Preparation and Investigation of High Surface Area Aerogels from Crosslinked Polypropylenes
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
TO01000311
Technology Agency of the Czech Republic
PubMed
38794575
PubMed Central
PMC11125074
DOI
10.3390/polym16101382
PII: polym16101382
Knihovny.cz E-zdroje
- Klíčová slova
- aerogel, crosslinking, freeze-drying, polypropylene, supercritical drying, thermally induced phase separation,
- Publikační typ
- časopisecké články MeSH
Polypropylene-based aerogels with high surface area have been developed for the first time. By chemical crosslinking of polypropylene with oligomeric capped-end amino compounds, followed by dissolution, thermally induced phase separation, and the supercritical CO2 drying process or freeze-drying method, the aerogels exhibit high specific surface areas up to 200 m2/g. Moreover, the silica-cage multi-amino compound was utilized in a similar vein for forming hybrid polypropylene aerogels. According to the SEM, the developed polypropylene-based aerogels exhibit highly porous morphology with micro-nanoscale structural features that can be controlled by processing conditions. Our simple and inexpensive synthetic strategy results in a low-cost, chemically resistant, and highly porous material that can be tailored according to end-use applications.
Zobrazit více v PubMed
Maleki H., Durães L., García-González C.A., del Gaudio P., Prtugal A., Mahmoudi M. Synthesis and biomedical applications of aerogels: Possibilities and challenges. Adv. Colloid Interface Sci. 2016;236:1–27. doi: 10.1016/j.cis.2016.05.011. PubMed DOI
Moreno-Castilla C., Maldonado-Hódar F.J. Carbon aerogels for catalysis applications: An overview. Carbon. 2005;43:455–465. doi: 10.1016/j.carbon.2004.10.022. DOI
Wang R., Li G., Dong Y., Chi Y., Chen G. Carbon Quantum Dot-Functionalized Aerogels for NO2 Gas Sensing. Anal. Chem. 2013;85:8065–8069. doi: 10.1021/ac401880h. PubMed DOI
Yang J., Zhang E., Li X., Zhang Y., Qu J., Yu Z.-Z. Cellulose/graphene aerogel supported phase change composites with high thermal conductivity and good shape stability for thermal energy storage. Carbon. 2016;98:50–57. doi: 10.1016/j.carbon.2015.10.082. DOI
Ferreira-Gonçalves T., Constantin C., Neagu M., Reis C.P., Sabri F., Simón-Vázquez R. Safety and efficacy assessment of aerogels for biomedical applications. Biomed. Pharmocother. 2021;144:112356. doi: 10.1016/j.biopha.2021.112356. PubMed DOI
Kistler S.S. Coherent Expanded Aerogels and Jellies. Nature. 1931;127:741. doi: 10.1038/127741a0. DOI
Shea K.J., Loy D.A. Bridged Polysilsesquioxanes. Molecular-EngineeredHybrid Organic-Inorganic Materials. Chem. Mater. 2001;13:3306–3319. doi: 10.1021/cm011074s. DOI
Yun S., Luo H., Gao Y. Low-density, hydrophobic, highly flexible ambient-pressure-dried monolithic bridged silsesquioxane Aerogels. J. Mater. Chem. A. 2015;3:3390–3398. doi: 10.1039/C4TA05271D. DOI
Rao A.V., Bhagat S.D., Hirashima H., Pajonk G.M. Synthesis of flexible silica aerogels using methyltrimethoxysilane (MTMS) precursor. J. Colloid Interface Sci. 2006;300:279–285. PubMed
Guo B.-F., Wang Y.-J., Qu Z.-H., Yang F., Qin Y.-Q., Li Y., Zhang G.-D., Gao J.-F., Shi Y., Song P., et al. Hydrosilylation Adducts to Produce Wide-Temperature Flexible Polysiloxane Aerogel under Ambient Temperature and Pressure Drying. Small. 2023;20:2309272. doi: 10.1002/smll.202309272. PubMed DOI
