Fluorescent Nanoporous Materials from Polypropylene-Based Covalent Adaptable Networks
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
40256563
PubMed Central
PMC12004138
DOI
10.1021/acsomega.4c10168
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Fluorescent polypropylene-based aerogels from thermoreversibly crosslinked networks have been developed. This facile and efficient synthesis results in low-cost, recyclable, chemically resistant, and highly porous functional materials. This process includes the chemical crosslinking of polypropylene, followed by thermal phase separation and freeze-drying, yielding aerogels with specific surface areas up to 200 m2/g, according to nitrogen absorption-desorption measurements. This is significantly higher than that previously reported for polypropylene porous materials. Besides characterizations of polymer networks by infrared spectroscopy and differential scanning calorimetry, a suite of analytical techniques was utilized to characterize the skeletal framework of aerogels, including scanning electron microscopy and small-angle X-ray scattering. These methods revealed the highly porous nanostructural features of interconnected 3D networks. The modulation of the excited-state properties of the incorporated luminophore is demonstrated and provides insights into their potential applications. Importantly, the aerogels have a pronounced ability to retain toluene, affecting their fluorescence behavior over an extended time scale. This conceptual study presents a low-cost solution for the preparation of highly porous materials that might offer versatility in functionality and may open the door to further exploration and design of high-performance materials that can act very effectively in the sensing and adsorption of organic molecules. The results also provide an intriguing direction for future research focusing on the molecular mechanisms driving the observed fluorescence modulations.
Zobrazit více v PubMed
Maleki H.; Durães L.; García-González C. A.; del Gaudio P.; Prtugal A.; Mahmoudi M. Synthesis and biomedical applications of aerogels: Possibilities and challenges. Adv. Colloid Interface Sci. 2016, 236, 1–27. 10.1016/j.cis.2016.05.011. PubMed DOI
Fijalkowski M.; Coufal R.; Ali A.; Adach K.; Petrík S.; Bu H.; Karl Ch. W. Flexible Hybrid and Single-Component Aerogels: Synthesis, Characterization, and Applications. Langmuir 2023, 39, 16760–16775. 10.1021/acs.langmuir.3c01811. PubMed DOI PMC
Moreno-Castilla C.; Maldonado-Hódar F. J. Carbon aerogels for catalysis applications: An overview. Carbon 2005, 43, 455–465. 10.1016/j.carbon.2004.10.022. DOI
Wang R.; Li G.; Dong Y.; Chi Y.; Chen G. Carbon Quantum Dot-Functionalized Aerogels for NO2 Gas Sensing. Anal. Chem. 2013, 85, 8065–8069. 10.1021/ac401880h. PubMed DOI
Yang J.; Zhang E.; Li X.; Zhang Y.; Qu J.; Yu Z.-Z. Cellulose/graphene aerogel supported phase change composites with high thermal conductivity and good shape stability for thermal energy storage. Carbon 2016, 98, 50–57. 10.1016/j.carbon.2015.10.082. DOI
Ferreira-Gonçalves T.; Constantin C.; Neagu M.; Pinto Reis C.; Sabri F.; Simón-Vázquez R. Safety and efficacy assessment of aerogels for biomedical applications. Biomed. Pharmocother. 2021, 144, 11235610.1016/j.biopha.2021.112356. PubMed DOI
Kistler S. S. Coherent Expanded Aerogels and Jellies. Nature 1931, 127, 741.10.1038/127741a0. DOI
Pekala R. W. Organic aerogels from the polycondensation of resorcinol with formaldehyde. J. Mater. Sci. 1989, 24, 3221–3227. 10.1007/BF01139044. DOI
Shea K. J.; Loy D. A.; Polysilsesquioxanes Bridged Molecular-Engineered Hybrid Organic-Inorganic Materials. Chem. Mater. 2001, 13, 3306–3319.
