A Uniquely Complex Mitochondrial Proteome from Euglena gracilis

. 2020 Aug 01 ; 37 (8) : 2173-2191.

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid32159766

Grantová podpora
Wellcome Trust - United Kingdom
204697/Z/16/Z Wellcome Trust - United Kingdom

Euglena gracilis is a metabolically flexible, photosynthetic, and adaptable free-living protist of considerable environmental importance and biotechnological value. By label-free liquid chromatography tandem mass spectrometry, a total of 1,786 proteins were identified from the E. gracilis purified mitochondria, representing one of the largest mitochondrial proteomes so far described. Despite this apparent complexity, protein machinery responsible for the extensive RNA editing, splicing, and processing in the sister clades diplonemids and kinetoplastids is absent. This strongly suggests that the complex mechanisms of mitochondrial gene expression in diplonemids and kinetoplastids occurred late in euglenozoan evolution, arising independently. By contrast, the alternative oxidase pathway and numerous ribosomal subunits presumed to be specific for parasitic trypanosomes are present in E. gracilis. We investigated the evolution of unexplored protein families, including import complexes, cristae formation proteins, and translation termination factors, as well as canonical and unique metabolic pathways. We additionally compare this mitoproteome with the transcriptome of Eutreptiella gymnastica, illuminating conserved features of Euglenida mitochondria as well as those exclusive to E. gracilis. This is the first mitochondrial proteome of a free-living protist from the Excavata and one of few available for protists as a whole. This study alters our views of the evolution of the mitochondrion and indicates early emergence of complexity within euglenozoan mitochondria, independent of parasitism.

Zobrazit více v PubMed

Adl SM, Bass D, Lane CE, Lukeš J, Schoch CL, Smirnov A, Agatha S, Berney C, Brown MW, Burki F, et al. 2019. Revisions to the classification, nomenclature, and diversity of eukaryotes. J Eukaryot Microbiol. 66(1):4–119. PubMed PMC

Ali V, Nozaki T.. 2013. Iron-sulphur clusters, their biosynthesis, and biological functions in protozoan parasites. Adv Parasitol. 83:1–92. PubMed

Allen JWA, Ferguson SJ, Ginger ML.. 2008. Distinctive biochemistry in the trypanosome mitochondrial intermembrane space suggests a model for stepwise evolution of the MIA pathway for import of cysteine-rich proteins. FEBS Lett. 582(19):2817–2825. PubMed

Andreeßen C, Gerlt V, Steinbüchel A.. 2017. Conversion of cysteine to 3-mercaptopyruvic acid by bacterial aminotransferases. Enzyme Microb Technol. 99:38–48. PubMed

Aslett M, Aurrecoechea C, Berriman M, Brestelli J, Brunk BP, Carrington M, Depledge DP, Fischer S, Gajria B, Gao X, et al. 2010. TriTrypDB: a functional genomic resource for the Trypanosomatidae. Nucleic Acids Res. 38(Suppl 1):D457–D462. PubMed PMC

Atteia A, Adrait A, Brugière S, Tardif M, van Lis R, Deusch O, Dagan T, Kuhn L, Gontero B, Martin W, et al. 2009. A proteomic survey of Chlamydomonas reinhardtii mitochondria sheds new light on the metabolic plasticity of the organelle and on the nature of the alpha-proteobacterial mitochondrial ancestor. Mol Biol Evol. 26(7):1533–1548. PubMed

Ba ANN, Pogoutse A, Provart N, Moses AM.. 2009. NLStradamus: a simple Hidden Markov Model for nuclear localization signal prediction. BMC Bioinformatics 10:202. PubMed PMC

Benz C, Kovářová J, Králová-Hromadová I, Pierik AJ, Lukeš J.. 2016. Roles of the Nfu Fe-S targeting factors in the trypanosome mitochondrion. Int J Parasitol. 46(10):641–651. PubMed

Boussau B, Karlberg EO, Frank AC, Legault BA, Andersson S.. 2004. Computational inference of scenarios for alpha-proteobacterial genome evolution. Proc Natl Acad Sci U S A. 101(26):9722–9727. PubMed PMC

Braymer JJ, Lill R.. 2017. Iron-sulfur cluster biogenesis and trafficking in mitochondria. J Biol Chem. 292(31):12754–12763. PubMed PMC

Bridwell-Rabb J, Fox NG, Tsai CL, Winn AM, Barondeau DP.. 2014. Human frataxin activates Fe-S cluster biosynthesis by facilitating sulfur transfer chemistry. Biochemistry 53(30):4904–4913. PubMed PMC

