cross-linked silica aerogels for energy-efficient windows. J. Solgel. Sci. Technol. 2019, 92, 84–100. 10.1007/s10971-019-05100-5. DOI
Venkateswara Rao A.; Bhagat S. D.; Hirashima H.; Pajonk G. M. Synthesis of flexible silica aerogels using methyltrimethoxysilane (MTMS) precursor. J. Colloid Interface Sci. 2006, 300, 279–285. 10.1016/j.jcis.2006.03.044. PubMed DOI
Jiang L.; Kato K.; Mayumi K.; Yokoyama H.; Ito K. One-Pot Synthesis and Characterization of Polyrotaxane-Silica Hybrid Aerogel. ACS Macro Lett. 2017, 6, 281–286. 10.1021/acsmacrolett.7b00014. PubMed DOI
Hayase G.; Kanamori K.; Fukuchi M.; Kaji H.; Nakanishi K. Facile Synthesis of Marshmallow-like Macroporous Gels Useable under Harsh Conditions for the Separation of Oil and Water. Angew. Chem., Int. Ed. 2013, 52, 1986–1989. 10.1002/anie.201207969. PubMed DOI
Kanamori K.; Aizawa M.; Nakanishi K.; Hanada T. Elastic organic-inorganic hybrid aerogels and xerogels. J. Solgel. Sci. Technol. 2008, 48, 172–181. 10.1007/s10971-008-1756-6. DOI
Nadargi D. Y.; Latthe S. S.; Hirashima H.; Rao A. V. Studies on rheological properties of methyltriethoxysilane (MTES) based flexible superhydrophobic silica aerogels. Microporous Mesoporous Mater. 2009, 117, 617–626. 10.1016/j.micromeso.2008.08.025. DOI
Mahadik D. B.; Jung H.-N.-R.; Han W.; Cho H. H.; Park H.-H. Flexible, elastic, and superhydrophobic silica-polymer composite aerogels by high internal phase emulsion process. Compos. Sci. Technol. 2017, 147, 45–51. 10.1016/j.compscitech.2017.04.036. DOI
Mandal C.; Donthula S.; Far H. M.; Saeed A. M.; Sotiriou-Leventis C.; Leventis N. Transparent, mechanically strong, thermally insulating cross-linked silica aerogels for energy-efficient windows. J. Solgel. Sci. Technol. 2019, 92, 84–100. 10.1007/s10971-019-05100-5. DOI
Mahadik D. B.; Venkateswara Rao A.; Parale V. G.; Kavale M. S.; Wagh P. B.; Ingale S. V.; Gupta S. C. Effect of surface composition and roughness on the apparent surface free energy of silica aerogel materials. Appl. Phys. Lett. 2011, 99, 104104.10.1063/1.3635398. DOI
Shimizu T.; Kanamori K.; Maeno A.; Kaji H.; Doherty C. M.; Falcaro P.; Nakanishi K. Transparent, Highly Insulating Polyethyl- and Polyvinylsilsesquioxane Aerogels: Mechanical Improvements by Vulcanization for Ambient Pressure Drying. Chem. Mater. 2016, 28, 6860–6868. 10.1021/acs.chemmater.6b01936. DOI
Aravind P. R.; Niemeyer P.; Ratke L. Novel flexible aerogels derived from methyltrimethoxysilane/3-(2, 3-epoxypropoxy)propyltrimethoxysilane co-precursor. Microporous Mesoporous Mater. 2013, 181, 111–115. 10.1016/j.micromeso.2013.07.025. DOI
Li Z.; Gong L.; Cheng X.; He S.; Li C.; Zhang H. Flexible silica aerogel composites strengthened with aramid fibers and their thermal behavior. Mater. Des. 2016, 99, 349–355. 10.1016/j.matdes.2016.03.063. DOI
Cashman J. L.; Nguyen B. N.; Dosa B.; Meador M. A. B. Flexible Polyimide Aerogels Derived from the Use of a Neopentyl Spacer in the Backbone. ACS Appl. Polym. Mater. 2020, 2, 2179–2189. 10.1021/acsapm.0c00153. DOI
Rege A.; Preibisch I.; Schestakow M.; Ganesan K.; Gurikov P.; Milow B.; Smirnova I.; Itskov M. Correlating Synthesis Parameters to Morphological Entities: Predictive Modeling of Biopolymer Aerogels. Materials 2018, 11, 1670.10.3390/ma11091670. PubMed DOI PMC
Jang W.-Y.; Kyriakides S. On the crushing of aluminum open-cell foams: Part II analysis. Int. J. Solids Struct. 2009, 46, 635–650. 10.1016/j.ijsolstr.2008.10.016. DOI
Rege A.; Schwan M.; Chernova L.; Hillgärtner M.; Itskov M.; Milow B. Microstructural and mechanical characterization of carbon aerogels: An in-situ and digital image correlation-based study. J. Non-Cryst. Solids 2020, 529, 119568.10.1016/j.jnoncrysol.2019.119568. DOI