Cashman J. L.; Nquyen B. N.; Dosa B.; Meador M. A. B. Flexible Polyimide Aerogels Derived from the Use of a Neopentyl Spacer in the Backbone. ACS Appl. Polym. Mater. 2020, 2, 2179–2189. 10.1021/acsapm.0c00153. DOI
Meador M. A. B.; Wright S.; Sandberg A.; Nguyen B. N.; Van Keuls F. W.; Mueller C. H.; Rodríguez-Solís R.; Miranda F. A. Low Dielectric Polyimide Aerogels As Substrates for Lightweight Patch Antennas. ACS Appl. Mater. Interfaces 2012, 4, 6346–6353. 10.1021/am301985s. PubMed DOI
Meador M. A. B.; McMillon E.; Sandberg A.; Barrios E.; Wilmoth N. G.; Mueller C. H.; Miranda F. A. Dielectric and Other Properties of Polyimide Aerogels Containing Fluorinated Blocks. ACS Appl. Mater. Interfaces 2014, 6, 6062–6068. 10.1021/am405106h. PubMed DOI
Guo H.; Meador M. A. B.; McCorkle L.; Quade D. J.; Guo J.; Hamilton B.; Cakmak M. Tailoring Properties of Cross-Linked Polyimide Aerogels for Better Moisture Resistance, Flexibility, and Strength, ACS Appl. Mater, Interfaces 2012, 4, 5422–5429. 10.1021/am301347a. PubMed DOI
Pantoja M.; Boynton N.; Cavicchi K. A.; Dosa B.; Cashman J. L.; Meador M. A. B. Increased Flexibility in Polyimide Aerogels Using Aliphatic Spacers in the Polymer Backbone. ACS Appl. Mater. Interfaces 2019, 11, 9425–9437. 10.1021/acsami.8b20420. PubMed DOI
Leventis N.; Sotiriou-Leventis Ch.; Mohite D. P.; Larimore Z. J.; Mang J. T.; Churu G.; Lu H. Polyimide Aerogels by Ring-Opening Metathesis Polymerization (ROMP). Chem. Mater. 2011, 23, 2250–2261. 10.1021/cm200323e. DOI
Bang A.; Buback C.; Sotiriou-Leventis Ch.; Leventis N. Flexible Aerogels from Hyperbranched Polyurethanes: Probing the Role of Molecular Rigidity with Poly(Urethane Acrylates) Versus Poly(Urethane Norbornenes). Chem. Mater. 2014, 26, 6979–6983. 10.1021/cm5031443. DOI
Shinko A.; Jana S. C.; Meador M. A. Crosslinked polyurea-co-polyurethane aerogels with hierarchical structures and low stiffness. J. Non-Cryst. Solids 2018, 487, 19–27. 10.1016/j.jnoncrysol.2018.02.020. DOI
Chidambareswarapattar Ch.; McCarver P. M.; Luo H.; Lu H.; Sotiriou-Leventis Ch.; Leventis N. Fractal Multiscale Nanoporous Polyurethanes: Flexible to Extremely Rigid Aerogels from Multifunctional Small Molecules. Chem. Mater. 2013, 25, 3205–3224. 10.1021/cm401623h. DOI
Donthula S.; Mandal Ch.; Leventis T.; Schisler J.; Saeed A. M.; Sotiriou-Leventis Ch.; Leventis N. Shape Memory Superelastic Poly(isocyanurate-urethane) Aerogels (PIR-PUR) for Deployable Panels and Biomimetic Applications. Chem. Mater. 2017, 29, 4461–4477. 10.1021/acs.chemmater.7b01020. DOI
Erbil H. Y.; Demirel A. L.; Avci Y.; Mert O. Transformation of a Simple Plastic into a Superhydrophobic Surface. Science 2003, 299, 1377–1380. 10.1126/science.1078365. PubMed DOI
Lin Y. K.; Chen G.; Yang J.; Wang X. L. Formation of isotactic polyprolylene membranes with bicontinuous structure and good strength via thermally induced phase separation method. Desalination 2009, 236, 8–15. 10.1016/j.desal.2007.10.044. DOI