Burbaum JJ, Schimmel P.. 1991. Structural relationships and the classification of aminoacyl-transfer RNA-synthetases. J Biol Chem. 266(26):16965–16968. PubMed

Calvo SE, Clauser KR, Mootha VK.. 2016. MitoCarta2.0: an updated inventory of mammalian mitochondrial proteins. Nucleic Acids Res. 44(D1):D1251–D1257. PubMed PMC

Carrie C, Small I.. 2013. A reevaluation of dual-targeting of proteins to mitochondria and chloroplasts. Biochim Biophys Acta Mol Cell Res. 1833(2):253–259. PubMed

Casaletti L, Lima PS, Oliveira LN, Borges CL, Báo SN, Bailão AM, Soares C.. 2017. Analysis of Paracoccidioides lutzii mitochondria: a proteomic approach. Yeast 34(4):179–188. PubMed

Chang JH, Tong L.. 2012. Mitochondrial poly(A) polymerase and polyadenylation. Biochim Biophys Acta Gene Regul Mech. 1819(9–10):992–997. PubMed PMC

Chang JS, Van Remmen H, Cornell J, Richardson A, Ward WF.. 2003. Comparative proteomics: characterization of a two-dimensional gel electrophoresis system to study the effect of aging on mitochondrial proteins. Mech Ageing Dev. 124(1):33–41. PubMed

Changmai P, Horáková E, Long S, Černotíková-Stříbrná E, McDonald LM, Bontempi EJ, Lukeš J.. 2013. Both human ferredoxins equally efficiently rescue ferredoxin deficiency in Trypanosoma brucei. Mol Microbiol. 89(1):135–151. PubMed

Chaudhuri M, Ott RD, Hill GC.. 2006. Trypanosome alternative oxidase: from molecule to function. Trends Parasitol. 22(10):484–491. PubMed

Combet C, Blanchet C, Geourjon C, Deléage G.. 2000. NPS@: Network Protein Sequence Analysis. Trends Biochem Sci. 25(3):147–150. PubMed

Cox J, Mann M.. 2008. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol. 26(12):1367–1372. PubMed

de Duve C. 1988. Transfer RNAs: the second genetic code. Nature 333(6169):117–118. PubMed

Desmond E, Brochier-Armanet C, Forterre P, Gribaldo S.. 2011. On the last common ancestor and early evolution of eukaryotes: reconstructing the history of mitochondrial ribosomes. Res Microbiol. 162(1):53–70. PubMed

Desy S, Schneider A, Mani J.. 2012. Trypanosoma brucei has a canonical mitochondrial processing peptidase. Mol Biochem Parasitol. 185(2):161–164. PubMed

Dobáková E, Flegontov P, Skalický T, Lukeš J.. 2015. Unexpectedly streamlined mitochondrial genome of the euglenozoan Euglena gracilis. Genome Biol Evol. 7(12):3358–3367. PubMed PMC

Dolan SK, Welch M.. 2018. The glyoxylate shunt, 60 years on In: Gottesman S, editor. Annual review of microbiology. Vol. 72 Palo Alto (CA: ): Annual Reviews; p. 309–330. PubMed

Ebenezer TE, Carrington M, Lebert M, Kelly S, Field MC.. 2017. Euglena gracilis genome and transcriptome: organelles, nuclear genome assembly strategies and initial features In: Schwartzbach S, Shigeoka S, editors. Euglena: biochemistry, cell and molecular biology. Vol. 979. Cham (Switzerland): Springer. p. 125–140. PubMed

Ebenezer TE, Zoltner M, Burrell A, Nenarokova A, Novák Vanclová AMG, Prasad B, Soukal P, Santana-Molina C, O’Neill E, Nankissoor NN, et al. 2019. Transcriptome, proteome and draft genome of Euglena gracilis. BMC Biol. 17(1):11. PubMed PMC

Eckers E, Cyrklaff M, Simpson L, Deponte M.. 2012. Mitochondrial protein import pathways are functionally conserved among eukaryotes despite compositional diversity of the import machineries. Biol Chem. 393(6):513–524. PubMed

Eddy SR. 2009. A new generation of homology search tools based on probabilistic inference. Genome Inform. 23(1):205–211. PubMed

El-Gebali S, Mistry J, Bateman A, Eddy SR, Luciani A, Potter SC, Qureshi M, Richardson LJ, Salazar GA, Smart A, et al. 2019. The Pfam protein families database in 2019. Nucleic Acids Res. 47(D1):D427–D432. PubMed PMC

Emanuelsson O, Brunak S, von Heijne G, Nielsen H.. 2007. Locating proteins in the cell using TargetP, SignalP and related tools. Nat Protoc. 2(4):953–971. PubMed

Emanuelsson O, Nielsen H, Brunak S, von Heijne G.. 2000. Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol. 300(4):1005–1016. PubMed

Emms DM, Kelly S.. 2015. OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biol. 16(1):157. PubMed PMC

Faktorová D, Valach M, Kaur B, Burger G, Lukeš J.. 2018. Mitochondrial RNA editing and processing in diplonemid protists In: Cruz-Reyes J, Gray M, editors. RNA metabolism in mitochondria. Vol. 34. Cham (Switzerland): Springer. p. 145–176.