Zhang Z.-H., Chen Z.-Y., Tang Y.-H., Li Y.-T., Ma D., Zhang G.-D., Boukherroub R., Cao C.-F., Gong L.-X., Song P., et al. Silicone/graphene oxide co-cross-linked aerogels with wide-temperature mechanical flexibility, super-hydrophobicity and flame resistance for exceptional thermal insulation and oil/water separation. J. Mater. Sci. Technol. 2022;114:131–142. doi: 10.1016/j.jmst.2021.11.012. DOI
Pekala R.W. Organic aerogels from the polycondensation of resorcinol with formaldehyde. J. Mater. Sci. 1989;24:3221–3227. doi: 10.1007/BF01139044. DOI
Cashman J.L., Nquyen B.N., Dosa B., Meador M.A.B. Flexible Polyimide Aerogels Derived from the Use of a Neopentyl Spacer in the Backbone. ACS Appl. Polym. Mater. 2020;2:2179–2189. doi: 10.1021/acsapm.0c00153. DOI
Meador M.A.B., Wright S., Sandberg A., Nguyen B.N., Van Keuls F.W., Mueller C.H., Rodríguez-Solís R., Miranda F.A. Low Dielectric Polyimide Aerogels as Substrates for Lightweight Patch Antennas. ACS App. Mater. Interfaces. 2012;4:6346–6353. doi: 10.1021/am301985s. PubMed DOI
Meador M.A.B., McMillon E., Sandberg A., Barrios E., Wilmoth N.G., Mueller C.H., Miranda F.A. Dielectric and Other Properties of Polyimide Aerogels Containing Fluorinated Blocks. ACS Appl. Mater. Interfaces. 2014;6:6062–6068. doi: 10.1021/am405106h. PubMed DOI
Guo H., Meador M.A.B., McCorkle L., Quade D.J., Guo J., Hamilton B., Cakmak M. Tailoring Properties of Cross-Linked Polyimide Aerogels for Better Moisture Resistance, Flexibility, and Strength. ACS Appl. Mater. Interfaces. 2012;4:5422–5429. doi: 10.1021/am301347a. PubMed DOI
Pantoja M., Boynton N., Cavicchi K.A., Dosa B., Cashman J.L., Meador M.A.B. Increased Flexibility in Polyimide Aerogels Using Aliphatic Spacers in the Polymer Backbone. ACS Appl. Mater. Interfaces. 2019;11:9425–9437. doi: 10.1021/acsami.8b20420. PubMed DOI
Leventis N., Sotiriou-Leventis C., Mohite D.P., Larimore Z.J., Mang J.T., Churu G., Lu H. Polyimide Aerogels by Ring-Opening Metathesis Polymerization (ROMP) Chem. Mater. 2011;23:2250–2261. doi: 10.1021/cm200323e. DOI
Bang A., Buback C., Sotiriou-Leventis C., Leventis N. Flexible Aerogels from Hyperbranched Polyurethanes: Probing the Role of Molecular Rigidity with Poly(Urethane Acrylates) Versus Poly(Urethane Norbornenes) Chem. Mater. 2014;26:6979–6983. doi: 10.1021/cm5031443. DOI
Shinko A., Jana S.C., Meador M.A. Crosslinked polyurea-co-polyurethane aerogels with hierarchical structures and low stiffness. J. Non Cryst. Solids. 2018;487:19–27. doi: 10.1016/j.jnoncrysol.2018.02.020. DOI
Chidambareswarapattar C., McCarver P.M., Luo H., Lu H., Sotiriou-Leventis C., Leventis N. Fractal Multiscale Nanoporous Polyurethanes: Flexible to Extremely Rigid Aerogels from Multifunctional Small Molecules. Chem. Mater. 2013;25:3024–3205. doi: 10.1021/cm401623h. DOI
Donthula S., Mandal C., Leventis T., Schisler J., Saeed A.M., Sotiriou-Leventis C., Leventis N. Shape Memory Superelastic Poly(isocyanurate-urethane) Aerogels (PIR-PUR) for Deployable Panels and Biomimetic Applications. Chem. Mater. 2017;29:4461–4477. doi: 10.1021/acs.chemmater.7b01020. DOI
