Thermophysiological comfort of zinc oxide nanoparticles coated woven fabrics
Status PubMed-not-MEDLINE Language English Country Great Britain, England Media electronic
Document type Journal Article
Grant support
CZ.02.1.01/0.0/0.0/16_025/0007293
European Union (European Structural and Investment Funds-Operational Programme Research, Development and Education)
PubMed
33273610
PubMed Central
PMC7713305
DOI
10.1038/s41598-020-78305-2
PII: 10.1038/s41598-020-78305-2
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
This study investigates physicochemical impact of ultrasonic irradiations on surface topography of woven fabrics. In a simultaneous in-situ sonochemical method, the synthesis and coating of zinc oxide nanoparticles (ZnO NPs) on woven textiles were successfully achieved. Different instruments i.e. Alambeta, moisture management tester, air permeability tester and permetester were utilised during experimentation for thermal evaluation, moisture transportation and air permeation. The results regarding thermophysiological comfort of ZnO coated fabrics were evaluated on the basis of thickness and ZnO NPs coated amount on fabrics. In addition, the achieved results depict the impact of sonication (pressure gradient) on surface roughness of cotton and polyester. The coating of ZnO NPs on fabrics, crystal phase identification, surface topography and fluctuations in surface roughness were estimated by inductively coupled plasma atomic emission spectroscopy (ICP-AES), X-ray Diffractometry (XRD), ultrahigh-resolution scanning electron microscopy (UHR-SEM) and energy dispersive X-ray (EDX). Moreover, thermophysiological properties i.e. thermal conductivity, absolute evaporative resistance, thermal absorptivity, air permeability, overall moisture management capacity and relative water vapour permeability of untreated and ZnO treated samples were evaluated by standard test methods.
See more in PubMed
Chen Q, Tang K-PM, Ma P, Jiang G, Xu C. Thermophysiological comfort properties of polyester weft-knitted fabrics for sports T-shirt. J. Text. Inst. 2017;108:1421–1429. doi: 10.1080/00405000.2016.1255122. DOI
Mansoor T, Hes L, Bajzik V, Noman MT. Novel method on thermal resistance prediction and thermo-physiological comfort of socks in wet state. Text. Res. J. 2020;90:1–20. doi: 10.1177/0040517520902540. DOI
Öner E, Okur A. Thermophysiological comfort properties of selected knitted fabrics and design of T-shirts. J. Text. Inst. 2015;106:1403–1414. doi: 10.1080/00405000.2014.995931. DOI
Azeem M, et al. Comfort properties of nano-filament polyester fabrics: thermo-physiological evaluation. Ind. Tex. 2018;69:315–321. doi: 10.35530/IT.069.04.1529. DOI
Angelova RA, et al. Heat and mass transfer through outerwear clothing for protection from cold: influence of geometrical, structural and mass characteristics of the textile layers. Text. Res. J. 2017;87:1060–1070. doi: 10.1177/0040517516648507. DOI
Mishra R, Veerakumar A, Militky J. Thermo-physiological properties of 3D spacer knitted fabrics. Int. J. Cloth. Sci. Tech. 2016;28:328–339. doi: 10.1108/IJCST-04-2016-0039. DOI
Gunasekaran G, Prakash C, Periyasamy S. Effect of charcoal particles on thermophysiological comfort properties of woven fabrics. J. Nat. Fib. 2019;1:1–14.
Shaid A, Fergusson M, Wang L. Thermophysiological comfort analysis of aerogel nanoparticle incorporated fabric for fire fighter's protective clothing. Chem. Mat. Eng. 2014;2:37–43.