Fang J, Beattie DS.. 2003. Alternative oxidase present in procyclic Trypanosoma brucei may act to lower the mitochondrial production of superoxide. Arch Biochem Biophys. 414(2):294–302. PubMed

Faou P, Hoogenraad NJ.. 2012. Tom34: a cytosolic cochaperone of the Hsp90/Hsp70 protein complex involved in mitochondrial protein import. Biochim Biophys Acta Mol Cell Res. 1823(2):348–357. PubMed

Flegontov P, Gray MW, Burger G, Lukeš J.. 2011. Gene fragmentation: a key to mitochondrial genome evolution in Euglenozoa? Curr Genet. 57(4):225–232. PubMed

Flegontova O, Flegontov P, Malviya S, Audic S, Wincker P, de Vargas C, Bowler C, Lukeš J, Horák A.. 2016. Extreme diversity of diplonemid eukaryotes in the ocean. Curr Biol. 26(22):3060–3065. PubMed

Fraga H, Papaleo E, Vega S, Velazquez-Campoy A, Ventura S.. 2013. Zinc induced folding is essential for TIM15 activity as an mtHsp70 chaperone. Biochim Biophys Acta Gen Subj. 1830(1):2139–2149. PubMed

Francklyn C, Perona JJ, Puetz J, Hou YM.. 2002. Aminoacyl-tRNA synthetases: versatile players in the changing theater of translation. RNA 8(11):1363–1372. PubMed PMC

Fukasawa Y, Oda T, Tomii K, Imai K.. 2017. Origin and evolutionary alteration of the mitochondrial import system in eukaryotic lineages. Mol Biol Evol. 34(7):1574–1586. PubMed PMC

Fukasawa Y, Tsuji J, Fu SC, Tomii K, Horton P, Imai K.. 2015. MitoFates: improved prediction of mitochondrial targeting sequences and their cleavage sites. Mol Cell Proteomics 14(4):1113–1126. PubMed PMC

Gakh E, Cavadini P, Isaya G.. 2002. Mitochondrial processing peptidases. Biochim Biophys Acta Mol Cell Res. 1592(1):63–77. PubMed

Gawryluk RMR, Chisholm KA, Pinto DM, Gray MW.. 2014. Compositional complexity of the mitochondrial proteome of a unicellular eukaryote (Acanthamoeba castellanii, supergroup Amoebozoa) rivals that of animals, fungi, and plants. J Proteomics 109:400–416. PubMed

Gawryluk RMR, Gray MW.. 2010. An ancient fission of mitochondrial cox1. Mol Biol Evol. 27(1):7–10. PubMed

Gawryluk RMR, Gray MW.. 2019. A split and rearranged nuclear gene encoding the iron-sulfur subunit of mitochondrial succinate dehydrogenase in Euglenozoa. 2:16. PubMed PMC

Gibson W. 2017. Kinetoplastea. Handbook of protists. Cham (Switzerland): Springer International Publishing; p. 1089–1138.

Gonczarowska-Jorge H, Zahedi RP, Sickmann A.. 2017. The proteome of baker’s yeast mitochondria. Mitochondrion 33:15–21. PubMed

Gray MW. 2015. Mosaic nature of the mitochondrial proteome: implications for the origin and evolution of mitochondria. Proc Natl Acad Sci U S A. 112(33):10133–10138. PubMed PMC

Green LS, Li YZ, Emerich DW, Bergersen FJ, Day DA.. 2000. Catabolism of alpha-ketoglutarate by a sucA mutant of Bradyrhizobium japonicum: evidence for an alternative tricarboxylic acid cycle. J Bacteriol. 182(10):2838–2844. PubMed PMC

Guda C, Guda P, Fahy E, Subramaniam S.. 2004. MITOPRED: a web server for the prediction of mitochondrial proteins. Nucleic Acids Res. 32(Web Server):W372–W374. PubMed PMC

