Inventory and Evolution of Mitochondrion-localized Family A DNA Polymerases in Euglenozoa
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
18KK0203 and 19H03280, YI; 17H03723 and 26840123, GT; 17K19434, AY
Japan Society for the Promotion of Science
16-25280S, VH
the Czech Science foundation
CZ.02.1.01/0.0/0.0/16_019/0000759
Centre for research of pathogenicity and virulence of parasites
PubMed
32244644
PubMed Central
PMC7238167
DOI
10.3390/pathogens9040257
PII: pathogens9040257
Knihovny.cz E-zdroje
- Klíčová slova
- DNA replication, Diplonemea, Euglenida, Kinetoplastea, Prokinetoplastina, Trypanosomatida, family A DNA polymerase, plant and protist organellar DNA polymerase,
- Publikační typ
- časopisecké články MeSH
The order Trypanosomatida has been well studied due to its pathogenicity and the unique biology of the mitochondrion. In Trypanosoma brucei, four DNA polymerases, namely PolIA, PolIB, PolIC, and PolID, related to bacterial DNA polymerase I (PolI), were shown to be localized in mitochondria experimentally. These mitochondrion-localized DNA polymerases are phylogenetically distinct from other family A DNA polymerases, such as bacterial PolI, DNA polymerase gamma (Polγ) in human and yeasts, "plant and protist organellar DNA polymerase (POP)" in diverse eukaryotes. However, the diversity of mitochondrion-localized DNA polymerases in Euglenozoa other than Trypanosomatida is poorly understood. In this study, we discovered putative mitochondrion-localized DNA polymerases in broad members of three major classes of Euglenozoa-Kinetoplastea, Diplonemea, and Euglenida-to explore the origin and evolution of trypanosomatid PolIA-D. We unveiled distinct inventories of mitochondrion-localized DNA polymerases in the three classes: (1) PolIA is ubiquitous across the three euglenozoan classes, (2) PolIB, C, and D are restricted in kinetoplastids, (3) new types of mitochondrion-localized DNA polymerases were identified in a prokinetoplastid and diplonemids, and (4) evolutionarily distinct types of POP were found in euglenids. We finally propose scenarios to explain the inventories of mitochondrion-localized DNA polymerases in Kinetoplastea, Diplonemea, and Euglenida.
Center for Computational Sciences University of Tsukuba Tsukuba 305 8577 Japan
Department of Applied Chemistry and Food Science Fukui University of Technology Fukui 910 8505 Japan
Department of Gene Function and Phenomics National Institute of Genetics Mishima 411 8540 Japan
Department of Parasitology Charles University Faculty of Science BIOCEV 252 42 Vestec Czech Republic
Department of Zoology National Museum of Nature and Science Tsukuba 305 0005 Japan
Faculty of Life and Environmental Sciences University of Tsukuba Tsukuba 305 8572 Japan
Graduate School of Engineering Fukui University of Technology Fukui 910 8505 Japan
Graduate School of Life and Environmental Sciences University of Tsukuba Tsukuba 305 8572 Japan
Japan Agency for Marine Earth Science and Technology Yokosuka 236 0001 Japan
Zobrazit více v PubMed
Barrett M.P., Burchmore R.J.S., Stich A., Lazzari J.O., Frasch A.C., Cazzulo J.J., Krishna S. The trypanosomiases. Lancet. 2003;362:1469–1480. doi: 10.1016/S0140-6736(03)14694-6. PubMed DOI
Verner Z., Basu S., Benz C., Dixit S., Dobáková E., Faktorová D., Hashimi H., Horáková E., Huang Z., Paris Z., et al. International Review of Cell and Molecular Biology. Volume 315. Academic Press; Cambridge, MA, USA: 2015. Malleable mitochondrion of Trypanosoma brucei; pp. 73–151. PubMed