Noman MT, Petru M. Effect of sonication and nano TiO2 on thermophysiological comfort properties of woven fabrics. ACS Omega. 2020;5:11481–11490. doi: 10.1021/acsomega.0c00572. PubMed DOI PMC
Noman MT, Petru M, Amor N, Yang T, Mansoor T. Thermophysiological comfort of sonochemically synthesized nano TiO 2 coated woven fabrics. Sci. Rep. 2020;10:1–12. doi: 10.1038/s41598-019-56847-4. PubMed DOI PMC
Gao N, Fang X. Synthesis and development of graphene–inorganic semiconductor nanocomposites. Chem. Rev. 2015;115:8294–8343. doi: 10.1021/cr400607y. PubMed DOI
Kwon S-N, Yu J-H, Na S-I. A systematic approach to ZnO nanoparticle-assisted electron transport bilayer for high efficiency and stable perovskite solar cells. J. Alloys Compd. 2019;801:277–284. doi: 10.1016/j.jallcom.2019.06.089. DOI
Shkir M, Hamdy MS, AlFaify S. A facile one pot flash combustion synthesis of ZnO nanoparticles and their characterizations for photocatalytic applications. J. Mol. Struct. 2019;1197:610–616. doi: 10.1016/j.molstruc.2019.07.084. DOI
Taylor CM, Ramirez-Canon A, Wenk J, Mattia D. Enhancing the photo-corrosion resistance of ZnO nanowire photocatalysts. J. Hazard. Mater. 2019;378:120799. doi: 10.1016/j.jhazmat.2019.120799. PubMed DOI
Gerbreders V, et al. Hydrothermal synthesis of ZnO nanostructures with controllable morphology change. Cryst. Eng. Comm. 2020;22:1346–1358. doi: 10.1039/C9CE01556F. DOI
Khan MF, et al. Sol-gel synthesis of thorn-like ZnO nanoparticles endorsing mechanical stirring effect and their antimicrobial activities: potential role as nano-antibiotics. Sci. Rep. 2016;6:27689. doi: 10.1038/srep27689. PubMed DOI PMC
Müller R, et al. Chemical vapor deposition growth of zinc oxide on sapphire with methane: initial crystal formation process. Cryst. Growth Des. 2019;19:4964–4969. doi: 10.1021/acs.cgd.9b00181. DOI
Khan HR, et al. electronic tuning of Zinc oxide by Direct fabrication of chromium (cr) incorporated photoanodes for Visible-light driven water splitting applications. Sci. Rep. 2020;10:1–10. doi: 10.1038/s41598-019-56847-4. PubMed DOI PMC
Laurenti M, Garino N, Porro S, Fontana M, Gerbaldi C. Zinc oxide nanostructures by chemical vapour deposition as anodes for Li-ion batteries. J. Alloys Compd. 2015;640:321–326. doi: 10.1016/j.jallcom.2015.03.222. DOI
Noman MT, Petru M. Functional properties of sonochemically synthesized zinc oxide nanoparticles and cotton composites. Nanomaterials. 2020;10:1661. doi: 10.3390/nano10091661. PubMed DOI PMC
Noman MT, Ashraf MA, Ali A. Synthesis and applications of nano-TiO2: a review. Environ. Sci. Pollut. Res. 2019;26:3262–3291. doi: 10.1007/s11356-018-3884-z. PubMed DOI
Noman MT, et al. In-situ development of highly photocatalytic multifunctional nanocomposites by ultrasonic acoustic method. Ultrason. Sonochem. 2018;40:41–56. doi: 10.1016/j.ultsonch.2017.06.026. PubMed DOI
Dal V, Şimşek R, Hes L, Akçagün E, Yilmaz A. Investigation of thermal comfort properties of zinc oxide coated woven cotton fabric. J. Text. Inst. 2017;108:337–340. doi: 10.1080/00405000.2016.1166819. DOI
Noman MT, Petru M, Militký J, Azeem M, Ashraf MA. One-pot sonochemical synthesis of ZnO nanoparticles for photocatalytic applications modelling and optimization. Mater. 2020;13:14. doi: 10.3390/ma13010014. PubMed DOI PMC
Dalbaşi ES, Özçelik Kayseri G. A research on the comfort properties of linen fabrics subjected to various finishing treatments. J. Nat. Fib. 2019;1:1–14.
Arumugam V, Mishra R, Militky J, Davies L, Slater S. Thermal and water vapor transmission through porous warp knitted 3D spacer fabrics for car upholstery applications. J. Text. Inst. 2018;109:345–357. doi: 10.1080/00405000.2017.1347023. DOI
Zhou R, Wang X, Yu J, Wei Z, Gao Y. Evaluation of luster, hand feel and comfort properties of modified polyester woven fabrics. J. Eng. Fib. Fabr. 2017;12:70–77.
Noman MT, et al. Sonochemical synthesis of highly crystalline photocatalyst for industrial applications. Ultrason. 2018;83:203–213. doi: 10.1016/j.ultras.2017.06.012. PubMed DOI
Noman MT, Ashraf MA, Jamshaid H, Ali A. A novel green stabilization of TiO2 nanoparticles onto cotton. Fib. Polym. 2018;19:2268–2277. doi: 10.1007/s12221-018-8693-y. DOI
Aerogels for Biomedical, Energy and Sensing Applications
Prediction of Methylene Blue Removal by Nano TiO2 Using Deep Neural Network
Classification of Textile Polymer Composites: Recent Trends and Challenges
Combined Use of Modal Analysis and Machine Learning for Materials Classification
Geopolymers and Fiber-Reinforced Concrete Composites in Civil Engineering
Photocatalytic Behaviour of Zinc Oxide Nanostructures on Surface Activation of Polymeric Fibres