Harsman A, Oeljeklaus S, Wenger C, Huot JL, Warscheid B, Schneider A.. 2016. The non-canonical mitochondrial inner membrane presequence translocase of trypanosomatids contains two essential rhomboid-like proteins. Nat Commun. 7(1):12. PubMed PMC

Heazlewood JL, Howell KA, Whelan J, Millar AH.. 2003. Towards an analysis of the rice mitochondrial proteome. Plant Physiol. 132(1):230–242. PubMed PMC

Heazlewood JL, Tonti-Filippini JS, Gout AM, Day DA, Whelan J, Millar AH.. 2004. Experimental analysis of the Arabidopsis mitochondrial proteome highlights signaling and regulatory components, provides assessment of targeting prediction programs, and indicates plant-specific mitochondrial proteins. Plant Cell 16(1):241–256. PubMed PMC

Hochholdinger F, Guo L, Schnable PS.. 2004. Cytoplasmic regulation of the accumulation of nuclear-encoded proteins in the mitochondrial proteome of maize. Plant J. 37(2):199–208. PubMed

Hoffmeister M, Piotrowski M, Nowitzki U, Martin W.. 2005. Mitochondrial trans-2-enoyl-CoA reductase of wax ester fermentation from Euglena gracilis defines a new family of enzymes involved in lipid synthesis. J Biol Chem. 280(6):4329–4338. PubMed

Hoffmeister M, van der Klei A, Rotte C, van Grinsven KWA, van Hellemond JJ, Henze K, Tielens AGM, Martin W.. 2004. Euglena gracilis rhodoquinone: ubiquinone ratio and mitochondrial proteome differ under aerobic and anaerobic conditions. J Biol Chem. 279(21):22422–22429. PubMed

Horváth A, Berry EA, Maslov DA.. 2000. Translation of the edited mRNA for cytochrome b in trypanosome mitochondria. Science 287(5458):1639–1640. PubMed

Huang S, Taylor NL, Narsai R, Eubel H, Whelan J, Millar AH.. 2009. Experimental analysis of the rice mitochondrial proteome, its biogenesis, and heterogeneity. Plant Physiol. 149(2):719–734. PubMed PMC

Inui H, Ishikawa T, Tamoi M.. 2017. Wax ester fermentation and its application for biofuel production In: Schwartzbach S, Shigeoka S, editors. Euglena: biochemistry, cell and molecular biology. Vol. 979. Cham (Switzerland): Springer. p. 269–283. PubMed

Inwongwan S, Kruger NJ, Ratcliffe RG, O’Neill EC.. 2019. Euglena central metabolic pathways and their subcellular locations. Metabolites 9(6):115. PubMed PMC

Jedelský PL, Doležal P, Rada P, Pyrih J, Smid O, Hrdý I, Sedinová M, Marčinciková M, Voleman L, Perry AJ, et al. 2011. The minimal proteome in the reduced mitochondrion of the parasitic protist Giardia intestinalis. PLoS One 6(2):e17285. PubMed PMC

Kanehisa M. 2017. Enzyme annotation and metabolic reconstruction using KEGG In: Kihara D, editor. Protein function prediction: methods and protocols. Vol. 1611. New York: Humana Press. p. 135–145. PubMed

Kanehisa M, Sato Y, Morishima K.. 2016. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J Mol Biol. 428(4):726–731. PubMed

Karnkowska A, Vacek V, Zubáčová Z, Treitli SC, Petrželková R, Eme L, Novák L, Žárský V, Barlow LD, Herman EK, et al. 2016. A eukaryote without a mitochondrial organelle. Curr Biol. 26(10):1274–1284. PubMed

Kaur B, Záhonová K, Valach M, Faktorová D, Prokopchuk G, Burger G, Lukeś J.. 2020. Gene fragmentation and RNA editing without borders: eccentric mitochondrial genomes of diplonemids. Nucleic Acids Res. 48(5):2694–2708. PubMed PMC

Kaurov I, Vancová M, Schimanski B, Cadena LR, Heller J, Bílý T, Potěšil D, Eichenberger C, Bruce H, Oeljeklaus S, et al. 2018. The diverged trypanosome MICOS complex as a hub for mitochondrial cristae shaping and protein import. Curr Biol. 28(21):3393–3407.e5. PubMed

Kim M, Lee U, Small I, des Francs-Small CC, Vierling E.. 2012. Mutations in an Arabidopsis mitochondrial transcription termination factor-related protein enhance thermotolerance in the absence of the major molecular chaperone HSP101. Plant Cell 24(8):3349–3365. PubMed PMC