Othman N.; Harruddin N.; Idris A.; Ooi Z.-Y.; Fatiha N.; Norimie R.; Sulaiman R. Fabrication of polypropylene membrane via thermally induced phase separation as a support matrix of tridodecylamine supported liquid membrane for red 3BS dye removal. Desalin. Water Treat. 2015, 57, 12287.10.1080/19443994.2015.1049554. DOI
Lang X. H.; Zhu T. Y.; Zou L.; Prakashan K.; Zhang Z. X. Fabrication and characterization of polypropylene aerogel coated hybrid materials for oil-water separation applications. Prog. Org. Coat. 2019, 137, 10537010.1016/j.porgcoat.2019.105370. DOI
Hong H.; Pan Y.; Sun H.; Zhu Z.; Ma Ch.; Wang B.; Liang W.; Yang B.; Li A. Superwetting polypropylene aerogel supported form-stable phase change materials with extremely high organics loading and enhanced thermal conductivity. Sol. Energy Mater. Sol. Cells 2018, 174, 307–313. 10.1016/j.solmat.2017.09.026. DOI
Wang G.; Uyama H. Facile synthesis of flexible microporous polypropylene sponges for separation of oil and water. Sci. Rep. 2016, 6, 21265–21270. 10.1038/srep21265. PubMed DOI PMC
Saleem J.; Moghal Z. K. B.; McKay G. Designing super-fast trimodal sponges using recycled polypropylene for organics cleanup. Sci. Rep. 2023, 13, 14163–14174. 10.1038/s41598-023-41506-6. PubMed DOI PMC
Choi H.; Parale V. G.; Lee K.-Y.; Nah H.-Y.; Driss Z.; Driss D.; Bouabidi A.; Euchy S.; Park H.-H. Polypropylene/Silica Aerogel Composite Incorporating a Conformal Coating of Methyltrimethoxysilane-Based Aerogel. J. Nanosci. Nanotehnol. 2019, 19, 1376–1381. 10.1166/jnn.2019.16257. PubMed DOI
Yoda S.; Takeshita S.; Ono T.; Tada R.; Ota H. Development of a New Silica Aerogel-Polypropylene Foam Composite as a Highly Flexible Thermal Insulation Material. Front. Mater. 2021, 8, 67484610.3389/fmats.2021.674846. DOI
Abdolmaleki H.; Jafari S. H.; Golriz M.; Haghgoo M. Polypropylene aerogel-based composites with paraffin and MWCNTs as phase change materials. Polym. Eng. Sci. 2024, 64, 3188–3202. 10.1002/pen.26760. DOI
Létoffé A.; García-Rodríguez S. M.; Hoppe S.; Canilho N.; Godard O.; Pasc A.; Royaud I.; Ponçot M. Switching from brittle to ductile isotactic polypropylene-g-maleic anhydride by crosslinking with capped-end polyether diamine. Polymer 2019, 164, 67–78. 10.1016/j.polymer.2019.01.015. DOI
Létoffé A.; Hoppe S.; Lainé R.; Canilho N.; Pasc A.; Rouxel D.; Riobóo R. J. J.; Hupont S.; Royaud I.; Ponçot M. Resilience improvement of an isotactic polypropylene-g-maleic anhydride by crosslinking using polyether triamine agents. Polymer 2019, 179, 12165510.1016/j.polymer.2019.121655. DOI
Coufal R.; Fijalkowski M.; Adach K.; Bu H.; Karl C. W.; Mikysková E.; Petrík S. Preparation and Investigation of High Surface Area Aerogels from Crosslinked Polypropylenes. Polymers 2024, 16, 1382.10.3390/polym16101382. PubMed DOI PMC
Gao Y.; Niu H. Polypropylene-based transesterification covalent adaptable networks with internal catalysis. Polym. Chem. 2024, 15, 884–895. 10.1039/D3PY01418E. DOI
Benissen W.; Winne J. M.; Du Prez F. E. Vitrimeers: permanent organic networks with glass-like fluidity. Chem. Sci. 2016, 7, 30–38. 10.1039/C5SC02223A. PubMed DOI PMC