Erbil H.Y., Demirel A.L., Avci Y., Mert O. Transformation of a Simple Plastic into a Superhydrophobic Surface. Science. 2003;299:1377–1380. doi: 10.1126/science.1078365. PubMed DOI
Lin Y.K., Chen G., Yang J., Wang X.L. Formation of isotactic polyprolylene membranes with bicontinuous structure and good strength via thermally induced phase separation method. Desalination. 2009;236:8–15. doi: 10.1016/j.desal.2007.10.044. DOI
Lang X.H., Zhu T.Y., Zou L., Prakashan K., Zhang Z.X. Fabrication and characterization of polypropylene aerogel coated hybrid materials for oil-water separation applications. Prog. Org. Coat. 2019;137:105370. doi: 10.1016/j.porgcoat.2019.105370. DOI
Hong H., Pan Y., Sun H., Zhu Z., Ma C., Wang B., Liang W., Yang B., Li A. Superwetting polypropylene aerogel supported form-stable phase change materials with extremely high organics loading and enhanced thermal conductivity. Sol. Energy Mater. Sol. Cells. 2018;174:307–313. doi: 10.1016/j.solmat.2017.09.026. DOI
Wang G., Uyama H. Facile synthesis of flexible microporous polypropylene sponges for separation of oil and water. Sci. Rep. 2016;6:21265–21270. doi: 10.1038/srep21265. PubMed DOI PMC
Saleem J., Moghal Z.K.B., McKay G. Designing super-fast trimodal sponges using recycled polypropylene for organics cleanup. Sci. Rep. 2023;13:14163–14174. doi: 10.1038/s41598-023-41506-6. PubMed DOI PMC
Choi H., Parale V.G., Lee K.-Y., Nah H.-Y., Driss Z., Driss D., Bouabidi A., Euchy S., Park H.-H. Polypropylene/Silica Aerogel Composite Incorporating a Conformal Coating of Methyltrimethoxysilane-Based Aerogel. J. Nanosci. Nanotehnol. 2019;19:1376–1381. doi: 10.1166/jnn.2019.16257. PubMed DOI
Yoda S., Takeshita S., Ono T., Tada R., Ota H. Development of a New Silica Aerogel-Polypropylene Foam Composite as a Highly Flexible Thermal Insulation Material. Front. Mater. 2021;8:674846. doi: 10.3389/fmats.2021.674846. DOI
Othman N., Harruddin N., Idris A., Ooi Z.-Y., Fatiha N., Norimie R., Sulaiman R. Fabrication of polypropylene membrane via thermally induced phase separation as a support matrix of tridodecylamine supported liquid membrane for red 3BS dye removal. Desalin. Water Treat. 2015;57:12287. doi: 10.1080/19443994.2015.1049554. DOI
Létoffé A., García-Rodríguez S.M., Hoppe S., Canilho N., Godard O., Pasc A., Royaud I., Ponçot M. Switching from brittle to ductile isotactic polypropylene-g-maleic anhydride by crosslinking with capped-end polyether diamine. Polymer. 2019;164:67–78. doi: 10.1016/j.polymer.2019.01.015. DOI
Létoffé A., Hoppe S., Lainé R., Canilho N., Pasc A., Rouxel D., Riobóo R.J.J., Hupont S., Royaud I., Ponçot M. Resilience improvement of an isotactic polypropylene-g-maleic anhydride by crosslinking using polyether triamine agents. Polymer. 2019;179:121655. doi: 10.1016/j.polymer.2019.121655. DOI
Männle F., Tofteberg T.R., Skaugen M., Bu H., Peters T., Dietzel P.D.C., Pilz M. Polymer nanocomposite coatings based on polyhedral oligosilsesquioxanes: Route for industrial manufacturing and barrier properties. J. Nanopart. Res. 2011;13:4691–4701. doi: 10.1007/s11051-011-0435-7. DOI
Kruk M., Jaroniec M. Gas Absorption Characterization of Ordered Organic-Inorganic Nanocomposite Materials. Chem. Mater. 2001;13:3169–3183. doi: 10.1021/cm0101069. DOI