Kleine T, Leister D.. 2015. Emerging functions of mammalian and plant mTERFs. Biochim Biophys Acta Bioenerg. 1847(9):786–797. PubMed

Kosugi S, Hasebe M, Tomita M, Yanagawa H.. 2009. Systematic identification of cell cycle-dependent yeast nucleocytoplasmic shuttling proteins by prediction of composite motifs. Proc Natl Acad Sci U S A. 106(25):10171–10176. PubMed PMC

Kozjak-Pavlovic V. 2017. The MICOS complex of human mitochondria. Cell Tissue Res. 367(1):83–93. PubMed

Krajčovič J, Vesteg M, Schwartzbach SD.. 2015. Euglenoid flagellates: a multifaceted biotechnology platform. J Biotechnol. 202:135–145. PubMed

Kroph A, Rapacki K.. 2013. TMHMM Server v. 2.00 prediction of transmembrane helices in proteins [Internet]. Available from: http://www.cbs.dtu.dk/services/TMHMM-2.0/. Accessed July 15, 2019.

Kumar S, Stecher G, Li M, Knyaz C, Tamura K.. 2018. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol Biol Evol. 35(6):1547–1549. PubMed PMC

Lane N, Martin W.. 2010. The energetics of genome complexity. Nature 467(7318):929–934. PubMed

Leander BS, Lax G, Karnkowska A, Simpson AGB.. 2017. Euglenida In: Archibald JM, Simpson AGB, Slamovits CH, editors. Handbook of the protists. Cham (Switzerland: ): Springer International Publishing; p. 1047–1088.

Lee CP, Taylor NL, Millar AH.. 2013. Recent advances in the composition and heterogeneity of the Arabidopsis mitochondrial proteome. Front Plant Sci. 4:8. PubMed PMC

Léon S, Touraine B, Ribot C, Briat J-F, Lobéraux S.. 2003. Iron-sulphur cluster assembly in plants: distinct NFU proteins in mitochondria and plastids from Arabidopsis thaliana. Biochem J. 371(3):823–830. PubMed PMC

Li J, Cai T, Wu P, Cui Z, Chen X, Hou J, Xie Z, Xue P, Shi L, Liu P, et al. 2009. Proteomic analysis of mitochondria from Caenorhabditis elegans. Proteomics 9(19):4539–4553. PubMed

Lill R. 2009. Function and biogenesis of iron-sulphur proteins. Nature 460(7257):831–838. PubMed

Lin JR, Hu JJ.. 2013. SeqNLS: Nuclear Localization Signal prediction based on frequent pattern mining and linear motif scoring. PLoS One 8(10):e76864. PubMed PMC

Lukeš J, Archibald JM, Keeling PJ, Doolittle WF, Gray MW.. 2011. How a neutral evolutionary ratchet can build cellular complexity. IUBMB Life 63(7):528–537. PubMed

Lukeš J, Basu S.. 2015. Fe/S protein biogenesis in trypanosomes—a review. Biochim Biophys Acta Mol Cell Res. 1853(6):1481–1492. PubMed

Maio N, Singh A, Uhrigshardt H, Saxena N, Tong WH, Rouault TA.. 2014. Cochaperone binding to LYR motifs confers specificity of iron sulfur cluster delivery. Cell Metab. 19(3):445–457. PubMed PMC

Mani J, Meisinger C, Schneider A.. 2016. Peeping at TOMs-diverse entry gates to mitochondria provide insights into the evolution of eukaryotes. Mol Biol Evol. 33(2):337–351. PubMed

Martin J. 1997. Molecular chaperones and mitochondrial protein folding. J Bioenerg Biomembr. 29(1):35–43. PubMed

McShea DW, Hordijk W.. 2013. Complexity by subtraction. Evol Biol. 40(4):504–520.

Mi-ichi F, Yousuf MA, Nakada-Tsukui K, Nozaki T.. 2009. Mitosomes in Entamoeba histolytica contain a sulfate activation pathway. Proc Natl Acad Sci U S A. 106(51):21731–21736. PubMed PMC

Millar AH, Heazlewood JL, Kristensen BK, Braun HP, Moller IM.. 2005. The plant mitochondrial proteome. Trends Plant Sci. 10(1):36–43. PubMed

Miranda-Astudillo HV, Yadav KNS, Colina-Tenorio L, Bouillenne F, Degand H, Morsomme P, Boekema EJ, Cardol P.. 2018. The atypical subunit composition of respiratory complexes I and IV is associated with original extra structural domains in Euglena gracilis. Sci Rep. 8(1):9698. PubMed PMC