Elling B. R.; Dichtel W. R. Reprocessable Cross-Linked Polymer Networks: Are Associative Exchange Mechanisms Desirable?. ACS Cent. Sci. 2020, 6, 1488–1496. 10.1021/acscentsci.0c00567. PubMed DOI PMC
Dong H.-Q.; Wei T.-B.; Ma X. Q.; Yang Q.-Y.; Zhang Y.-F.; Sun Y.-J.; Shi B.-B.; Yao H.; Zhang Y.-M.; Lin Q. 1, 8-Naphthalimide-Based Fluorescent Chemosensors: recent advances and perspectives. J. Mater. Chem. C 2020, 8, 13501–13529. 10.1039/D0TC03681A. DOI
Wang H.; Shao Z.; Bacher M.; Liebner F.; Rosenau T. Fluorescent cellulose aerogels containing covalently immobilized (ZnS)x(CuInS2)1–x/ZnS (core/shell) quantum dots. Cellulose 2013, 20, 3007–3024. 10.1007/s10570-013-0035-z. PubMed DOI PMC
Wei S.; Zhang Z.; Xu Y.; Dang D.; Zeng R. Covalent Installation of Fluorophores into Polyethylene: Synthesis, Characterization, and Applications. Macromolecules 2024, 57, 3595–3603. 10.1021/acs.macromol.4c00381. DOI
Kohlbrecher J.; Breßler I. Updated in SASfit for fitting analytical expressions and numerical models to small-angle scattering patterns. J. Appl. Crystallogr. 2022, 55, 1677–1688. 10.1107/S1600576722009037. PubMed DOI PMC
Sakakura A.; Kawajiri K.; Ohkubo T.; Kosugi Y.; Ishihara K. Widely Useful DMAP-Catalyzed Esterification under Auxiliary Base- and Solvent-Free Conditions. J. Am. Chem. Soc. 2007, 129, 14775–14779. 10.1021/ja075824w. PubMed DOI
Shiina I.; Kubora M.; Oshiumi H.; Hashizume M. An Effective Use of Benzoic Anhydride and Its Derivatives for the Synthesis of Carboxylic Esters and Lactones: A Powerful and Convenient Mixed Anhydride Method Promoted by Basic Catalysts. J. Org. Chem. 2004, 69, 1822–1830. 10.1021/jo030367x. PubMed DOI
Gartner C.; Suárez M.; López B. L. Grafting of maleic anhydride on polypropylene and its effect on blending with poly(ethylene terephthalate). Polym. Eng. Sci. 2008, 48, 1910–1916. 10.1002/pen.21106. DOI
Kruk M.; Jaroniec M. Gas Absorption Characterization of Ordered Organic-Inorganic Nanocomposite Materials. Chem. Mater. 2001, 13, 3169–3183. 10.1021/cm0101069. DOI
Tamon H.; Ishizaka H. SAXS Study on Gelation Process in Preparation of Resorcinol-Formaldehyde Aerogel. J. Colloid Interface Sci. 1998, 206, 577–582. 10.1006/jcis.1998.5770. PubMed DOI
Carsughi F. Simplified Polydispersion Analysis of Small-Angle Scattering Data. Appl. Sci. 2022, 12, 10677.10.3390/app122010677. DOI
Emmerling A.; Fricke J. Small angle scattering and the structure of aerogels. J. Non-Cryst. Solids 1992, 145, 113–120. 10.1016/S0022-3093(05)80439-9. DOI
Al-Kaysi R. O.; Ahn T. S.; Müller A. M.; Bardeen C. J. The photophysical properties of chrmophores at high (100 mM and above) concentrations in polymers and as neat solids. Phys. Chem. Chem. Phys. 2006, 8, 3453–3459. 10.1039/B605925B. PubMed DOI
Dutta S.; Sinelshchikova A.; Andreo J.; Wuttke S. Nanoscience and nanotechnology for water remediation: an earnest hope toward sustainability. Nanoscale Horiz. 2024, 9, 885–899. 10.1039/D4NH00056K. PubMed DOI