Rege A.; Aney S.; Milow B. Influence of pore-size distributions and pore-wall mechanics on the mechanical behavior of cellular solids like aerogels. Phys. Rev. E 2021, 103, 043001.10.1103/PhysRevE.103.043001. PubMed DOI
Qian Z.; Wang Z.; Zhao N.; Xu J. Aerogels Derived from Polymer Nanofibers and Their Applications. Macromol. Rapid Commun. 2018, 39, 1700724.10.1002/marc.201700724. PubMed DOI
Ghaffari-Mosanenzadeh S.; Aghababaei Tafreshi O.; Karamikamkar S.; Saadatnia Z.; Rad E.; Meysami M.; Naguib H. E. Recent advances in tailoring and improving the properties of polyimide aerogels and their application. Adv. Colloid Interface Sci. 2022, 304, 102646.10.1016/j.cis.2022.102646. PubMed DOI
Tian J.; Yang Y.; Xue T.; Chao G.; Fan W.; Liu T. Highly flexible and compressible polyimide/silica aerogels with integrated double network for thermal insulation and fire-retardancy. J. Mater. Sci. Technol. 2022, 105, 194–202. 10.1016/j.jmst.2021.07.030. DOI
Muñoz-Ruíz A.; Escobar-García D. M.; Quintana M.; Pozos-Guillén A.; Flores H. Synthesis and Characterization of a New Collagen-Alginate Aerogel for Tissue Engineering. J. Nanomater. 2019, 2019, 1–10. 10.1155/2019/2875375. DOI
Groult S.; Buwalda S.; Budtova T. Pectin hydrogels, aerogels, cryogels and xerogels: Influence of drying on structural and release properties. Eur. Polym. J. 2021, 149, 110386.10.1016/j.eurpolymj.2021.110386. DOI
Kaushika N. D.; Sumathy K. Solar transparent insulation materials: a review. Renewable Sustainable Energy Rev. 2003, 7, 317–351. 10.1016/S1364-0321(03)00067-4. DOI
Ali A.; Baheti V.; Militky J. Energy harvesting performance of silver electroplated fabrics. Mater. Chem. Phys. 2019, 231, 33–40. 10.1016/j.matchemphys.2019.02.063. DOI
Reim M.; Körner W.; Manara J.; Korder S.; Arduini-Schuster M.; Ebert H.-P.; Fricke J. Silica aerogel granulate material for thermal insulation and daylighting. Sol. Energy 2005, 79, 131–139. 10.1016/j.solener.2004.08.032. DOI
Amor N.; Noman M. T.; Petru M. Prediction of Methylene Blue Removal by Nano TiO2 Using Deep Neural Network. Polymers 2021, 13, 3104.10.3390/polym13183104. PubMed DOI PMC
Han L.; Dong L.; Zhang H.; Li F.; Tian L.; Li G.; Jia Q.; Zhang S. Thermal insulation TiN aerogels prepared by a combined freeze-casting and carbothermal reduction-nitridation technique. J. Eur. Ceram. Soc. 2021, 41, 5127–5137. 10.1016/j.jeurceramsoc.2021.01.037. DOI
Long S.; Feng Y.; He F.; Zhao J.; Bai T.; Lin H.; Cai W.; Mao C.; Chen Y.; Gan L.; Liu J.; Ye M.; Zeng X.; Long M. Biomass-derived, multifunctional and wave-layered carbon aerogels toward wearable pressure sensors, supercapacitors and triboelectric nanogenerators. Nano Energy 2021, 85, 105973.10.1016/j.nanoen.2021.105973. DOI
Yang Z.; Li H.; Zhang S.; Lai X.; Zeng X. Superhydrophobic MXene@carboxylated carbon nanotubes/carboxymethyl chitosan aerogel for piezoresistive pressure sensor. Chem. Eng. J. 2021, 425, 130462.10.1016/j.cej.2021.130462. DOI
Alizadeh T.; Ahmadian F. Thiourea-treated graphene aerogel as a highly selective gas sensor for sensing of trace level of ammonia. Anal. Chim. Acta 2015, 897, 87–95. 10.1016/j.aca.2015.09.031. PubMed DOI
Bi Y.; Hei Y.; Wang N.; Liu J.; Ma C.-B. Synthesis of a clustered carbon aerogel interconnected by carbon balls from the biomass of taros for construction of a multi-functional electrochemical sensor. Anal. Chim. Acta 2021, 1164, 338514.10.1016/j.aca.2021.338514. PubMed DOI
Coffman B. E.; Fesmire J. E.; White S.; Gould G.; Augustynowicz S.; Weisend J. G.. Aerogels blanket insulation materials for cryogenic applications. AIP Conference Proceedings; American Institute of Physics, 2010; pp 913–920.
Riffat S. B.; Qiu G. A review of state-of-the-art aerogel applications in buildings. Int. J. Low-Carbon Technol. 2013, 8, 1–6. 10.1093/ijlct/cts001. DOI