Mitchell AL, Attwood TK, Babbitt PC, Blum M, Bork P, Bridge A, Brown SD, Chang H-Y, El-Gebali S, Fraser MI, et al. 2019. InterPro in 2019: improving coverage, classification and access to protein sequence annotations. Nucleic Acids Res. 47(D1):D351–D360. PubMed PMC

Mokranjac D, Neupert W.. 2009. Thirty years of protein translocation into mitochondria: unexpectedly complex and still puzzling. Biochim Biophys Acta Mol Cell Res. 1793(1):33–41. PubMed

Mueller SJ, Lang D, Hoernstein SNW, Lang EGE, Schuessele C, Schmidt A, Fluck M, Leisibach D, Niegl C, Zimmer AD, et al. 2014. Quantitative analysis of the mitochondrial and plastid proteomes of the moss Physcomitrella patens reveals protein macrocompartmentation and microcompartmentation. Plant Physiol. 164(4):2081–2095. PubMed PMC

Müller M, Mentel M, van Hellemond JJ, Henze K, Woehle C, Gould SB, Yu RY, van der Giezen M, Tielens AGM, Martin WF.. 2012. Biochemistry and evolution of anaerobic energy metabolism in eukaryotes. Microbiol Mol Biol Rev. 76(2):444–495. PubMed PMC

Nakazawa M, Nishimura M, Inoue K, Ueda M, Inui H, Nakano Y, Miyatake K.. 2011. Characterization of a bifunctional glyoxylate cycle enzyme, malate synthase/isocitrate lyase, of Euglena gracilis. J Eukaryotic Microbiol. 58(2):128–133. PubMed

Nogales J, Gudmundsson S, Knight EM, Palsson BO, Thiele I.. 2012. Detailing the optimality of photosynthesis in cyanobacteria through systems biology analysis. Proc Natl Acad Sci U S A. 109(7):2678–2683. PubMed PMC

Novák Vanclová AMG, Zoltner M, Kelly S, Soukal P, Záhonová K, Füssy Z, Ebenezer TE, Lacová Dobáková E, Eliáš M, Lukeš J, et al. 2020. Metabolic quirks and the colourful history of the Euglena gracilis secondary plastid. New Phytol. 225(4):1578–1592. PubMed

Ollagnier-de-Choudens S, Mattioli T, Takahashi Y, Fontecave M.. 2001. Iron-sulfur cluster assembly—characterization of IscA and evidence for a specific and functional complex with ferredoxin. J Biol Chem. 276(25):22604–22607. PubMed

O’Neill EC, Trick M, Hill L, Rejzek M, Dusi RG, Hamilton CJ, Zimba PV, Henrissat B, Field RA.. 2015. The transcriptome of Euglena gracilis reveals unexpected metabolic capabilities for carbohydrate and natural product biochemistry. Mol Biosyst. 11(10):2808–2820. PubMed

Panigrahi AK, Ogata Y, Zíková A, Anupama A, Dalley RA, Acestor N, Myler PJ, Stuart KD.. 2009. A comprehensive analysis of Trypanosoma brucei mitochondrial proteome. Proteomics 9(2):434–450. PubMed PMC

Patron NJ, Durnford DG, Kopriva S.. 2008. Sulfate assimilation in eukaryotes: fusions, relocations and lateral transfers. BMC Evol Biol. 8(1):39. PubMed PMC

Peikert CD, Mani J, Morgenstern M, Käser S, Knapp B, Wenger C, Harsman A, Oeljeklaus S, Schneider A, Warscheid B.. 2017. Charting organellar importomes by quantitative mass spectrometry. Nat Commun. 8(1):15272. PubMed PMC

Peña-Diaz P, Lukeš J.. 2018. Fe-S cluster assembly in the supergroup Excavata. J Biol Inorg Chem. 23(4):521–541. PubMed PMC

Perez E, Lapaille M, Degand H, Cilibrasi L, Villavicencio-Queijeiro A, Morsomme P, González-Halphen D, Field MC, Remacle C, Baurain D, et al. 2014. The mitochondrial respiratory chain of the secondary green alga Euglena gracilis shares many additional subunits with parasitic Trypanosomatidae. Mitochondrion 19:338–349. PubMed

Petrov AS, Wood EC, Bernier CR, Norris AM, Brown A, Amunts A.. 2019. Structural patching fosters divergence of mitochondrial ribosomes. Mol Biol Evol. 36(2):207–219. PubMed PMC

Quesada V. 2016. The roles of mitochondrial transcription termination factors (MTERFs) in plants. Physiol Plant. 157(3):389–399. PubMed

