• This record comes from PubMed

Thermophysiological comfort of zinc oxide nanoparticles coated woven fabrics

. 2020 Dec 03 ; 10 (1) : 21080. [epub] 20201203

Status PubMed-not-MEDLINE Language English Country Great Britain, England Media electronic

Document type Journal Article

Grant support
CZ.02.1.01/0.0/0.0/16_025/0007293 European Union (European Structural and Investment Funds-Operational Programme Research, Development and Education)

Links

PubMed 33273610
PubMed Central PMC7713305
DOI 10.1038/s41598-020-78305-2
PII: 10.1038/s41598-020-78305-2
Knihovny.cz E-resources

This study investigates physicochemical impact of ultrasonic irradiations on surface topography of woven fabrics. In a simultaneous in-situ sonochemical method, the synthesis and coating of zinc oxide nanoparticles (ZnO NPs) on woven textiles were successfully achieved. Different instruments i.e. Alambeta, moisture management tester, air permeability tester and permetester were utilised during experimentation for thermal evaluation, moisture transportation and air permeation. The results regarding thermophysiological comfort of ZnO coated fabrics were evaluated on the basis of thickness and ZnO NPs coated amount on fabrics. In addition, the achieved results depict the impact of sonication (pressure gradient) on surface roughness of cotton and polyester. The coating of ZnO NPs on fabrics, crystal phase identification, surface topography and fluctuations in surface roughness were estimated by inductively coupled plasma atomic emission spectroscopy (ICP-AES), X-ray Diffractometry (XRD), ultrahigh-resolution scanning electron microscopy (UHR-SEM) and energy dispersive X-ray (EDX). Moreover, thermophysiological properties i.e. thermal conductivity, absolute evaporative resistance, thermal absorptivity, air permeability, overall moisture management capacity and relative water vapour permeability of untreated and ZnO treated samples were evaluated by standard test methods.

See more in PubMed

Chen Q, Tang K-PM, Ma P, Jiang G, Xu C. Thermophysiological comfort properties of polyester weft-knitted fabrics for sports T-shirt. J. Text. Inst. 2017;108:1421–1429. doi: 10.1080/00405000.2016.1255122. DOI

Mansoor T, Hes L, Bajzik V, Noman MT. Novel method on thermal resistance prediction and thermo-physiological comfort of socks in wet state. Text. Res. J. 2020;90:1–20. doi: 10.1177/0040517520902540. DOI

Öner E, Okur A. Thermophysiological comfort properties of selected knitted fabrics and design of T-shirts. J. Text. Inst. 2015;106:1403–1414. doi: 10.1080/00405000.2014.995931. DOI

Azeem M, et al. Comfort properties of nano-filament polyester fabrics: thermo-physiological evaluation. Ind. Tex. 2018;69:315–321. doi: 10.35530/IT.069.04.1529. DOI

Angelova RA, et al. Heat and mass transfer through outerwear clothing for protection from cold: influence of geometrical, structural and mass characteristics of the textile layers. Text. Res. J. 2017;87:1060–1070. doi: 10.1177/0040517516648507. DOI

Mishra R, Veerakumar A, Militky J. Thermo-physiological properties of 3D spacer knitted fabrics. Int. J. Cloth. Sci. Tech. 2016;28:328–339. doi: 10.1108/IJCST-04-2016-0039. DOI

Gunasekaran G, Prakash C, Periyasamy S. Effect of charcoal particles on thermophysiological comfort properties of woven fabrics. J. Nat. Fib. 2019;1:1–14.

Shaid A, Fergusson M, Wang L. Thermophysiological comfort analysis of aerogel nanoparticle incorporated fabric for fire fighter's protective clothing. Chem. Mat. Eng. 2014;2:37–43.

Noman MT, Petru M. Effect of sonication and nano TiO2 on thermophysiological comfort properties of woven fabrics. ACS Omega. 2020;5:11481–11490. doi: 10.1021/acsomega.0c00572. PubMed DOI PMC

Noman MT, Petru M, Amor N, Yang T, Mansoor T. Thermophysiological comfort of sonochemically synthesized nano TiO 2 coated woven fabrics. Sci. Rep. 2020;10:1–12. doi: 10.1038/s41598-019-56847-4. PubMed DOI PMC

Gao N, Fang X. Synthesis and development of graphene–inorganic semiconductor nanocomposites. Chem. Rev. 2015;115:8294–8343. doi: 10.1021/cr400607y. PubMed DOI

Kwon S-N, Yu J-H, Na S-I. A systematic approach to ZnO nanoparticle-assisted electron transport bilayer for high efficiency and stable perovskite solar cells. J. Alloys Compd. 2019;801:277–284. doi: 10.1016/j.jallcom.2019.06.089. DOI

Shkir M, Hamdy MS, AlFaify S. A facile one pot flash combustion synthesis of ZnO nanoparticles and their characterizations for photocatalytic applications. J. Mol. Struct. 2019;1197:610–616. doi: 10.1016/j.molstruc.2019.07.084. DOI

Taylor CM, Ramirez-Canon A, Wenk J, Mattia D. Enhancing the photo-corrosion resistance of ZnO nanowire photocatalysts. J. Hazard. Mater. 2019;378:120799. doi: 10.1016/j.jhazmat.2019.120799. PubMed DOI

