Fluorescent Nanoporous Materials from Polypropylene-Based Covalent Adaptable Networks

. 2025 Apr 15 ; 10 (14) : 13954-13965. [epub] 20250401

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40256563

Fluorescent polypropylene-based aerogels from thermoreversibly crosslinked networks have been developed. This facile and efficient synthesis results in low-cost, recyclable, chemically resistant, and highly porous functional materials. This process includes the chemical crosslinking of polypropylene, followed by thermal phase separation and freeze-drying, yielding aerogels with specific surface areas up to 200 m2/g, according to nitrogen absorption-desorption measurements. This is significantly higher than that previously reported for polypropylene porous materials. Besides characterizations of polymer networks by infrared spectroscopy and differential scanning calorimetry, a suite of analytical techniques was utilized to characterize the skeletal framework of aerogels, including scanning electron microscopy and small-angle X-ray scattering. These methods revealed the highly porous nanostructural features of interconnected 3D networks. The modulation of the excited-state properties of the incorporated luminophore is demonstrated and provides insights into their potential applications. Importantly, the aerogels have a pronounced ability to retain toluene, affecting their fluorescence behavior over an extended time scale. This conceptual study presents a low-cost solution for the preparation of highly porous materials that might offer versatility in functionality and may open the door to further exploration and design of high-performance materials that can act very effectively in the sensing and adsorption of organic molecules. The results also provide an intriguing direction for future research focusing on the molecular mechanisms driving the observed fluorescence modulations.

Zobrazit více v PubMed

Maleki H.; Durães L.; García-González C. A.; del Gaudio P.; Prtugal A.; Mahmoudi M. Synthesis and biomedical applications of aerogels: Possibilities and challenges. Adv. Colloid Interface Sci. 2016, 236, 1–27. 10.1016/j.cis.2016.05.011. PubMed DOI

Fijalkowski M.; Coufal R.; Ali A.; Adach K.; Petrík S.; Bu H.; Karl Ch. W. Flexible Hybrid and Single-Component Aerogels: Synthesis, Characterization, and Applications. Langmuir 2023, 39, 16760–16775. 10.1021/acs.langmuir.3c01811. PubMed DOI PMC

Moreno-Castilla C.; Maldonado-Hódar F. J. Carbon aerogels for catalysis applications: An overview. Carbon 2005, 43, 455–465. 10.1016/j.carbon.2004.10.022. DOI

Wang R.; Li G.; Dong Y.; Chi Y.; Chen G. Carbon Quantum Dot-Functionalized Aerogels for NO2 Gas Sensing. Anal. Chem. 2013, 85, 8065–8069. 10.1021/ac401880h. PubMed DOI

Yang J.; Zhang E.; Li X.; Zhang Y.; Qu J.; Yu Z.-Z. Cellulose/graphene aerogel supported phase change composites with high thermal conductivity and good shape stability for thermal energy storage. Carbon 2016, 98, 50–57. 10.1016/j.carbon.2015.10.082. DOI

Ferreira-Gonçalves T.; Constantin C.; Neagu M.; Pinto Reis C.; Sabri F.; Simón-Vázquez R. Safety and efficacy assessment of aerogels for biomedical applications. Biomed. Pharmocother. 2021, 144, 11235610.1016/j.biopha.2021.112356. PubMed DOI

Kistler S. S. Coherent Expanded Aerogels and Jellies. Nature 1931, 127, 741.10.1038/127741a0. DOI

Pekala R. W. Organic aerogels from the polycondensation of resorcinol with formaldehyde. J. Mater. Sci. 1989, 24, 3221–3227. 10.1007/BF01139044. DOI

Shea K. J.; Loy D. A.; Polysilsesquioxanes Bridged Molecular-Engineered Hybrid Organic-Inorganic Materials. Chem. Mater. 2001, 13, 3306–3319.