Klingbeil M.M., Motyka S.A., Englund P.T. Multiple mitochondrial DNA polymerases in Trypanosoma brucei. Mol. Cell. 2002;10:175–186. doi: 10.1016/S1097-2765(02)00571-3. PubMed DOI
Krasich R., Copeland W.C. DNA polymerases in the mitochondria: A critical review of the evidence. Physiol. Behav. 2017;22:692–709. PubMed PMC
Saxowsky T.T., Choudhary G., Klingbeil M.M., Englund P.T. Trypanosoma brucei has two distinct mitochondrial DNA polymerase β enzymes. J. Biol. Chem. 2003;278:49095–49101. doi: 10.1074/jbc.M308565200. PubMed DOI
Rajão M.A., Passos-Silva D.G., DaRocha W.D., Franco G.R., Macedo A.M., Pena S.D.J., Teixeira S.M., Machado C.R. DNA polymerase kappa from Trypanosoma cruzi localizes to the mitochondria, bypasses 8-oxoguanine lesions and performs DNA synthesis in a recombination intermediate. Mol. Microbiol. 2009;71:185–197. doi: 10.1111/j.1365-2958.2008.06521.x. PubMed DOI
Graziewicz M.A., Longley M.J., Copeland W.C. DNA polymerase γ in mitochondrial DNA replication and repair. Chem. Rev. 2006;106:383–405. doi: 10.1021/cr040463d. PubMed DOI
Christensen A.C., Lyznik A., Mohammed S., Elowsky C.G., Elo A., Yule R., Mackenzie S.A. Dual-domain, dual-targeting organellar protein presequences in Arabidopsis can use non-AUG start codons. Plant Cell. 2005;17:2805–2816. doi: 10.1105/tpc.105.035287. PubMed DOI PMC
Moriyama T., Sato N. Enzymes involved in organellar DNA replication in photosynthetic eukaryotes. Front. Plant Sci. 2014;5:480:1–480:12. doi: 10.3389/fpls.2014.00480. PubMed DOI PMC
Hirakawa Y., Watanabe A. Organellar DNA polymerases in complex plastid-bearing algae. Biomolecules. 2019;9:140. doi: 10.3390/biom9040140. PubMed DOI PMC
Adl S.M., Bass D., Lane C.E., Lukeš J., Schoch C.L., Smirnov A., Agatha S., Berney C., Brown M.W., Burki F., et al. Revisions to the classification, nomenclature, and diversity of eukaryotes. J. Eukaryot. Microbiol. 2019;66:4–119. doi: 10.1111/jeu.12691. PubMed DOI PMC
Lukeš J., Guilbride D.L., Votýpka J., Zíková A., Benne R., Englund P.T. Kinetoplast DNA network: Evolution of an improbable structure. Eukayot. Cell. 2002;1:495–502. doi: 10.1128/EC.1.4.495-502.2002. PubMed DOI PMC
David V., Flegontov P., Gerasimov E., Tanifuji G., Hashimi H., Logacheva M.D., Maruyama S., Onodera N.T., Gray M.W., Archibald J.M., et al. Gene loss and error-prone RNA editing in the mitochondrion of Perkinsela, an endosymbiotic kinetoplastid. MBio. 2015;6:e01498-15:1–e01498-15:12. doi: 10.1128/mBio.01498-15. PubMed DOI PMC
Yabuki A., Tanifuji G., Kusaka C., Takishita K., Fujikura K. Hyper-eccentric structural genes in the mitochondrial genome of the algal parasite Hemistasia phaeocysticola. Genome Biol. Evol. 2016;8:2870–2878. PubMed PMC
Burger G., Valach M. Perfection of eccentricity: Mitochondrial genomes of diplonemids. IUBMB Life. 2018;70:1197–1206. doi: 10.1002/iub.1927. PubMed DOI
Kaur B., Záhonová K., Valach M., Faktorová D., Prokopchuk G., Burger G., Lukeš J. Gene fragmentation and RNA editing without borders: Eccentric mitochondrial genomes of diplonemids. Nucleic Acids Res. 2020;48:2694–2708. doi: 10.1093/nar/gkz1215. PubMed DOI PMC
Roy J., Faktorová D., Lukeš J., Burger G. Unusual mitochondrial genome structures throughout the Euglenozoa. Protist. 2007;158:385–396. doi: 10.1016/j.protis.2007.03.002. PubMed DOI
Spencer D.F., Gray M.W. Ribosomal RNA genes in Euglena gracilis mitochondrial DNA: Fragmented genes in a seemingly fragmented genome. Mol. Genet. Genom. 2011;285:19–31. doi: 10.1007/s00438-010-0585-9. PubMed DOI
Dobáková E., Flegontov P., Skalický T., Lukeš J. Unexpectedly streamlined mitochondrial genome of the euglenozoan Euglena gracilis. Genome Biol. Evol. 2015;7:3358–3367. doi: 10.1093/gbe/evv229. PubMed DOI PMC
Simpson A.G.B., Hoff J.V.D., Bernard C., Burton H.R., Patterson D.J. The ultrastructure and systematic position of the euglenozoon Postgaardi mariagerensis. Arch. Protistenkd. 1997;147:213–225. doi: 10.1016/S0003-9365(97)80049-8. DOI
Yubuki N., Edgcomb V.P., Bernhard J.M., Leander B.S. Ultrastructure and molecular phylogeny of Calkinsia aureus: Cellular identity of a novel clade of deep-sea euglenozoans with epibiotic bacteria. BMC Microbiol. 2009;9:16:1–16:22. doi: 10.1186/1471-2180-9-16. PubMed DOI PMC
Breglia S.A., Yubuki N., Hoppenrath M., Leander B.S. Ultrastructure and molecular phylogenetic position of a novel euglenozoan with extrusive episymbiotic bacteria: Bihospites bacati n. gen. et sp. (Symbiontida) BMC Microbiol. 2010;10:145:1–145:21. doi: 10.1186/1471-2180-10-145. PubMed DOI PMC
Moriyama T., Terasawa K., Fujiwara M., Sato N. Purification and characterization of organellar DNA polymerases in the red alga Cyanidioschyzon merolae. FEBS J. 2008;275:2899–2918. doi: 10.1111/j.1742-4658.2008.06426.x. PubMed DOI
Chandler J., Vandoros A.V., Mozeleski B., Klingbeil M.M. Stem-loop silencing reveals that a third mitochondrial DNA polymerase, POLID, is required for kinetoplast DNA replication in trypanosomes. Eukaryot. Cell. 2008;7:2141–2146. doi: 10.1128/EC.00199-08. PubMed DOI PMC
Bruhn D.F., Mozeleski B., Falkin L., Klingbeil M.M. Mitochondrial DNA polymerase POLIB is essential for minicircle DNA replication in African trypanosomes. Mol. Microbiol. 2010;75:1414–1425. doi: 10.1111/j.1365-2958.2010.07061.x. PubMed DOI
Bruhn D.F., Sammartino M.P., Klingbeil M.M. Three mitochondrial DNA polymerases are essential for kinetoplast DNA replication and survival of bloodstream form Trypanosoma brucei. Eukaryot. Cell. 2011;10:734–743. doi: 10.1128/EC.05008-11. PubMed DOI PMC
Panigrahi A.K., Ogata Y., Zíková A., Anupama A., Dalley R.A., Acestor N., Myler P.J., Stuart K.D. A comprehensive analysis of Trypanosoma brucei mitochondrial proteome. Proteomics. 2009;9:434–450. doi: 10.1002/pmic.200800477. PubMed DOI PMC
Hammond M.J., Nenarokova A., Butenko A., Zoltner M., Dobáková E.L., Field M.C., Lukeš J. A uniquely complex mitochondrial proteome from Euglena gracilis. Mol. Biol. Evol. 2020 doi: 10.1093/molbev/msaa061. Epub ahead of print. PubMed DOI PMC
Emanuelsson O., Nielsen H., Brunak S., Heijne G.V. Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J. Mol. Biol. 2000;300:1005–1016. doi: 10.1006/jmbi.2000.3903. PubMed DOI
Kume K., Amagasa T., Hashimoto T., Kitagawa H. NommPred: Prediction of mitochondrial and mitochondrion-related organelle proteins of nonmodel organisms. Evol. Bioinform. 2018;14:1–12. doi: 10.1177/1176934318819835. PubMed DOI PMC
Petsalaki E.I., Bagos P.G., Litou Z.I., Hamodrakas S.J. PredSL: A tool for the N-terminal sequence-based prediction of protein subcellular localization. Genom. Proteom. Bioinf. 2006;4:48–55. doi: 10.1016/S1672-0229(06)60016-8. PubMed DOI PMC
Fukasawa Y., Tsuji J., Fu S.C., Tomii K., Horton P., Imai K. MitoFates: Improved prediction of mitochondrial targeting sequences and their cleavage sites. Mol. Cell. Proteomics. 2015;14:1113–1126. doi: 10.1074/mcp.M114.043083. PubMed DOI PMC
Bicudo C.E.d.M., Menezes M. Phylogeny and classification of Euglenophyceae: A brief review. Front. Ecol. Evol. 2016;4:17:1–17:15. doi: 10.3389/fevo.2016.00017. DOI
Tashyreva D., Prokopchuk G., Yabuki A., Kaur B., Faktorová D., Votýpka J., Kusaka C., Fujikura K., Shiratori T., Ishida K.I., et al. Phylogeny and morphology of new diplonemids from Japan. Protist. 2018;169:158–179. doi: 10.1016/j.protis.2018.02.001. PubMed DOI
Yazaki E., Ishikawa S.A., Kume K., Kumagai A., Kamaishi T., Tanifuji G., Hashimoto T., Inagaki Y. Global kinetoplastea phylogeny inferred from a large-scale multigene alignment including parasitic species for better understanding transitions from a free-living to a parasitic lifestyle. Genes Genet. Syst. 2017;92:35–42. doi: 10.1266/ggs.16-00056. PubMed DOI
Tosal L., Comendador M.A., Sierra L.M. The mus308 locus of Drosophila melanogaster is implicated in the bypass of ENU-induced O-alkylpyrimidine adducts. Mol. Gen. Genet. 2000;263:144–151. doi: 10.1007/s004380050041. PubMed DOI
Concepción-Acevedo J., Miller J.C., Boucher M.J., Klingbeil M.M. Cell cycle localization dynamics of mitochondrial DNA polymerase IC in African trypanosomes. Mol. Biol. Cell. 2018;29:2540–2552. doi: 10.1091/mbc.E18-02-0127. PubMed DOI PMC
Ono Y., Sakai A., Takechi K., Takio S., Takusagawa M., Takano H. NtPolI-like1 and NtPolI-like2, bacterial DNA polymerase I homologs isolated from BY-2 cultured tobacco cells, encode DNA polymerases engaged in DNA replication in both plastids and mitochondria. Plant Cell Physiol. 2007;48:1679–1692. doi: 10.1093/pcp/pcm140. PubMed DOI
Moriyama T., Tajima N., Sekine K., Sato N. Localization and phylogenetic analysis of enzymes related to organellar genome replication in the unicellular rhodophyte Cyanidioschyzon merolae. Genome Biol. Evol. 2014;6:228–237. doi: 10.1093/gbe/evu009. PubMed DOI PMC
Bendtsen J.D., Nielsen H., Heijne G.V., Brunak S. Improved prediction of signal peptides: SignalP 3.0. J. Mol. Biol. 2004;340:783–795. doi: 10.1016/j.jmb.2004.05.028. PubMed DOI
Krogh A., Larsson B., Heijne G.V., Sonnhammer E.L.L. Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes. J. Mol. Biol. 2001;305:567–580. doi: 10.1006/jmbi.2000.4315. PubMed DOI
Novák Vanclová A.M.G., Zoltner M., Kelly S., Soukal P., Záhonová K., Füssy Z., Ebenezer T.E., Lacová Dobáková E., Eliáš M., Lukeš J., et al. Metabolic quirks and the colourful history of the Euglena gracilis secondary plastid. New Phytol. 2020;225:1578–1592. doi: 10.1111/nph.16237. PubMed DOI
Tanifuji G., Cenci U., Moog D., Dean S., Nakayama T., David V., Fiala I., Curtis B.A., Sibbald S.J., Onodera N.T., et al. Genome sequencing reveals metabolic and cellular interdependence in an amoeba-kinetoplastid symbiosis. Sci. Rep. 2017;7:11688:1–11688:13. doi: 10.1038/s41598-017-11866-x. PubMed DOI PMC
Turmel M., Gagnon M.C., O’Kelly C.J., Otis C., Lemieux C. The chloroplast genomes of the green algae Pyramimonas, Monomastix, and Pycnococcus shed new light on the evolutionary history of prasinophytes and the origin of the secondary chloroplasts of euglenids. Mol. Biol. Evol. 2009;26:631–648. doi: 10.1093/molbev/msn285. PubMed DOI
Suzuki S., Hirakawa Y., Kofuji R., Sugita M., Ishida K. Plastid genome sequences of Gymnochlora stellata, Lotharella vacuolata, and Partenskyella glossopodia reveal remarkable structural conservation among chlorarachniophyte species. J. Plant Res. 2016;129:581–590. doi: 10.1007/s10265-016-0804-5. PubMed DOI
Sayers E.W., Beck J., Brister J.R., Bolton E.E., Canese K., Comeau D.C., Funk K., Ketter A., Kim S., Kimchi A., et al. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 2020;48:D9–D16. doi: 10.1093/nar/gkz899. PubMed DOI PMC
Chen S., Zhou Y., Chen Y., Gu J. fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 2018;34:i884–i890. doi: 10.1093/bioinformatics/bty560. PubMed DOI PMC
Grabherr M.G., Haas B.J., Yassour M., Levin J.Z., Thompson D.A., Amit I., Adiconis X., Fan L., Raychowdhury R., Zeng Q., et al. Trinity: Reconstructing a full-length transcriptome without a genome from RNA-Seq data. Nat. Biotechnol. 2011;29:644–652. doi: 10.1038/nbt.1883. PubMed DOI PMC
Camacho C., Coulouris G., Avagyan V., Ma N., Papadopoulos J., Bealer K., Madden T.L. BLAST+: Architecture and applications. BMC Bioinform. 2009;10:421:1–421:9. doi: 10.1186/1471-2105-10-421. PubMed DOI PMC
Katoh K., Standley D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013;30:772–780. doi: 10.1093/molbev/mst010. PubMed DOI PMC
Capella-Gutiérrez S., Silla-Martínez J.M., Gabaldón T. trimAl: A tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 2009;25:1972–1973. doi: 10.1093/bioinformatics/btp348. PubMed DOI PMC
Nguyen L.T., Schmidt H.A., Von Haeseler A., Minh B.Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 2015;32:268–274. doi: 10.1093/molbev/msu300. PubMed DOI PMC
Kalyaanamoorthy S., Minh B.Q., Wong T.K.F., Von Haeseler A., Jermiin L.S. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat. Methods. 2017;14:587–589. doi: 10.1038/nmeth.4285. PubMed DOI PMC
Lartillot N., Lepage T., Blanquart S. PhyloBayes 3: Bayesian software package for phylogenetic reconstruction and molecular dating. Bioinformatics. 2009;25:2286–2288. doi: 10.1093/bioinformatics/btp368. PubMed DOI
Eddy S.R. HMMER: Biosequence Analysis Using Profile Hidden Markov Models. [(accessed on 10 December 2019)]; Available online: http://hmmer.org/
El-Gebali S., Mistry J., Bateman A., Eddy S.R., Luciani A., Potter S.C., Qureshi M., Richardson L.J., Salazar G.A., Smart A., et al. The Pfam protein families database in 2019. Nucleic Acids Res. 2019;47:D427–D432. doi: 10.1093/nar/gky995. PubMed DOI PMC
López-García P., Duperron S., Philippot P., Foriel J., Susini J., Moreira D. Bacterial diversity in hydrothermal sediment and epsilonproteobacterial dominance in experimental microcolonizers at the Mid-Atlantic Ridge. Environ. Microbiol. 2003;5:961–976. doi: 10.1046/j.1462-2920.2003.00495.x. PubMed DOI
Scheckenbach F., Hausmann K., Wylezich C., Weitere M., Arndt H. Large-scale patterns in biodiversity of microbial eukaryotes from the abyssal sea floor. Proc. Natl. Acad. Sci. USA. 2010;107:115–120. doi: 10.1073/pnas.0908816106. PubMed DOI PMC
Marquardt M., Vader A., Stübner E.I., Reigstad M., Gabrielsen T.M. Strong seasonality of marine microbial eukaryotes in a high-Arctic fjord (Isfjorden, in West Spitsbergen, Norway) Appl. Environ. Microbiol. 2016;82:1868–1880. doi: 10.1128/AEM.03208-15. PubMed DOI PMC
Gawryluk R.M.R., del Campo J., Okamoto N., Strassert J.F.H., Lukeš J., Richards T.A., Worden A.Z., Santoro A.E., Keeling P.J. Morphological identification and single-cell genomics of marine diplonemids. Curr. Biol. 2016;26:3053–3059. doi: 10.1016/j.cub.2016.09.013. PubMed DOI
Wideman J.G., Lax G., Leonard G., Milner D.S., Rodríguez-Martínez R., Simpson A.G.B., Richards T.A. A single-cell genome reveals diplonemid-like ancestry of kinetoplastid mitochondrial gene structure. Philos. Trans. R. Soc. B Biol. Sci. 2019;374:20190100. doi: 10.1098/rstb.2019.0100. PubMed DOI PMC