Gerbreders V, et al. Hydrothermal synthesis of ZnO nanostructures with controllable morphology change. Cryst. Eng. Comm. 2020;22:1346–1358. doi: 10.1039/C9CE01556F. DOI

Khan MF, et al. Sol-gel synthesis of thorn-like ZnO nanoparticles endorsing mechanical stirring effect and their antimicrobial activities: potential role as nano-antibiotics. Sci. Rep. 2016;6:27689. doi: 10.1038/srep27689. PubMed DOI PMC

Müller R, et al. Chemical vapor deposition growth of zinc oxide on sapphire with methane: initial crystal formation process. Cryst. Growth Des. 2019;19:4964–4969. doi: 10.1021/acs.cgd.9b00181. DOI

Khan HR, et al. electronic tuning of Zinc oxide by Direct fabrication of chromium (cr) incorporated photoanodes for Visible-light driven water splitting applications. Sci. Rep. 2020;10:1–10. doi: 10.1038/s41598-019-56847-4. PubMed DOI PMC

Laurenti M, Garino N, Porro S, Fontana M, Gerbaldi C. Zinc oxide nanostructures by chemical vapour deposition as anodes for Li-ion batteries. J. Alloys Compd. 2015;640:321–326. doi: 10.1016/j.jallcom.2015.03.222. DOI

Noman MT, Petru M. Functional properties of sonochemically synthesized zinc oxide nanoparticles and cotton composites. Nanomaterials. 2020;10:1661. doi: 10.3390/nano10091661. PubMed DOI PMC

Noman MT, Ashraf MA, Ali A. Synthesis and applications of nano-TiO2: a review. Environ. Sci. Pollut. Res. 2019;26:3262–3291. doi: 10.1007/s11356-018-3884-z. PubMed DOI

Noman MT, et al. In-situ development of highly photocatalytic multifunctional nanocomposites by ultrasonic acoustic method. Ultrason. Sonochem. 2018;40:41–56. doi: 10.1016/j.ultsonch.2017.06.026. PubMed DOI

Dal V, Şimşek R, Hes L, Akçagün E, Yilmaz A. Investigation of thermal comfort properties of zinc oxide coated woven cotton fabric. J. Text. Inst. 2017;108:337–340. doi: 10.1080/00405000.2016.1166819. DOI

Noman MT, Petru M, Militký J, Azeem M, Ashraf MA. One-pot sonochemical synthesis of ZnO nanoparticles for photocatalytic applications modelling and optimization. Mater. 2020;13:14. doi: 10.3390/ma13010014. PubMed DOI PMC

Dalbaşi ES, Özçelik Kayseri G. A research on the comfort properties of linen fabrics subjected to various finishing treatments. J. Nat. Fib. 2019;1:1–14.

Arumugam V, Mishra R, Militky J, Davies L, Slater S. Thermal and water vapor transmission through porous warp knitted 3D spacer fabrics for car upholstery applications. J. Text. Inst. 2018;109:345–357. doi: 10.1080/00405000.2017.1347023. DOI

Zhou R, Wang X, Yu J, Wei Z, Gao Y. Evaluation of luster, hand feel and comfort properties of modified polyester woven fabrics. J. Eng. Fib. Fabr. 2017;12:70–77.

Noman MT, et al. Sonochemical synthesis of highly crystalline photocatalyst for industrial applications. Ultrason. 2018;83:203–213. doi: 10.1016/j.ultras.2017.06.012. PubMed DOI

Noman MT, Ashraf MA, Jamshaid H, Ali A. A novel green stabilization of TiO2 nanoparticles onto cotton. Fib. Polym. 2018;19:2268–2277. doi: 10.1007/s12221-018-8693-y. DOI

Newest 20 citations...

See more in
Medvik | PubMed

Comfort evaluation of ZnO coated fabrics by artificial neural network assisted with golden eagle optimizer model

. 2022 Apr 15 ; 12 (1) : 6350. [epub] 20220415

Use of an Artificial Neural Network for Tensile Strength Prediction of Nano Titanium Dioxide Coated Cotton

. 2022 Feb 26 ; 14 (5) : . [epub] 20220226

Aerogels for Biomedical, Energy and Sensing Applications

. 2021 Dec 14 ; 7 (4) : . [epub] 20211214

Prediction of Methylene Blue Removal by Nano TiO2 Using Deep Neural Network

. 2021 Sep 15 ; 13 (18) : . [epub] 20210915

Classification of Textile Polymer Composites: Recent Trends and Challenges

. 2021 Aug 04 ; 13 (16) : . [epub] 20210804

Combined Use of Modal Analysis and Machine Learning for Materials Classification

. 2021 Jul 30 ; 14 (15) : . [epub] 20210730

Neural network-crow search model for the prediction of functional properties of nano TiO2 coated cotton composites

. 2021 Jul 01 ; 11 (1) : 13649. [epub] 20210701

Geopolymers and Fiber-Reinforced Concrete Composites in Civil Engineering

. 2021 Jun 25 ; 13 (13) : . [epub] 20210625

Prediction of functional properties of nano [Formula: see text] coated cotton composites by artificial neural network

. 2021 Jun 10 ; 11 (1) : 12235. [epub] 20210610

Photocatalytic Behaviour of Zinc Oxide Nanostructures on Surface Activation of Polymeric Fibres

. 2021 Apr 10 ; 13 (8) : . [epub] 20210410

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...