Cashman J. L.; Nquyen B. N.; Dosa B.; Meador M. A. B. Flexible Polyimide Aerogels Derived from the Use of a Neopentyl Spacer in the Backbone. ACS Appl. Polym. Mater. 2020, 2, 2179–2189. 10.1021/acsapm.0c00153. DOI

Meador M. A. B.; Wright S.; Sandberg A.; Nguyen B. N.; Van Keuls F. W.; Mueller C. H.; Rodríguez-Solís R.; Miranda F. A. Low Dielectric Polyimide Aerogels As Substrates for Lightweight Patch Antennas. ACS Appl. Mater. Interfaces 2012, 4, 6346–6353. 10.1021/am301985s. PubMed DOI

Meador M. A. B.; McMillon E.; Sandberg A.; Barrios E.; Wilmoth N. G.; Mueller C. H.; Miranda F. A. Dielectric and Other Properties of Polyimide Aerogels Containing Fluorinated Blocks. ACS Appl. Mater. Interfaces 2014, 6, 6062–6068. 10.1021/am405106h. PubMed DOI

Guo H.; Meador M. A. B.; McCorkle L.; Quade D. J.; Guo J.; Hamilton B.; Cakmak M. Tailoring Properties of Cross-Linked Polyimide Aerogels for Better Moisture Resistance, Flexibility, and Strength, ACS Appl. Mater, Interfaces 2012, 4, 5422–5429. 10.1021/am301347a. PubMed DOI

Pantoja M.; Boynton N.; Cavicchi K. A.; Dosa B.; Cashman J. L.; Meador M. A. B. Increased Flexibility in Polyimide Aerogels Using Aliphatic Spacers in the Polymer Backbone. ACS Appl. Mater. Interfaces 2019, 11, 9425–9437. 10.1021/acsami.8b20420. PubMed DOI

Leventis N.; Sotiriou-Leventis Ch.; Mohite D. P.; Larimore Z. J.; Mang J. T.; Churu G.; Lu H. Polyimide Aerogels by Ring-Opening Metathesis Polymerization (ROMP). Chem. Mater. 2011, 23, 2250–2261. 10.1021/cm200323e. DOI

Bang A.; Buback C.; Sotiriou-Leventis Ch.; Leventis N. Flexible Aerogels from Hyperbranched Polyurethanes: Probing the Role of Molecular Rigidity with Poly(Urethane Acrylates) Versus Poly(Urethane Norbornenes). Chem. Mater. 2014, 26, 6979–6983. 10.1021/cm5031443. DOI

Shinko A.; Jana S. C.; Meador M. A. Crosslinked polyurea-co-polyurethane aerogels with hierarchical structures and low stiffness. J. Non-Cryst. Solids 2018, 487, 19–27. 10.1016/j.jnoncrysol.2018.02.020. DOI

Chidambareswarapattar Ch.; McCarver P. M.; Luo H.; Lu H.; Sotiriou-Leventis Ch.; Leventis N. Fractal Multiscale Nanoporous Polyurethanes: Flexible to Extremely Rigid Aerogels from Multifunctional Small Molecules. Chem. Mater. 2013, 25, 3205–3224. 10.1021/cm401623h. DOI

Donthula S.; Mandal Ch.; Leventis T.; Schisler J.; Saeed A. M.; Sotiriou-Leventis Ch.; Leventis N. Shape Memory Superelastic Poly(isocyanurate-urethane) Aerogels (PIR-PUR) for Deployable Panels and Biomimetic Applications. Chem. Mater. 2017, 29, 4461–4477. 10.1021/acs.chemmater.7b01020. DOI

Erbil H. Y.; Demirel A. L.; Avci Y.; Mert O. Transformation of a Simple Plastic into a Superhydrophobic Surface. Science 2003, 299, 1377–1380. 10.1126/science.1078365. PubMed DOI

Lin Y. K.; Chen G.; Yang J.; Wang X. L. Formation of isotactic polyprolylene membranes with bicontinuous structure and good strength via thermally induced phase separation method. Desalination 2009, 236, 8–15. 10.1016/j.desal.2007.10.044. DOI

Othman N.; Harruddin N.; Idris A.; Ooi Z.-Y.; Fatiha N.; Norimie R.; Sulaiman R. Fabrication of polypropylene membrane via thermally induced phase separation as a support matrix of tridodecylamine supported liquid membrane for red 3BS dye removal. Desalin. Water Treat. 2015, 57, 12287.10.1080/19443994.2015.1049554. DOI

Lang X. H.; Zhu T. Y.; Zou L.; Prakashan K.; Zhang Z. X. Fabrication and characterization of polypropylene aerogel coated hybrid materials for oil-water separation applications. Prog. Org. Coat. 2019, 137, 10537010.1016/j.porgcoat.2019.105370. DOI

Hong H.; Pan Y.; Sun H.; Zhu Z.; Ma Ch.; Wang B.; Liang W.; Yang B.; Li A. Superwetting polypropylene aerogel supported form-stable phase change materials with extremely high organics loading and enhanced thermal conductivity. Sol. Energy Mater. Sol. Cells 2018, 174, 307–313. 10.1016/j.solmat.2017.09.026. DOI

Wang G.; Uyama H. Facile synthesis of flexible microporous polypropylene sponges for separation of oil and water. Sci. Rep. 2016, 6, 21265–21270. 10.1038/srep21265. PubMed DOI PMC

Saleem J.; Moghal Z. K. B.; McKay G. Designing super-fast trimodal sponges using recycled polypropylene for organics cleanup. Sci. Rep. 2023, 13, 14163–14174. 10.1038/s41598-023-41506-6. PubMed DOI PMC

Choi H.; Parale V. G.; Lee K.-Y.; Nah H.-Y.; Driss Z.; Driss D.; Bouabidi A.; Euchy S.; Park H.-H. Polypropylene/Silica Aerogel Composite Incorporating a Conformal Coating of Methyltrimethoxysilane-Based Aerogel. J. Nanosci. Nanotehnol. 2019, 19, 1376–1381. 10.1166/jnn.2019.16257. PubMed DOI

Yoda S.; Takeshita S.; Ono T.; Tada R.; Ota H. Development of a New Silica Aerogel-Polypropylene Foam Composite as a Highly Flexible Thermal Insulation Material. Front. Mater. 2021, 8, 67484610.3389/fmats.2021.674846. DOI

Abdolmaleki H.; Jafari S. H.; Golriz M.; Haghgoo M. Polypropylene aerogel-based composites with paraffin and MWCNTs as phase change materials. Polym. Eng. Sci. 2024, 64, 3188–3202. 10.1002/pen.26760. DOI

Létoffé A.; García-Rodríguez S. M.; Hoppe S.; Canilho N.; Godard O.; Pasc A.; Royaud I.; Ponçot M. Switching from brittle to ductile isotactic polypropylene-g-maleic anhydride by crosslinking with capped-end polyether diamine. Polymer 2019, 164, 67–78. 10.1016/j.polymer.2019.01.015. DOI

Létoffé A.; Hoppe S.; Lainé R.; Canilho N.; Pasc A.; Rouxel D.; Riobóo R. J. J.; Hupont S.; Royaud I.; Ponçot M. Resilience improvement of an isotactic polypropylene-g-maleic anhydride by crosslinking using polyether triamine agents. Polymer 2019, 179, 12165510.1016/j.polymer.2019.121655. DOI

Coufal R.; Fijalkowski M.; Adach K.; Bu H.; Karl C. W.; Mikysková E.; Petrík S. Preparation and Investigation of High Surface Area Aerogels from Crosslinked Polypropylenes. Polymers 2024, 16, 1382.10.3390/polym16101382. PubMed DOI PMC

Gao Y.; Niu H. Polypropylene-based transesterification covalent adaptable networks with internal catalysis. Polym. Chem. 2024, 15, 884–895. 10.1039/D3PY01418E. DOI

Benissen W.; Winne J. M.; Du Prez F. E. Vitrimeers: permanent organic networks with glass-like fluidity. Chem. Sci. 2016, 7, 30–38. 10.1039/C5SC02223A. PubMed DOI PMC

Elling B. R.; Dichtel W. R. Reprocessable Cross-Linked Polymer Networks: Are Associative Exchange Mechanisms Desirable?. ACS Cent. Sci. 2020, 6, 1488–1496. 10.1021/acscentsci.0c00567. PubMed DOI PMC

Dong H.-Q.; Wei T.-B.; Ma X. Q.; Yang Q.-Y.; Zhang Y.-F.; Sun Y.-J.; Shi B.-B.; Yao H.; Zhang Y.-M.; Lin Q. 1, 8-Naphthalimide-Based Fluorescent Chemosensors: recent advances and perspectives. J. Mater. Chem. C 2020, 8, 13501–13529. 10.1039/D0TC03681A. DOI

Wang H.; Shao Z.; Bacher M.; Liebner F.; Rosenau T. Fluorescent cellulose aerogels containing covalently immobilized (ZnS)x(CuInS2)1–x/ZnS (core/shell) quantum dots. Cellulose 2013, 20, 3007–3024. 10.1007/s10570-013-0035-z. PubMed DOI PMC

Wei S.; Zhang Z.; Xu Y.; Dang D.; Zeng R. Covalent Installation of Fluorophores into Polyethylene: Synthesis, Characterization, and Applications. Macromolecules 2024, 57, 3595–3603. 10.1021/acs.macromol.4c00381. DOI

Kohlbrecher J.; Breßler I. Updated in SASfit for fitting analytical expressions and numerical models to small-angle scattering patterns. J. Appl. Crystallogr. 2022, 55, 1677–1688. 10.1107/S1600576722009037. PubMed DOI PMC

Sakakura A.; Kawajiri K.; Ohkubo T.; Kosugi Y.; Ishihara K. Widely Useful DMAP-Catalyzed Esterification under Auxiliary Base- and Solvent-Free Conditions. J. Am. Chem. Soc. 2007, 129, 14775–14779. 10.1021/ja075824w. PubMed DOI

Shiina I.; Kubora M.; Oshiumi H.; Hashizume M. An Effective Use of Benzoic Anhydride and Its Derivatives for the Synthesis of Carboxylic Esters and Lactones: A Powerful and Convenient Mixed Anhydride Method Promoted by Basic Catalysts. J. Org. Chem. 2004, 69, 1822–1830. 10.1021/jo030367x. PubMed DOI

Gartner C.; Suárez M.; López B. L. Grafting of maleic anhydride on polypropylene and its effect on blending with poly(ethylene terephthalate). Polym. Eng. Sci. 2008, 48, 1910–1916. 10.1002/pen.21106. DOI

Kruk M.; Jaroniec M. Gas Absorption Characterization of Ordered Organic-Inorganic Nanocomposite Materials. Chem. Mater. 2001, 13, 3169–3183. 10.1021/cm0101069. DOI

Tamon H.; Ishizaka H. SAXS Study on Gelation Process in Preparation of Resorcinol-Formaldehyde Aerogel. J. Colloid Interface Sci. 1998, 206, 577–582. 10.1006/jcis.1998.5770. PubMed DOI

Carsughi F. Simplified Polydispersion Analysis of Small-Angle Scattering Data. Appl. Sci. 2022, 12, 10677.10.3390/app122010677. DOI

Emmerling A.; Fricke J. Small angle scattering and the structure of aerogels. J. Non-Cryst. Solids 1992, 145, 113–120. 10.1016/S0022-3093(05)80439-9. DOI

Al-Kaysi R. O.; Ahn T. S.; Müller A. M.; Bardeen C. J. The photophysical properties of chrmophores at high (100 mM and above) concentrations in polymers and as neat solids. Phys. Chem. Chem. Phys. 2006, 8, 3453–3459. 10.1039/B605925B. PubMed DOI

Dutta S.; Sinelshchikova A.; Andreo J.; Wuttke S. Nanoscience and nanotechnology for water remediation: an earnest hope toward sustainability. Nanoscale Horiz. 2024, 9, 885–899. 10.1039/D4NH00056K. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...