Ramrath DJF, Niemann M, Leibundgut M, Bieri P, Prange C, Horn EK, Leitner A, Boehringer D, Schneider A, Ban N.. 2018. Evolutionary shift toward protein-based architecture in trypanosomal mitochondrial ribosomes. Science 362(6413):eaau7735. PubMed

Read LK, Lukeš J, Hashimi H.. 2016. Trypanosome RNA editing: the complexity of getting U in and taking U out. WIREs RNA 7(1):33–51. PubMed PMC

Roberti M, Polosa PL, Bruni F, Manzari C, Deceglie S, Gadaleta MN, Cantatore P.. 2009. The MTERF family proteins: mitochondrial transcription regulators and beyond. Biochim Biophys Acta Bioenerg. 1787(5):303–311. PubMed

Robles P, Navarro-Cartagena S, Ferrández-Ayela A, Núñez-Delegido E, Quesada V.. 2018. The characterization of Arabidopsis mterf6 mutants reveals a new role for mTERF6 in tolerance to abiotic stress. IJMS 19(8):2388. PubMed PMC

Roger AJ, Muñoz-Gómez SA, Kamikawa R.. 2017. The origin and diversification of mitochondria. Curr Biol. 27(21):R1177–R1192. PubMed

Rotte C, Stejskal F, Zhu G, Keithly JS, Martin W.. 2001. Pyruvate: NADP(+) oxidoreductase from the mitochondrion of Euglena gracilis and from the apicomplexan Cryptosporidium parvum: a biochemical relic linking pyruvate metabolism in mitochondriate and amitochondriate protists. Mol Biol Evol. 18(5):710–720. PubMed

Saidha T, Na SQ, Li JY, Schiff JA.. 1988. A sulfate metabolizing center in Euglena mitochondria. Biochem J. 253(2):533–539. PubMed PMC

Salvato F, Havelund JF, Chen MJ, Rao RSP, Rogowska-Wrzesinska A, Jensen ON, Gang DR, Thelen JJ, Moller IM.. 2014. The potato tuber mitochondrial proteome. Plant Physiol. 164(2):637–653. PubMed PMC

Santos HJ, Makiuchi T, Nozaki T.. 2018. Reinventing an organelle: the reduced mitochondrion in parasitic protists. Trends Parasitol. 34(12):1038–1055. PubMed

Schneider AP. 2018. Mitochondrial protein import in trypanosomatids: variations on a theme or fundamentally different? Plos Pathog. 14(11):e1007351. PubMed PMC

Schneider RE, Brown MT, Shiflett AM, Dyall SD, Hayes RD, Xie YM, Loo JA, Johnson PJ.. 2011. The Trichomonas vaginalis hydrogenosome proteome is highly reduced relative to mitochondria, yet complex compared with mitosomes. Int J Parasitol. 41(13–14):1421–1434. PubMed PMC

Schön A, Kannangara CG, Cough S, SÖll D.. 1988. Protein biosynthesis in organelles requires misaminoacylation of tRNA. Nature 331(6152):187–190. PubMed

Schönfeld C, Wobbe L, Borgstadt R, Kienast A, Nixon PJ, Kruse O.. 2004. The nucleus-encoded protein MOC1 is essential for mitochondrial light acclimation in Chlamydomonas reinhardtii. J Biol Chem. 279(48):50366–50374. PubMed

Sharma S, Singha UK, Chaudhuri M.. 2010. Role of Tob55 on mitochondrial protein biogenesis in Trypanosoma brucei. Mol Biochem Parasitol. 174(2):89–100. PubMed PMC

Sheftel AD, Wilbrecht C, Stehling O, Niggemeyer B, Elsässer HP, Mühlenhoff U, Lill R.. 2012. The human mitochondrial ISCA1, ISCA2, and IBA57 proteins are required for [4Fe-4S] protein maturation. Mol Biol Cell 23(7):1157–1166. PubMed PMC

Sickmann A, Reinders J, Wagner Y, Joppich C, Zahedi R, Meyer HE, Schonfisch B, Perschil I, Chacinska A, Guiard B, et al. 2003. The proteome of Saccharomyces cerevisiae mitochondria. Proc Natl Acad Sci U S A. 100(23):13207–13212. PubMed PMC

Škodová-Sveráková I, Horváth A, Maslov DA.. 2015. Identification of the mitochondrially encoded subunit 6 of F-1 F-0 ATPase in Trypanosoma brucei. Mol Biochem Parasitol. 201(2):135–138. PubMed PMC

Smith DGS, Gawryluk RMR, Spencer DF, Pearlman RE, Siu KWM, Gray MW.. 2007. Exploring the mitochondrial proteome of the ciliate protozoon Tetrahymena thermophila: direct analysis by tandem mass spectrometry. J Mol Biol. 374(3):837–863. PubMed

Stoltzfus A. 1999. On the possibility of constructive neutral evolution. J Mol Evol. 49(2):169–181. PubMed

Taylor SW, Fahy E, Zhang B, Glenn GM, Warnock DE, Wiley S, Murphy AN, Gaucher SP, Capaldi RA, Gibson BW, et al. 2003. Characterization of the human heart mitochondrial proteome. Nat Biotechnol. 21(3):281–286. PubMed

Tyanova S, Temu T, Sinitcyn P, Carlson A, Hein MY, Geiger T, Mann M, Cox J.. 2016. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat Methods. 13(9):731–740. PubMed

Valach M, Moreira S, Hoffmann S, Stadler PF, Burger G.. 2017. Keeping it complicated: mitochondrial genome plasticity across diplonemids. Sci Rep. 7(1):14166 PubMed PMC

Verner Z, Basu S, Benz C, Dixit S, Dobáková E, Faktorová D, Hashimi H, Horáková E, Huang ZQ, Paris Z, et al. 2015. Malleable mitochondrion of Trypanosoma brucei. Int Rev Cell Mol Biol. 315:73–151. PubMed

Vesteg M, Hadariová L, Horváth A, Estraño CE, Schwartzbach SD, Krajčovič J.. 2019. Comparative molecular cell biology of phototrophic euglenids and parasitic trypanosomatids sheds light on the ancestor of Euglenozoa. Biol Rev. 94(5):1701–1721. PubMed

Vizcaíno JA, Csordas A, del-Toro N, Dianes JA, Griss J, Lavidas I, Mayer G, Perez-Riverol Y, Reisinger F, Ternent T, et al. 2016. 2016 update of the PRIDE database and its related tools. Nucleic Acids Res. 44(D1):D447–D456. PubMed PMC

Werhahn W, Braun HP.. 2002. Biochemical dissection of the mitochondrial proteome from Arabidopsis thaliana by three-dimensional gel electrophoresis. Electrophoresis 23(4):640–646. PubMed

Wiedemann N, Frazier AE, Pfanner N.. 2004. The protein import machinery of mitochondria. J Biol Chem. 279(15):14473–14476. PubMed

Wredenberg A, Lagouge M, Bratic A, Metodiev MD, Spåhr H, Mourier A, Freyer C, Ruzzenente B, Tain L, Grönke S, et al. 2013. MTERF3 regulates mitochondrial ribosome biogenesis in invertebrates and mammals. PLoS Genet. 9(1):e1003178. PubMed PMC

Yoshida Y, Tomiyama T, Maruta T, Tomita M, Ishikawa T, Arakawa K.. 2016. De novo assembly and comparative transcriptome analysis of Euglena gracilis in response to anaerobic conditions. BMC Genomics. 17(1):182. PubMed PMC

Záhonová K, Füssy Z, Birčák E, Novák Vanclova AMG, Klimeš V, Vesteg M, Krajčovič J, Oborník M, Eliáš M.. 2018. Peculiar features of the plastids of the colourless alga Euglena longa and photosynthetic euglenophytes unveiled by transcriptome analyses. Sci Rep. 8(1):17012. PubMed PMC

Zakryś B, Milanowski R, Karnkowska A.. 2017. Evolutionary origin of Euglena In: Schwartzbach SD, Shigeoka S, editors. Euglena: biochemistry, cell and molecular biology. Cham (Switzerland: ): Springer; p. 3–17. PubMed

Zhang SY, Qian X, Chang SN, Dismukes GC, Bryant DA.. 2016. Natural and synthetic variants of the tricarboxylic acid cycle in cyanobacteria: introduction of the GABA shunt into Synechococcus sp. PCC 7002. Front Microbiol. 7:1972. PubMed PMC

Zíková A, Panigrahi AK, Dalley RA, Acestor N, Anupama A, Ogata Y, Myler PJ, Stuart K.. 2008. Trypanosoma brucei mitochondrial ribosomes. Mol Cell Proteomics 7(7):1286–1296. PubMed PMC

Zimorski V, Rauch C, van Hellemond JJ, Tielens AGM, Martin WF.. 2017. The mitochondrion of Euglena gracilis In: Schwartzbach SD, Shigeoka S, editors. Euglena: biochemistry, cell and molecular biology. Cham (Switzerland: ): Springer; p. 19–37.

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace