Comparative molecular cell biology of phototrophic euglenids and parasitic trypanosomatids sheds light on the ancestor of Euglenozoa
Language English Country England, Great Britain Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't, Review
PubMed
31095885
DOI
10.1111/brv.12523
Knihovny.cz E-resources
- Keywords
- Euglena, Excavata, Leishmania, RNA editing, SL-RNA trans-splicing, Trypanosoma, bodonids, diplonemids, kinetoplastids,
- MeSH
- Biological Evolution * MeSH
- DNA-Directed RNA Polymerases genetics metabolism MeSH
- Euglenida classification genetics MeSH
- Euglenozoa classification genetics MeSH
- Phototrophic Processes MeSH
- Phylogeny MeSH
- Genome physiology MeSH
- Introns physiology MeSH
- Mitochondria genetics MeSH
- Molecular Biology * MeSH
- RNA Interference MeSH
- RNA, Ribosomal, 28S genetics MeSH
- Trypanosomatina classification enzymology genetics MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
- Names of Substances
- DNA-Directed RNA Polymerases MeSH
- RNA, Ribosomal, 28S MeSH
Parasitic trypanosomatids and phototrophic euglenids are among the most extensively studied euglenozoans. The phototrophic euglenid lineage arose relatively recently through secondary endosymbiosis between a phagotrophic euglenid and a prasinophyte green alga that evolved into the euglenid secondary chloroplast. The parasitic trypanosomatids (i.e. Trypanosoma spp. and Leishmania spp.) and the freshwater phototrophic euglenids (i.e. Euglena gracilis) are the most evolutionary distant lineages in the Euglenozoa phylogenetic tree. The molecular and cell biological traits they share can thus be considered as ancestral traits originating in the common euglenozoan ancestor. These euglenozoan ancestral traits include common mitochondrial presequence motifs, respiratory chain complexes containing various unique subunits, a unique ATP synthase structure, the absence of mitochondria-encoded transfer RNAs (tRNAs), a nucleus with a centrally positioned nucleolus, closed mitosis without dissolution of the nuclear membrane and nucleoli, a nuclear genome containing the unusual 'J' base (β-D-glucosyl-hydroxymethyluracil), processing of nucleus-encoded precursor messenger RNAs (pre-mRNAs) via spliced-leader RNA (SL-RNA) trans-splicing, post-transcriptional gene silencing by the RNA interference (RNAi) pathway and the absence of transcriptional regulation of nuclear gene expression. Mitochondrial uridine insertion/deletion RNA editing directed by guide RNAs (gRNAs) evolved in the ancestor of the kinetoplastid lineage. The evolutionary origin of other molecular features known to be present only in either kinetoplastids (i.e. polycistronic transcripts, compaction of nuclear genomes) or euglenids (i.e. monocistronic transcripts, huge genomes, many nuclear cis-spliced introns, polyproteins) is unclear.
Department of Biological Sciences University of Memphis Memphis TN 38152 3560 USA
Department of Parasitology Faculty of Science Charles University Prague 128 44 Prague Czech Republic
See more in PubMed
Adl, S. M., Bass, D., Lane, C. E., Lukeš, J., Schoch, C. L., Smirnov, A., Agatha, S., Berney, C., Brown, M. W., Burki, F., Cárdenas, P., Čepička, I., Chistyakova, L., del Capmo, J., Dunthorn, M., et al. (2019). Revisions to the classification, nomenclature and diversity of eukaryotes. Journal of Eukaryotic Microbiology 66, 4-119.
Ahmadinejad, N., Dagan, T. & Martin, W. (2007). Genome history in the symbiotic hybrid Euglena gracilis. Gene 402, 35-39.
Allen, C. A., Jackson, A. P., Rigden, D. J., Willis, A. C., Ferguson, S. J. & Ginger, M. L. (2008). Order within a mosaic distribution of mitochondrial c-type cytochrome biogenesis systems? FEBS Journal 275, 2385-2402.
Aphasizhev, R. & Aphasizheva, I. (2014). Mitochondrial RNA editing in trypanosomes: small RNAs in control. Biochimie 100, 125-131.
Araújo, P. R. & Teixeira, S. M. (2011). Regulatory elements involved in the post-transcriptional control of stage-specific gene expression in Trypanosoma cruzi - a review. Memórias do Instituto Oswaldo Cruz 106, 257-266.
Atayde, V. D., Shi, H., Franklin, J. B., Carriero, N., Notton, T., Lye, L. F., Owens, K., Beverley, S. M., Tschudi, C. & Ullu, E. (2013). The structure and repertoire of small interfering RNAs in Leishmania (Viannia) braziliensis reveal diversification in the trypanosomatid RNAi pathway. Molecular Microbiology 87, 580-593.
Barnes, R. L., Shi, H., Kolev, N. G., Tschudi, C. & Ullu, E. (2012). Comparative genomics reveals two novel RNAi factors in Trypanosoma brucei and provides insight into the core machinery. PLoS Pathogens 8, e1002678.
Beauparlant, M. A. & Drouin, G. (2014). Multiple independent insertions of 5S rRNA genes in the spliced-leader gene family of trypanosome species. Current Genetics 60, 17-24.
Benmerzouga, I., Concepción-Acevedo, J., Kim, H. S., Vandoros, A. V., Cross, G. A., Klingbeil, M. M. & Li, B. (2013). Trypanosoma brucei Orc1 is essential for nuclear DNA replication and affects both VSG silencing and VSG switching. Molecular Microbiology 87, 196-121.
Benz, C., Nilsson, D., Andersson, B., Clayton, C. & Guilbride, D. L. (2005). Messenger RNA processing sites in Trypanosoma brucei. Molecular and Biochemical Parasitology 143, 125-134.
Berriman, M., Ghedin, E., Hertz-Fowler, C., Blandin, G., Renauld, H., Bartolomen, D. C., Lennard, N. J., Caler, E., Hamlin, N. E., Haas, B., Böhme, U., Hannick, L., Aslett, M. A., Shallom, J., Marcello, L., et al. (2005). The genome of the African trypanosome Trypanosoma brucei. Science 309, 416-422.
Berriman, M., Hall, N., Sheader, K., Bringaud, F., Tiwari, B., Isobe, T., Bowman, S., Corton, C., Clark, L., Cross, G. A., Hoek, M., Zanders, T., Berberof, M., Borst, P. & Rudenko, G. (2002). The architecture of variant surface glycoprotein gene expression sites in Trypanosoma brucei. Molecular and Biochemical Parasitology 122, 131-140.
Bonen, L. (1993). Trans-splicing of pre-mRNA in plants, animals, and protists. FASEB Journal 7, 40-46.
Borst, P., van der Ploeg, L. H., van Hoek, J. F., Tas, J. & James, J. (1982). On the DNA content and ploidy of trypanosomes. Molecular and Biochemical Parasitology 6, 13-23.
Breckenridge, D. G., Watanabe, Y.-I., Greenwood, S. J., Gray, M. W. & Schnare, M. N. (1999). U1 small nuclear RNA and spicosomal introns in Euglena gracilis. Proceedings of the National Academy of Sciences of the United States of America 96, 852-856.
Breglia, S. A., Slamovits, C. H. & Leander, B. S. (2007). Phylogeny of phagotrophic euglenids (Euglenozoa) as inferred from hsp90 gene sequences. Journal of Eukaryotic Microbiology 54, 86-92.
Breglia, S. A., Yubuki, N., Hoppenrath, M. & Leander, B. S. (2010). Ultrastructure and molecular phylogenetic position of a novel euglenozoan with extrusive episymbiotic bacteria: Bihospites bacati n. gen. et sp. (Symbiontida). BMC Microbiology 10, 145.
Breglia, S. A., Yubuki, N. & Leander, B. S. (2013). Ultrastructure and molecular phylogenetic position of Heteronema scaphurum: a eukaryovorous euglenid with a cytoproct. Journal of Eukaryotic Microbiology 60, 107-120.
Bringaud, F., Biran, M., Millerioux, Y., Wargnies, M., Allmann, S. & Mazet, M. (2015). Combining reverse genetics and nuclear magnetic resonance-based metabolomics unravels trypanosome-specific metabolic pathways. Molecular Microbiology 96, 917-926.
Bullard, W., da Rosa-Spiegler, J. L., Liu, S., Wang, Y. & Sabatini, R. (2014). Identification of the glucosyltransferase that converts hydroxymethyluracil to Base J in the trypanosomatid genome. The Journal of Biological Chemistry 289, 20273-20282.
Burger, G., Gray, M. W., Forget, L. & Lang, B. F. (2013). Strikingly bacteria-like and gene-rich mitochondrial genomes throughout jakobid protists. Genome Biology and Evolution 5, 418-438.
Burki, F. (2014). The eukaryotic tree of life from a global phylogenomic perspective. Cold Spring Harbor Perspectives in Biology 6, a016147.
Callahan, H., Litaker, R. W. & Noga, E. J. (2002). Molecular taxonomy of the suborder Bodonina (Order Kinetoplastida), including the important fish parasite, Ichthyobodo nacator. Journal of Eukaryotic Microbiology 49, 119-128.
Campbell, D. A., Thomas, S. & Sturm, N. R. (2003). Transcription in kinetoplastid protozoa: why be normal? Microbes and Infection 4, 1231-1240.
Canaday, J., Tessier, L. H., Imbault, P. & Paulus, F. (2001). Analysis of E. gracilis alpha-, beta- and gamma-tubulin genes: introns and pre-mRNA maturation. Molecular Genetics and Genomics 26, 153-160.
Cannons, A. C. & Merrett, M. J. (1984). Regulation of synthesis of citrate synthase in regreening Euglena gracilis. European Journal of Biochemistry 142, 1597-1602.
Cannons, A. C. & Merrett, M. J. (1985). Citrate-synthase mRNA in relation to enzyme synthesis in division-synchronized Euglena cultures. Planta 164, 529-533.
Cavalier-Smith, T. (2002). The phagotrophic origin of eukaryotes and the phylogenetic classification of Protozoa. International Journal of Systematic and Evolutionary Microbiology 52, 297-354.
Cavalier-Smith, T. (2010). Kingdoms Protozoa and Chromista and the eozoan root of the eukaryotic tree. Biological Letters 6, 342-345.
Cavalier-Smith, T. (2016). Higher classification and phylogeny of Euglenozoa. European Journal of Protistology 56, 250-276.
Cavalier-Smith, T. (2018). Kingdom Chromista and its eight phyla: a new synthesis emphasising periplastid protein targeting, cytoskeletal and periplastid evolution, and ancient divergences. Protoplasma 255, 297-357.
Chan, R. L., Keller, M., Canaday, J., Weil, J. H. & Imbault, P. (1990). Eight small subunits of Euglena ribulose 1-5 bisphosphate carboxylase/oxygenase are translated from a large mRNA as a polyprotein. EMBO Journal 9, 333-338.
Chan, Y.-F., Moestrup, Ø. & Chang, J. (2013). On Keelungia pulex nov. gen. et nov. sp., a heterotrophic euglenoid flagellate that lacks pellicular plates (Euglenophyceae, Euglenida). European Journal of Protistology 49, 15-31.
Chikne, V., Doniger, T., Rajan, K. S., Bartok, O., Eliaz, D., Cohen-Chalamish, S., Tschudi, C., Unger, R., Hashem, Y., Kadener, S. & Michaeli, S. (2016). A pseudouridylation switch in rRNA is implicated in ribosome function during the life cycle of Trypanosoma brucei. Scientific Reports 6, 25296.
Clayton, C. E. (2002). Life without transcriptional control? From fly to man and back again. EMBO Journal 21, 1881-1888.
Clayton, C. E. (2014). Networks of gene expression regulation in Trypanosoma brucei. Molecular and Biochemical Parasitology 195, 96-106.
Clayton, C. E. & Shapira, M. (2007). Post-transcriptional regulation of gene expression in trypanosomes and leishmanias. Molecular and Biochemical Parasitology 156, 93-101.
Cliffe, L. J., Kieft, R., Southern, T., Birkeland, S. R., Marshall, M., Sweeney, K. & Sabatini, R. (2009). JBP1 and JBP2 are two distinct thymidine hydroxylases involved in J biosynthesis in genomic DNA of African trypanosomes. Nucleic Acids Research 375, 1452-1462.
Cloutier, S., Laverdière, M., Chou, M.-N., Boilard, N., Chow, C. & Papadopoulou, B. (2012). Translational control through eIF2alpha phosphorylation during the Leishmania differentiation process. PLoS ONE 7, e35085.
Cohen-Freue, G., Holzer, T. R., Forney, J. D. & McMaster, W. R. (2007). Global gene expression in Leishmania. International Journal of Parasitology 37, 1077-1086.
Coleman, L. W., Rosen, B. H. & Schwartzbach, S. D. (1988). Environmental control of carbohydrate and lipid synthesis in Euglena. Plant and Cell Physiology 29, 433-432.
Dang, H. Q. & Li, Z. (2011). The Cdc45/Mcm2-7/GINS complex in trypanosomes regulates DNA replication and interacts with two Orc1-like proteins in the origin recognition complex. The Journal of Biological Chemistry 286, 32424-32435.
De Gaudenzi, J. G., Carmona, S. J., Agüero, F. & Frasch, A. C. (2013). Genome-wide analysis of 3′-untranslated regions supports the existence of post-transcriptional regulons controlling gene expression in trypanosomes. PeerJ 1, e118.
Derelle, R., Momose, T., Manuel, M., Da Silva, C., Wincker, P. & Houliston, E. (2010). Convergent origins and rapid evolution of spliced leader trans-splicing in Metazoa: insights from the Ctenophora and Hydrozoa. RNA 16, 696-707.
Derelle, R., Torruella, G., Klimeš, V., Brinkmann, H., Kim, E., Vlček, Č., Lang, B. F. & Eliáš, M. (2015). Bacterial proteins pinpoint a single eukaryotic root. Proceedings of National Academy of Sciences of United States of America 112, E693-E699.
Deschamps, P., Lara, E., Marande, W., López-García, P., Ekelund, F. & Moreira, D. (2011). Phylogenomic analysis of kinetoplastids supports that trypanosomatids arose from within bodonids. Molecular Biology and Evolution 28, 53-58.
Dickin, S. K. & Gibson, W. C. (1989). Hybridisation with repetitive DNA probe reveals the presence of small chromosomes in Trypanosoma vivax. Molecular and Biochemical Parasitology 33, 135-142.
DiPaolo, C., Kieft, R., Cross, M. & Sabatini, R. (2005). Regulation of trypanosome DNA glycosylation by a SWI2/SNF2-like protein. Molecular Cell 173, 441-451.
Dobáková, E., Flegontov, P., Skalický, T. & Lukeš, J. (2015). Unexpectedly streamlined mitochondrial genome of the euglenozoan Euglena gracilis. Genome Biology and Evolution 7, 3358-3367.
Doležel, D., Jirků, M., Maslov, D. A. & Lukeš, J. (2000). Phylogeny of the bodonid flagellates (Kinetoplastida) based on small-subunit rRNA gene sequences. International Journal of Systematic and Evolutionary Microbiology 50, 1943-1951.
Donelson, J. E. (2003). Antigenic variation and the African trypanosome genome. Acta Tropica 85, 391-404.
Dooijes, D., Chaves, I., Kieft, R. A., Dirks-Mulder, A., Martin, W. & Borst, P. (2000). Base J originally found in Kinetoplastida is also a minor constituent of nuclear DNA of Euglena gracilis. Nucleic Acids Research 28, 3017-3021.
Dos Santos Ferreira, V., Rocchette, I., Conforti, V., Bench, S., Feldman, R. & Levin, M. J. (2007). Gene expression patterns in Euglena gracilis: insight into the cellular response to environmental stress. Gene 389, 136-145.
Douris, V., Telford, M. J. & Averof, M. (2010). Evidence for multiple independent origins of trans-splicing in Metazoa. Molecular Biology and Evolution 27, 684-693.
Durnford, D. G. & Gray, M. W. (2006). Analysis of Euglena gracilis plastid-targeted proteins reveals different classes of transit sequences. Eukaryotic Cell 5, 2079-2091.
Dyková, I., Fiala, I., Lom, J. & Lukeš, J. (2003). Perkinsiella amoebae-like endosymbionts of Neoparamoeba spp., relatives of the kinetoplastid Ichthyobodo. European Journal of Protistology 39, 37-52.
Ebel, C., Frantz, C., Paulus, F. & Imbault, P. (1999). Trans-splicing and cis-splicing in the colourless Euglenoid, Entosiphon sulcatum. Current Genetics 35, 542-550.
Ebenezer, T. E., Carrington, M., Lebert, M., Kelly, S. & Field, M. C. (2017). Euglena gracilis genome and transcriptome: organelles, nuclear genome assembly strategies and initial features. In Euglena: Biochemistry, Cell and Molecular Biology. Advances in Experimental Medicine and Biology (Volume 979, eds S. D. Schwartzbach and S. Shigeoka), pp. 125-140. Springer International Publishing AG, Cham, Switzerland.
Ebenezer, T. E., Zoltner, M., Burrel, A., Nenaroková, A., Novák Vanclová, A. M. G., Prasad, B., Soukal, P., Santana-Molina, C., O‘Neill, E., Nankissoor, N. N., Vadakedath, N., Daiker, V., Obado, S., Silva-Pereira, S., Jackson, A. P., et al. (2019). Transcriptome, proteome and draft genome of Euglena gracilis. BMC Biology 17, 11.
Eckers, E., Cyrklaff, M., Simpson, L. & Deponte, M. (2012). Mitochondrial protein import pathways are functionally conserved among eukaryotes despite compositional diversity of the import machineries. Biological Chemistry 393, 513-524.
Elias, M. C. Q. B., Marques-Porto, R., Freymuller, E. & Schenkman, S. (2001). Transcription rate modulation through the Trypanosoma cruzi life cycle occurs in parallel with changes in nuclear organization. Molecular and Biochemical Parasitology 73, 75-90.
El-Sayed, N. M., Myler, P. J., Bartholomeu, D. C., Nilsson, D., Aggarwal, G., Tran, A. N., Ghedin, E., Worthey, E. A., Delcher, A. L., Blandin, G., Westenberger, S. J., Caler, E., Cerqueira, G. C., Branche, C., Haas, B., et al. (2005a). The genome sequence of Trypanosoma cruzi, etiologic agent of Chagas disease. Science 309, 409-415.
El-Sayed, N. M., Myler, P. J., Blandin, G., Berriman, M., Crabtree, J., Aggarwal, G., Caler, E., Renauld, H., Worthey, E. A., Hertz-Fowler, C., Ghedin, E., Peacock, C., Bartholomeu, D. C., Haas, B. J., Tran, A. N., et al. (2005b). Comparative genomics of trypanosomatid parasitic protozoa. Science 309, 404-409.
Enomoto, T., Sulli, C. & Schwartzbach, S. D. (1997). A soluble chloroplast protease processes the Euglena polyprotein precursor to the light harvesting chlorophyll a/b binding protein of Photosystem II. Plant Cell Physiology 38, 743-746.
Ersfeld, K. (2011). Nuclear architecture, genome and chromatin organisation in Trypanosoma brucei. Research in Microbiology 162, 626-636.
Ersfeld, K., Melville, S. E. & Gull, K. (1999). The nuclear and genome organization of Trypanosoma brucei. Parasitology Today 15, 58-63.
Faktorová, D., Dobáková, E., Peña-Diaz, P. & Lukeš, J. (2016). From simple to supercomplex: mitochondrial genomes of euglenozoan protists. F1000Research 5, (F1000 Faculty Rev), 392.
Fayyaz-Chaudhary, M. F., Cannons, A. C. & Merrett, M. J. (1984). Photoregulation of NADPH-glutamate dehydrogenase in regreening cultures of Euglena gracilis. Plant Science Letters 34, 89-94.
Field, M. C. (2005). Signalling the genome: the Ras-like small GTPase family of trypanosomatids. Trends in Parasitology 21, 447-450.
Flegontov, P., Gray, M. W., Burger, G. & Lukeš, J. (2011). Gene fragmentation: a key to mitochondrial genome evolution in Euglenozoa? Current Genetics 57, 225-232.
Flegontov, P., Votýpka, J., Skalický, T., Logacheva, M. D., Penin, A. A., Tanifuji, G., Onodera, N. T., Kondrashov, A. S., Volf, P., Archibald, J. M. & Lukeš, J. (2013). Paratrypanosoma is a novel early-branching trypanosomatid. Current Biology 23, 1787-1793.
Frantz, C., Ebel, C., Paulus, F. & Imbault, P. (2000). Characterization of trans-splicing in Euglenoids. Current Genetics 37, 349-355.
Furger, A., Schurch, N., Kurath, U. & Roditi, I. (1997). Elements in the 3′ untranslated region of procyclin mRNA regulate expression in insect forms of Trypanosoma brucei by modulating RNA stability and translation. Molecular and Cellular Biology 17, 4372-4380.
Garcia-Silva, M. R., Sanguinetti, J., Cabrera-Cabrera, F., Franzén, O. & Cayota, A. (2014). A particular set of small non-coding RNAs is bound to the distinctive Argonaute protein of Trypanosoma cruzi: insights from RNA-interference deficient organisms. Gene 538, 379-384.
Gawryluk, R. M. R., del Campo, J., Okamoto, N., Strassert, J. F. H., Lukeš, J., Richards, T. A., Worden, A. Z., Santoro, A. E. & Keeling, P. J. (2016). Morphological identification and single-cell genomics of marine diplonemids. Current Biology 26, 3053-3059.
Geimer, S., Belicová, A., Legen, J., Sláviková, S., Herrmann, R. G. & Krajčovič, J. (2009). Transcriptome analysis of the Euglena gracilis plastid chromosome. Current Genetics 55, 425-438.
Gibson, W. C., Garside, L. & Bailey, M. (1992). Trisomy and chromosome size changes in hybrid trypanosomes from a genetic cross between Trypanosoma brucei rhodesiense and T. b. brucei. Molecular and Biochemical Parasitology 51, 189-199.
Gillott, M. A. & Triemer, R. E. (1978). The ultrastructure of cell division in Euglena gracilis. Journal of Cell Science 31, 25-35.
Ginger, M. L., Fritz-Laylin, L. K., Fulton, C., Cande, W. Z. & Dawson, S. C. (2010). Intermediary metabolism in protists: a sequence-based view of facultative anaerobic metabolism in evolutionary diverse eukaryotes. Protist 161, 642-671.
Godoy, P. D., Nogueira-Junior, L. A., Paes, L. S., Cornejo, A., Martins, R. M., Silber, A. M., Schenkman, S. & Elias, M. C. (2009). Trypanosome prereplication machinery contains a single functional orc1/cdc6 protein, which is typical of archaea. Eukaryotic Cell 8, 1592-1603.
Gray, M. W. (1981). Unusual pattern of ribonucleic acid components in the ribosome of Crithidia fasciculata, a trypanosomatid protozoan. Molecular and Cellular Biology 1, 347-357.
Gray, M. W., Lukeš, J., Archibald, J. M., Keeling, P. J. & Doolitle, W. F. (2010). Cell biology. Irremediable complexity? Science 12, 920-921.
Greenwood, S. J., Schnare, M. N., Cook, J. R. & Gray, M. W. (2001). Analysis of intergenic spacer transcripts suggests ‘read-around’ transcription of the extrachromosomal circular rDNA in Euglena gracilis. Nucleic Acids Research 29, 2191-2198.
Gull, K., Alsford, S. & Ersfeld, K. (1998). Segregation of minichromosomes in trypanosomes: implications for mitotic mechanisms. Trends in Microbiology 6, 319-323.
Gumińska, N., Płecha, M., Zakryś, B. & Milanowski, R. (2018). Order of removal of conventional and nonconventional introns from nuclear transcripts of Euglena gracilis. PLoS Genetics 14, e1007761.
Gupta, S. K., Carmi, S., Ben-Asher, H. W., Tkacz, I. D., Naboishchikov, I. & Michaeli, S. (2013). Basal splicing factors regulate the stability of mature mRNAs in trypanosomes. The Journal of Biological Chemistry 288, 4991-5006.
Hadariová, L., Vesteg, M., Birčák, E., Schwartzbach, S. D. & Krajčovič, J. (2017). An intact plastid genome is essential for the survival of colorless Euglena longa but not Euglena gracilis. Current Genetics 63, 331-341.
Hadariová, L., Vesteg, M., Hampl, V. & Krajčovič, J. (2018). Reductive evolution of chloroplasts in non-photosynthetic plants, algae and protists. Current Genetics 64, 365-387.
Haile, S. & Papadopoulou, B. (2007). Developmental regulation of gene expression in trypanosomatid parasitic protozoa. Current Opinion in Microbiology 10, 569-577.
Hajduk, S. L., Harris, M. E. & Pollard, V. W. (1993). RNA editing in kinetoplastid mitochondria. FASEB Journal 7, 54-63.
Hampl, V., Hug, L., Leigh, J. W., Dacks, J. B., Lang, B. F., Simpson, A. G. & Roger, A. J. (2009). Phylogenomic analyses support the monophyly of Excavata and resolve relationships among eukaryotic “supergroups”. Proceedings of the National Academy of Sciences of the United States of America 106, 3859-3864.
Harsman, A., Niemann, M., Pusnik, M., Schmidt, O., Burmann, B. M., Hiller, S., Meisinger, C., Schneider, A. & Wagner, R. (2012). Bacterial origin of a mitochondrial outer membrane proteintranslocase: new perspectives from comparative single channel electrophysiology. Journal of Biological Chemistry 287, 31437-31445.
Hastings, K. E. M. (2005). SL trans-splicing: easy come or easy go? Trends in Genetics 21, 240-247.
He, D., Fiz-Palacios, O., Fu, C.-J., Fehling, J., Tsai, C.-C. & Baldauf, S. L. (2014). An alternative root for the eukaryote tree of life. Current Biology 24, 465-470.
Henze, K., Badr, A., Wettern, M., Cerff, R. & Martin, W. (1995). A nuclear gene of eubacterial origin in Euglena gracilis reflects cryptic endosybioses during protist evolution. Proceedings of the National Academy of Sciences of the United States of America 92, 9112-9116.
von der Heyden, S., Chao, E. E., Vickerman, K. & Cavalier-Smith, T. (2004). Ribosomal RNA phylogeny of bodonid and diplonemid flagellates and the evolution of Euglenozoa. Journal of Eukaryotic Microbiology 51, 402-416.
Hoffmeister, M., van der Klei, A., Rotte, C., van Grinsven, K. W. A., van Hellemond, J. J., Henze, K., Tielens, A. G. M. & Martin, W. (2004). Euglena gracilis rhodoquinone:ubiquinone ratio and mitochondrial proteome differ under aerobic and anaerobic conditions. Journal of Biological Chemistry 279, 22422-22429.
Hope, M., MacLeod, A., Leech, V., Melville, S. E., Sasse, J., Tait, A. & Turner, C. M. R. (1999). Analysis of ploidy in megabase chromosomes in Trypanosoma brucei after genetic exchange. Molecular and Biochemical Parasitology 104, 1-10.
Horn, D. (2001). Nuclear gene transcription and chromatin in Trypanosoma brucei. International Journal of Parasitology 31, 1157-1165.
Houlne, G. & Schantz, R. (1988). Characterization of cDNA sequences for LHCI apoproteins in Euglena gracilis: the mRNA encodes a large precursor containing several consecutive divergent polypeptides. Molecular and General Genetics 213, 479-486.
Inui, H., Ishikawa, T. & Tamoi, M. (2017). Wax ester fermentation and its application for biofuel production. In Euglena: Biochemistry, Cell and Molecular Biology. Advances in Experimental Medicine and Biology (Volume 979, eds S. D. Schwartzbach and S. Shigeoka), pp. 269-283. Springer International Publishing AG, Cham, Switzerland.
Inui, H., Miyatake, K., Nakano, Y. & Kitaoka, S. (1982). Wax ester fermentation in Euglena gracilis. FEBS Letters 150, 89-93.
Inui, H., Miyatake, K., Nakano, Y. & Kitaoka, S. (1984). Fatty acid synthesis in mitochondria of Euglena gracilis. European Journal of Biochemistry 142, 121-126.
Inui, H., Miyatake, K., Nakano, Y. & Kitaoka, S. (1985). The physiological role of oxygen-sensitive pyruvate dehydrogenase in mitochondrial fatty acid synthesis in Euglena gracilis. Archives of Biochemistry and Biophysics 237, 423-429.
Ishikawa, T., Nishikawa, H., Gao, Y., Sawa, Y., Shibata, H., Yabuta, Y., Maruta, T. & Shigeoka, S. (2008). The pathway via D-galacturonate/L-galactonate is significant for ascorbate biosynthesis in Euglena gracilis. Journal of Biological Chemistry 283, 31133-31141.
Ivens, A. C., Peacock, C. S., Worthey, E. A., Murphy, L., Aggarwal, G., Berriman, M., Sisk, E., Rajandream, M.-A., Adlem, E., Aert, R., Anupama, A., Apostolou, Z., Attipoe, P., Bason, N., Bauser, C., et al. (2005). The genome of the kinetoplastid parasite, Leishmania major. Science 309, 436-442.
Jackson, A. P. (2015). Genome evolution in trypanosomatid parasites. Parasitology 142, S40-S56.
Jackson, A. P., Otto, T. D., Aslett, M., Armstrong, S. D., Bringaud, F., Schlacht, A., Hartley, C., Sanders, M., Wastling, J. M., Dacks, J. B., Acosta-Serrano, A., Field, M. C., Ginger, M. L. & Berriman, M. (2016). Kinetoplastid phylogenomics reveals the evolutionary innovations associated with the origins of parasitism. Current Biology 26, 161-172.
Jackson, A. P., Quail, M. A. & Berriman, M. (2008). Insights into the genome sequence of a free-living Kinetoplastid: Bodo saltans (Kinetoplastida: Euglenozoa). BMC Genomics 9, 594.
Jackson, C., Knoll, A. H., Chan, C. X. & Verbruggen, H. (2018). Plastid phylogenomics with broad taxon sampling further elucidates the distinct evolutionary origins and timing of secondary green plastids. Scientific Reports 8, 1523.
Javed, Q. & Merrett, M. J. (1987). Mobilization of NADPH-glutamate dehydrogenase messenger-RNA in regreening cultures of Euglena gracilis. Plant Science 49, 31-36.
Jensen, B. C., Ramasamy, G., Vasconcelos, E. J., Ingolia, N. T., Myler, P. J. & Parsons, M. (2014). Extensive stage-regulation of translation revealed by ribosome profiling of Trypanosoma brucei. BMC Genomics 15, 911.
de Jesus, J. B., Mesquita-Rodrigues, C. & Cuervo, P. (2014). Proteomics advances in the study of leishmania parasites and leishmaniasis. Subcellular Biochemistry 74, 323-349.
Jiao, Y., Ma, L., Strickland, E. & Deng, X. W. (2005). Conservation and divergence of light-regulated genome expression patterns during seedling development in rice and Arabidopsis. Plant Cell 17, 3239-3256.
Kanmogne, G. D., Bailey, M. & Gibson, W. C. (1997). Wide variation in DNA content among isolates of Trypanosoma brucei ssp. Acta Tropica 63, 75-87.
Karnkowska, A., Bennett, M. S., Watza, D., Kim, J. I., Zakryś, B. & Triemer, R. E. (2015). Phylogentic relationships and morphological character evolution of photosynthetic euglenids (Excavata) inferred from taxon-rich analyses of five genes. Journal of Eukaryotic Microbiology 62, 362-373.
Keller, M., Chan, R. L., Tessier, L. H., Weil, J. H. & Imbault, P. (1991). Post-transcriptional regulation by light of the biosynthesis of Euglena ribulose-1,5-bisphosphate carboxylase/oxygenase small subunit. Plant Molecular Biology 17, 73-82.
Keller, M., Tessier, L. H., Chan, R. L., Weil, J. H. & Imbault, P. (1992). In Euglena, spliced-leader RNA (SL-RNA) and 5S rRNA genes are tandemly repeated. Nucleic Acids Research 20, 1711-1715.
Kiethega, G. N., Yan, Y., Turcotte, M. & Burger, G. (2013). RNA-level unscrambling of fragmented genes in Diplonema mitochondria. RNA Biology 10, 301-313.
Kim, D.-H. & Barrett, M. P. (2013). Metabolite-dependent regulation of gene expression in Trypanosoma brucei. Molecular Microbiology 88, 841-845.
Kim, H.-S., Park, S. H., Günzl, A. & Cross, G. A. M. (2013). MCM-BP Is required for repression of life-cycle specific genes transcribed by RNA Polymerase I in the mammalian Infectious form of Trypanosoma brucei. PLoS ONE 8(2), e57001.
Kishore, R. & Schwartzbach, S. D. (1992a). Photo and nutritional regulation of the light-harvesting chlorophyll a/b-binding protein of photosystem II mRNA levels in Euglena. Plant Physiology 98, 808-812.
Kishore, R. & Schwartzbach, S. D. (1992b). Translational control of the synthesis of the Euglena light harvesting chlorophyll a/b binding protein of photosystem II. Plant Science 85, 79-89.
Koumandou, V. L., Natesan, S. K. A., Sergeenko, T. & Field, M. C. (2008). The trypanosome transcriptome is remodelled during differentiation but displays limited responsiveness within life stages. BMC Genomics 9, 298.
Koziol, G. A. & Durnford, D. G. (2008). Euglena light-harvesting complexes are encoded by multifarious polyprotein mRNAs that evolve in concert. Molecular Biology and Evolution 25, 92-100.
Krajčovič, J., Vesteg, M. & Schwartzbach, S. D. (2015). Euglenoid flagellates: a multifaceted biotechnology platform. Journal of Biotechnology 202, 135-145.
Krchňáková, Z., Krajčovič, J. & Vesteg, M. (2017). On the possibility of an early evolutionary orgin for the SL-RNA trans-splicing. Journal of Molecular Evolution 85, 37-45.
Krnáčová, K., Vesteg, M., Hampl, V., Vlček, Č. & Horváth, A. (2012). Euglena gracilis and trypanosomatids possess common patterns in predicted mitochondrial targeting presequences. Journal of Molecular Evolution 75, 119-129.
Krnáčová, K., Vinarčíková, M., Rýdlová, I., Krajčovič, J., Vesteg, M. & Horváth, A. (2015). Characterization of oxidative phosphorylation enzymes in Euglena gracilis and its white mutant strain WgmZOflL. FEBS Letters 589, 687-694.
Leander, B. S. (2004). Did trypanosomatid parasites have photosynthetic ancestors? Trends in Microbiology 12, 251-258.
Leander, B. S., Lax, G., Karnkowska, A. & Simpson, A. G. B. (2017). Euglenida. In Handbook of the Protists (eds J. M. Archibald, A. G. B. Simpson and C. H. Slamovits), pp. 1047-1088. Springer, Boston.
Leander, B. S., Triemer, R. E. & Farmer, M. A. (2001). Character evolution in heterotrophic euglenids. European Journal of Protistology 37, 337-356.
Leedale, G. F. (ed.) (1967). Euglenoid Flagellates. Prentice-Hall, Inc., Englewood Cliffs.
Leedale, G. F. (1968). The nucleus in Euglena. In The Biology of EuglenaVolume 1, General Biology and Ultrastructure (ed. D. E. Buetow), pp. 185-242. Academic Press, New York.
Leedale, G. F. (1982). Ultrastructure. In The Biology of EuglenaVolume 3. Physiology (ed. D. E. Buetow), pp. 1-27. Academic Press Inc., New York.
van Leeuwen, F., Kieft, R., Cross, M. & Borst, P. (2000). Tandemly repeated DNA is a target for the partial replacement of thymine by β-D-glucosyl-hydroxymethyluracil in Trypanosoma brucei. Molecular and Biochemical Parasitology 109, 133-145.
Lefebvre, P. A., Silflow, C. D., Wieben, E. D. & Rosenbaum, J. L. (1980). Increased levels of mRNA for tubulin and other flagellar proteins after amputation or shortening of Chlamydomonas flagella. Cell 20, 469-477.
Levasseur, P. J., Meng, Q. & Bouck, G. B. (1994). Tubulin genes in the algal protist Euglena gracilis. Journal of Eukaryotic Microbiology 41, 468-477.
Liang, X. H., Haritan, A., Uliel, S. & Michaeli, S. (2003). Trans and cis splicing in trypanosomatids: mechanism, factors, and regulation. Eukaryotic Cell 2, 830-840.
Lin, Q., Ma, L., Burkhart, W. & Spremulli, L. L. (1994). Isolation and characterization of cDNA clones for chloroplast translational initiation factor-3 from Euglena gracilis. Journal of Biological Chemistry 269, 9436-9444.
Liniger, M., Bodenmüller, K., Pays, E., Gallati, S. & Roditi, I. (2001). Overlapping sense and antisense transcription units in Trypanosoma brucei. Molecular Microbiology 40, 869-878.
Linton, E. W., Karnkowska-Ishikawa, A., Kim, J. I., Shin, W., Bennett, M. S., Kwiatowski, J., Zakryś, B. & Triemer, R. E. (2010). Reconstructing euglenoid evolutionary relationships using three genes: nuclear SSU and LSU, and chloroplast SSU rDNA sequences and the description of Euglenaria gen. Nov. (Euglenophyta). Protist 161, 603-619.
van Luenen, H. G. A. M., Farris, C., Jan, S., Genest, P.-A., Tripathi, P., Velds, A., Kerkhoven, R. M., Nieuwland, M., Haydock, A., Ramasamy, G., Vainio, S., Heidebrecht, T., Perrakis, A., Pagie, L., van Steensel, B., et al. (2012). Glucosylated hydroxymethyluracil DNA Base J, prevents transcriptional readthrough in Leishmania. Cell 1505, 909-921.
Lukeš, J., Archibald, J. M., Keeling, P. J., Doolittle, W. F. & Gray, M. W. (2011). How a neutral evolutionary ratchet can build cellular complexity. IUBMB Life 63, 528-537.
Lukeš, J., Leander, B. S. & Keeling, P. J. (2009). Cascades of convergent evolution: the corresponding evolutionary histories of euglenozoans and dinoflagellates. Proceedings of the National Academy of Sciences of the United States of America 106, 9963-9970.
Lukeš, J., Wheeler, R., Jirsová, D., David, V. & Archibald, J. M. (2018). Massive mitochondrial DNA content in diplonemid and kinetoplastid protists. IUBMB Life 70, 1267-1274.
Lye, L. F., Owens, K., Shi, H., Murta, S. M., Vieira, A. C., Turco, S. J., Tschudi, C., Ullu, E. & Beverley, S. M. (2010). Retention and loss of RNA interference pathways in trypanosomatid protozoans. PLoS Pathogens 6, e1001161.
Madhusudhan, R., Ishikawa, T., Sawa, Y., Shigeoka, S. & Shibata, H. (2003). Post-transcriptional regulation of ascorbate peroxidase during light adaptation of Euglena gracilis. Plant Science 165, 233-238.
Mair, G., Shi, H., Li, H., Djikeng, A., Aviles, H. O., Bishop, J. R., Falcone, F. H., Gavrilescu, C., Montgomery, J. L., Santori, M. I., Stern, L. S., Wang, Z., Ullu, E. & Tschudi, C. (2000). A new twist in trypanosome RNA metabolism: cis-splicing of pre-mRNA. RNA 6, 163-169.
Mani, J., Meisinger, C. & Schneider, A. (2016). Peeping at TOMs-diverse entry gates to mitochondria provide insights into the evolution of eukaryotes. Molecular Biology and Evolution 33, 337-351.
Marande, W. & Burger, G. (2007). Mitochondrial DNA as a genomic jigsaw puzzle. Science 318, 415.
Marande, W., Lukeš, J. & Burger, G. (2005). Unique mitochondrial genome structure in diplonemids, the sister group of kinetoplastids. Eukaryotic Cell 4, 1137-1146.
Martínez-Calvillo, S., Vizuet-de-Rueda, J. C., Florencio-Martínez, L. E., Manning-Cela, R. G. & Figueroa-Angulo, E. E. (2010). Gene expression in trypanosomatid parasites. Journal of Biomedicine and Biotechnology 2010, 525241.
Maruyama, S., Suzaki, T., Weber, A. P. M., Archibald, J. M. & Nozaki, H. (2011). Eukaryote-to-eukaryote gene transfer gives rise to genome mosaicism in Euglenids. BMC Evolutionary Biology 11, 105.
Mateášiková-Kováčová, B., Vesteg, M., Drahovská, H., Záhonová, K., Vacula, R. & Krajčovič, J. (2012). Nucleus-encoded mRNAs for chloroplast proteins GapA, PetA, and PsbO are trans-spliced in the flagellate Euglena gracilis irrespective of light and plastid function. Journal of Eukaryotic Microbiology 59, 651-653.
Matveyev, A. V., Alves, J. M., Serrano, M. G., Lee, V., Lara, A. M., Barton, W. A., Costa-Martins, A. G., Beverley, S. M., Camargo, E. P., Teixeira, M. M. & Buck, G. A. (2017). The evolutionary loss of RNAi key determinants in kinetoplastids as a multiple sporadic phenomenon. Journal of Molecular Evolution 84, 104-115.
McCarthy, S. A. & Schwartzbach, S. D. (1984). Absence of photoregulation of abundant messenger-RNA levels in Euglena. Plant Science Letters 35, 61-66.
McWatters, D. C. & Russell, A. G. (2017). Euglena transcript processing. In Euglena: Biochemistry, Cell and Molecular Biology. Advances in Experimental Medicine and Biology (Volume 979, eds S. D. Schwartzbach and S. Shigeoka), pp. 141-158. Springer International Publishing AG, Cham, Switzerland.
Milanowski, R., Guminska, N., Karnkowska, A., Ishikawa, T. & Zakrys, B. (2016). Intermediate introns in nuclear genes of euglenids - are they a distinct type? BMC Evolutionary Biology 16, 49.
Milanowski, R., Karnkowska, A., Ishikawa, T. & Zakryś, B. (2014). Distribution of conventional and nonconventional introns in tubulin (α and β) genes of euglenids. Molecular Biology and Evolution 31, 584-593.
Minning, T. A., Weatherly, D. B., Flibotte, S. & Tarleton, R. L. (2011). Widespread, focal copy number variations (CNV) and whole chromosome aneuploidies in Trypanosoma cruzi strains revealed by array comparative genomic hybridization. BMC Genomics 12, 139.
Monroy, A. F., Gomez-Silva, B., Schwartzbach, S. D. & Schiff, J. A. (1986). Photocontrol of chloroplast and mitochondrial polypeptide levels in Euglena. Plant Physiology 80, 618-622.
Monroy, A. F., McCarthy, S. A. & Schwartzbach, S. D. (1987). Evidence for translational regulation of chloroplast and mitochondrial biogenesis in Euglena. Plant Science 51, 61-76.
Moore, A. N. & Russell, A. G. (2012). Clustered organization, polycistronic transcription, and evolution of modification-guide snoRNA genes in Euglena gracilis. Molecular Genetics and Genomics 287, 55-66.
Morales, J., Hashimoto, M., Williams, T. A., Hirawake-Mogi, H., Makiuchi, T., Tsubouchi, A., Kaga, N., Taka, H., Fujimura, T., Koike, M., Mita, T., Bringaud, F., Concepción, J. L., Hashimoto, T., Embley, T. M., et al. (2016). Differential remodelling of peroxisome function underpins the environmental and metabolic adaptability of diplonemids and kinetoplastids. Proceedings of the Royal Society B: Biological Sciences 283, 20160520.
Moreira, D., López-García, P. & Vickerman, K. (2004). An updated view of kinetoplastid phylogeny using environmental sequences and a closer outgroup: proposal for a new classification of the class Kinetoplastea. International Journal of Systematic and Evolutionary Microbiology 54, 1861-1875.
Moreira, S., Valach, M., Aoulad-Aissa, M., Otto, C. & Burger, G. (2016). Novel modes of RNA editing in mitochondria. Nucleic Acids Research 44, 4907-4919.
Muchhal, U. S. & Schwartzbach, S. D. (1992). Characterization of Euglena gene encoding a polyprotein precursor to the to the light-harvesting chlorophyll a/b binding protein of photosystem II. Plant Molecular Biology 18, 287-299.
Muchhal, U. S. & Schwartzbach, S. D. (1994). Characterization of the unique intron-exon junctions of Euglena gene(s) encoding the polyprotein precursor to the light-harvesting chlorophyll a/b binding protein of photosystem II. Nucleic Acids Research 22, 5737-5744.
Mühleip, A. W., Dewar, C. E., Schnaufer, A., Kühlbrandt, W. & Davies, K. M. (2017). In situ structure of trypanosomal ATP synthase dimer reveals a unique arrangement of catalytic subunits. Proceedings of the National Academy of Sciences of the United States of America 114, 992-997.
Müller, M., Mentel, M., van Hellemond, J. J., Henze, K., Woehle, C., Gould, S. B., Yu, R. Y., van der Giezen, M., Tielens, A. G. & Martin, W. F. (2012). Biochemistry and evolution of anaerobic energy metabolism in eukaryotes. Microbiology and Molecular Biology Reviews 76, 444-495.
Myler, P., Andleman, L., deVos, T., Hixon, G., Kiser, P., Lembley, C., Magness, C., Rickel, E., Sisk, F., Suskin, S., Swartzell, S., Westlake, T., Bastien, P., Fu, G., Inens, A., et al. (1999). Leishmania major Friedlin chromosome 1 has an unusual distribution of protein coding genes. Proceedings of the National Academy of Sciences of the United States of America 96, 2902-2906.
Nowitzki, U., Gelius-Dietrich, G., Schwieger, M., Henze, K. & Martin, W. (2004). Chloroplast phosphoglycerate kinase from Euglena gracilis: endosymbiotic gene replacement going against the tide. European Journal of Biochemistry 271, 4123-4131.
Nozaki, H., Ohta, N., Matsuzaki, M., Misumi, O. & Kuroiwa, T. (2003). Phylogeny of plastids based on cladistic analysis of gene loss inferred from complete plastid genome sequences. Journal of Molecular Evolution 57, 377-382.
Ntefidou, M., Iseki, M., Watanabe, M., Lebert, M. & Häder, D.-P. (2003). Photoactivated adenylyl cyclase controls phototaxis in the flagellate Euglena gracilis. Plant Physiology 133, 1517-1521.
O'Donnell, E. H. J. (1965). Nucleolus and chromosomes in Euglena gracilis. Cytology 30, 118-154.
O'Neill, E. C., Trick, M., Henrissat, B. & Field, R. A. (2015a). Euglena in time: evolution, control of central metabolic processes and multi-domain proteins in carbohydrate and natural product biochemistry. Perspectives in Science 6, 84-93.
O'Neill, E. C., Trick, M., Hill, L., Rejzek, M., Dusi, R. G., Hamilton, C. J., Zimba, V., Henrissat, B. & Field, R. A. (2015b). The transcriptome of Euglena gracilis reveals unexpected metabolic capabilities for carbohydrate and natural product biochemistry. Molecular Biosystems 11, 2808-2820.
Padilla-Mejía, N. E., Florencio-Martínez, L. E., Moreno-Campos, R., Vizuet-de-Rueda, J. C., Cevallos, A. M., Hernández-Rivas, R., Manning-Cela, R. & Martínez-Calvillo, S. (2015). The selenocysteine tRNA gene in Leishmania major is transcribed by both RNA polymerase II and RNA polymerase III. Eukaryotic Cell 14, 216-227.
Palfi, Z., Lane, W. S. & Bindereif, A. (2002). Biochemical and functional characterization of the cis-splicosomal U1 small nuclear RNP from Trypanosoma brucei. Molecular and Biochemical Parasitology 121, 233-243.
Palfi, Z., Lücke, S., Lahm, H.-W., Lane, W. S., Kruft, V., Bragado-Nilsson, E., Séraphin, B. & Bindereif, A. (2000). The splicosomal snRNP core complex of Trypanosoma brucei: cloning and functional analysis reveals seven Sm protein constituents. Proceedings of the National Academy of Sciences of the United States of America 97, 8967-8972.
Panigrahi, A. K., Zikova, A., Dalley, R. A., Acestor, N., Ogata, Y., Anupama, A., Myler, P. J. & Stuart, K. D. (2008). Mitochondrial complexes in Trypanosoma brucei: a novel complex and a unique oxidoreductase complex. Molecular & Cellular Proteomics 7, 534-545.
Parfrey, L. W., Lahr, D. J., Knoll, A. H. & Katz, L. A. (2011). Estimating the timing of early eukaryotic diversification with multigene molecular clocks. Proceedings of the National Academy of Sciences of the United States of America 108, 13624-13629.
Parker, J. E., Javed, Q. & Merrett, M. J. (1985). Glutamate dehydrogenase (NADP-dependent) mRNA in relation to enzyme synthesis in Euglena gracilis. Evidence for post-transcriptional control. European Journal of Biochemistry 153, 573-578.
Pastro, L., Smircich, P., Pérez-Díaz, L., Duhagon, M. A. & Garat, B. (2013). Implication of CA repeated tracts on post-transcriptional regulation in Trypanosoma cruzi. Experimental Parasitology 134, 511-518.
Patrick, K. L., Shi, H., Kolev, N. G., Ersfeld, K., Tschudi, C. & Ullu, E. (2009). Distinct and overlapping roles for two Dicer-like proteins in the RNA interference pathways of the ancient eukaryote Trypanosoma brucei. Proceedings of the National Academy of Sciences of the United States of America 106, 17933-17938.
Perez, E., Lapaille, M., Degand, H., Cilibrasi, L., Villavicencio-Queijeiro, A., Morsomme, P., González-Halphen, D., Field, M. C., Ramacle, C., Baurain, D. & Cardol, P. (2014). The mitochondrial respiratory chain of the secondary green alga Euglena gracilis shares many additional subunits with parasitic Trypanosomatidae. Mitochondrion 19 (Part B, 338-349.
van der Ploeg, L. H., Schwartz, D. C., Cantor, C. R. & Borst, P. (1984). Antigenic variation in Trypanosoma brucei analyzed by electrophoretic separation of chromosome-sized DNA molecules. Cell 37, 77-84.
van der Ploeg, L. H., Smith, C. L., Polvere, R. I. & Gottesdiener, K. M. (1989). Improved separation of chromosome-sized DNA from Trypanosoma brucei, stock 427-460. Nucleic Acids Research 17, 3217-3227.
Pusnik, M., Schmidt, O., Perry, A. J., Oeljeklaus, S., Niemann, M., Warcheid, B., Lithgow, T., Meisinger, C. & Schneider, A. (2011). Mitochondrial preprotein translocase of trypanosomatids has a bacterial origin. Current Biology 21, 1738-1743.
Qian, Q. & Keeling, P. J. (2001). Diplonemid glyceraldehyde-3-phosphate dehydrogenase and prokaryote-to-eukaryote lateral gene transfer. Protist 152, 193-201.
Rawson, J. R., Eckenrode, V. K., Boerma, C. L. & Curtis, S. (1979). DNA sequence organization in the alga Euglena gracilis. Biochimica et Biophysica Acta 563, 1-16.
Reis-Cunha, J. L., Rodrigues-Luiz, G. F., Valdivia, H. O., Baptista, R. P., Mendes, T. A., de Morais, G. L., Guedes, R., Macedo, A. M., Bern, C., Gilman, R. H., Lopez, C. T., Andersson, B., Vasconcelos, A. T. & Bartholomeu, D. C. (2015). Chromosomal copy number variation reveals differential levels of genomic plasticity in distinct Trypanosoma cruzi strains. BMC Genomics 16, 499.
Reynolds, D., Cliffe, L., Foerstner, K. U., Hon, C.-C., Siegel, T. N. & Sabatini, R. (2014). Regulation of transcription termination by glucosylated hydroxymethyluracil, base J, in Leishmania major and Trypanosoma brucei. Nucleic Acids Research 4215, 9717-9729.
Reynolds, D. L., Hofmeister, B. T., Cliffe, L., Siegel, T. N., Anderson, B. A., Beverley, S. M., Schmitz, R. J. & Sabatini, R. (2016). Base J represses genes at the end of polycistronic gene clusters in Leishmania major by promoting RNAP II termination. Molecular Microbiology 101, 559-574.
Rikin, A. & Schwartzbach, S. D. (1988). Extremely large and slowly processed precursors to the Euglena light harvesting chlorophyll a/b binding proteins of photosystem II. Proceedings of the National Academy of Sciences of the United States of America 85, 5117-5121.
Rikin, A. & Schwartzbach, S. D. (1989). Regulation by light and ethanol of the synthesis of the light harvesting chlorophyll a/b binding protein of photosystem II in Euglena. Planta 178, 76-83.
Rogers, M. B., Gilson, P. R., Su, V., McFadden, G. I. & Keeling, P. J. (2007). The complete chloroplast genome of the chlorarachniophyte Bigelowiella natans: evidence for independent origins of chlorarachniophyte and euglenid secondary endosymbionts. Molecular Biology and Evolution 24, 54-62.
Ruiz, L. B., Rocchetta, I., dos Santos Ferreira, V. & Conforti, V. (2004). Isolation, culture and characterization of a new strain of Euglena gracilis. Phycological Research 52, 168-179.
Russell, A. G., Watanabe, Y., Charette, J. M. & Gray, M. W. (2005). Unusual features of fibrillarin cDNA and gene structure in Euglena gracilis: evolutionary conservation of core proteins and structural predictions for methylation-guide box C/D snoRNPs throughout the domain Eukarya. Nucleic Acids Research 33, 2781-2791.
Saint-Guily, A., Schantz, M. L. & Schantz, R. (1994). Structure and expression of a cDNA encoding a histone H2A from Euglena gracilis. Plant Molecular Biology 24, 941-948.
Schiff, J. A., Schwartzbach, S. D., Osafune, T. & Hase, E. (1991). Photocontrol and processing of LHCPII apoprotein in Euglena - possible role of Golgi and other cytoplasmic sites. Journal of Photochemistry and Photobiology B: Biology 11, 219-236.
Schnare, M. N. & Gray, M. W. (1990). Sixteen discrete RNA components in the cytoplasmic ribosome of Euglena gracilis. Journal of Molecular Biology 215, 73-83.
Schnare, M. N. & Gray, M. W. (2011). Complete modification maps for the cytosolic small and large subunit rRNAs of Euglena gracilis: functional and evolutionary implications of contrasting patterns between the two rRNA components. Journal of Molecular Biology 413(1), 66-83.
Schneider, A., Bursa, D. & Lithgow, T. (2008). The direct route: a simplified pathway for protein import into the mitochondrion of trypanosomes. Trends in Cell Biology 18, 12-18.
Schneider, A., Martin, J. & Agabian, N. (1994). A nuclear encoded tRNA of Trypanosoma brucei is imported into mitochondria. Molecular and Cellular Biology 14, 2317-2322.
Schwartzbach, S. D. (1990). Photocontrol of organelle biogenesis in Euglena. Photochemistry and Photobiology 51, 231-254.
Schwartzbach, S. D. (2017). Photo and nutritional regulation of Euglena organelle development. In Euglena: Biochemistry, Cell and Molecular Biology. Advances in Experimental Medicine and Biology (Volume 979, eds S. D. Schwartzbach and S. Shigeoka), pp. 159-182.
Sekar, A., Merritt, C., Baugh, L., Stuart, K. & Myler, P. J. (2014). Tb927.10.6900 encodes the glucosyltransferase involved in synthesis of base J in Trypanosoma brucei. Molecular and Biochemical Parasitology 1961, 9-11.
Shashidhara, L. S. & Smith, A. G. (1991). Expression and subcellular location of the tetrapyrrole synthesis enzyme porphobilinogen deaminase in light-grown Euglena gracilis and three nonchlorophyllous cell lines. Proceedings of the National Academy of Sciences of the United States of America 88, 63-67.
Shi, H., Djikeng, A., Tschudi, C. & Ullu, E. (2004). Argonaute protein in the early divergent eukaryote Trypanosoma brucei: control of small interfering RNA accumulation and retroposon transcript abundance. Molecular and Cellular Biology 24, 420-427.
Simpson, A. G. B. (1997). The identity and composition of the Euglenozoa. Archiv für Protistenkunde 148, 318-328.
Simpson, A. G. B., Gill, E. E., Callahan, H. A., Litaker, R. W. & Roger, A. J. (2004). Early evolution within kinetoplastids (Euglenozoa), and the late emergence of trypanosomatids. Protist 155, 407-422.
Simpson, A. G. B., Lukeš, J. & Roger, A. J. (2002). The evolutionary history of kinetoplastids and their kinetoplasts. Molecular Biology and Evolution 19, 2071-2083.
Simpson, A. G. B. & Roger, A. J. (2004). Protein phylogenies robustly resolve the deep-level relationships within Euglenozoa. Molecular Phylogenetics and Evolution 30, 201-212.
Simpson, A. G. B., Stevens, J. R. & Lukeš, J. (2006). The evolution of kinetoplastid flagellates. Trends in Parasitology 22, 168-174.
Simpson, L., Neckelmann, N., de la Cruz, V. F., Simpson, A. M., Feagin, J. E., Jasmer, D. P. & Stuart, K. (1987). Comparison of the maxicircle (mitochondrial) genomes of Leishmania tarentolae and Trypanosoma brucei at the level of nucleotide sequence. The Journal of Biological Chemistry 262, 6182-6196.
Simpson, L., Thiemann, O. H., Savill, N. J., Alfonzo, J. D. & Maslov, D. A. (2000). Evolution of RNA editing in trypanosome mitochondria. Proceedings of the National Academy of Sciences of the United States of America 97, 6986-6993.
Souza, R. T., Lima, F. M., Barros, R. M., Cortez, D. R., Santos, M. F., Cordero, E. M., Ruiz, J. C., Goldenberg, S., Teixeira, M. M. & da Silveira, J. F. (2011). Genome size, karyotype polymorphism and chromosomal evolution in Trypanosoma cruzi. PLoS One 6, e23042.
Spencer, D. F. & Gray, M. W. (2011). Ribosomal RNA genes in Euglena gracilis mitochondrial DNA: fragmented genes in a seemingly fragmented genome. Molecular Genetics and Genomics 285, 19-31.
Stiller, J. W. (2014). Toward an empirical framework for interpreting plastid evolution. Journal of Phycology 50, 462-471.
Stoco, P. H., Wagner, G., Talavera-Lopez, C., Gerber, A., Zaha, A., Thompson, C. E., Bartholomeu, D. C., Lückemeyer, D. D., Bahia, D., Loreto, E., Prestes, E. B., Lima, F. M., Rodrigues-Luiz, G., Vallejo, G. A., Filho, J. F., et al. (2014). Genome of the avirulent human-infective trypanosome - Trypanosoma rangeli. PLoS Neglected Tropical Diseases 8, e3176.
Stoltzfus, A. (1999). On the possibility of constructive neutral evolution. Journal of Molecular Evolution 49, 169-181.
Stuart, K. & Panigrahi, A. K. (2002). RNA editing: complexity and complications. Molecular Microbiology 45, 591-596.
Sturm, N. R., Maslov, D. A., Grisard, E. C. & Campbell, D. A. (2001). Diplonema ssp. possess spliced leader RNA genes similar to the Kinetoplastida. Journal of Eukaryotic Microbiology 48, 325-311.
Tashyreva, D., Prokopchuk, G., Yabuki, A., Kaur, B., Faktorová, D., Votýpka, J., Kusaka, C., Fujikura, K., Shiratori, T., Ishida, K. I., Horák, A. & Lukeš, J. (2018). Phylogeny and morphology of new diplonemids from Japan. Protist 169, 158-179.
Teixeira, S. M. (1998). Control of gene expression in Trypanosomatidae. The Brazilian Journal of Medical and Biological Research 3, 1503-1516.
Tessier, L. H., Keller, M., Chan, R. L., Fournier, R., Weil, J. H. & Imbault, P. (1991). Short leader sequences may be transferred from small RNAs to pre-mature mRNAs by trans-splicing in Euglena. EMBO Journal 10, 2621-2625.
Tessier, L. H., Paulus, F., Keller, M. & Imbault, P. (1995). Structure and expression of Euglena gracilis nuclear rbcS genes encoding the small subunits of the ribulose 1,5-bisphosphate carboxylase/oxygenase: a novel splicing process for unusual intervening sequences. Journal of Molecular Biology 245, 22-33.
Tessier, L. H., van der Speck, H., Gualberto, J. M. & Grienenberger, J. M. (1997). The cox1 gene from Euglena gracilis: a protist mitochondrial gene without introns and genetic code modifications. Current Genetics 31, 208-213.
Tielens, A. G. M. & van Hellemond, J. J. (2009). Surprising variety in energy metabolism within Trypanosomatidae. Trends in Parasitology 25, 482-490.
Tiengwe, C., Marcello, L., Farr, H., Gadelha, C., Burchmore, R., Barry, J. D., Bell, S. D. & McCulloch, R. (2012). Identification of ORC1/CDC6-interacting factors in Trypanosoma brucei reveals critical features of origin recognition complex architecture. PLoS One 7, e32674.
Triemer, R. E. (1992). Ultrastructure of mitosis in Diplonema ambulator larsen and patterson (euglenozoa). European Journal of Protistology 28, 398-404.
Triemer, R. E. & Farmer, M. A. (1991). An ultrastructural comparison of the mitotic apparatus, feeding apparatus, flagellar apparatus and cytoskeleton in euglenoids and kinetoplastids. Protoplasma 164, 91-104.
Tschudi, C., Shi, H., Franklin, J. B. & Ullu, E. (2012). Small interfering RNA-producing loci in the ancient parasitic eukaryote Trypanosoma brucei. BMC Genomics 13, 427.
Tucci, S., Vacula, R., Krajčovič, J., Proksch, P. & Martin, W. (2010). Variability of wax ester fermentation in natural and bleached Euglena gracilis strains in response to oxygen and the elongase inhibitor flufenacet. Journal of Eukaryotic Microbiology 57, 63-69.
Turmel, M., Gagnon, M.-C., O'Kelly, C. J. & Lemieux, C. (2009). The chloroplast genomes of the green algae Pyramimonas, Monomastix, and Pycnococcus shed new light on the evolutionary history of prasinophytes and the origin of the secondary chloroplasts of euglenids. Molecular Biology and Evolution 26, 631-648.
Vacula, R., Steiner, J. M., Krajčovič, J., Ebringer, L. & Löffelhardt, W. (2001). Plastid state- and light-dependent regulation of the expression of nucleus-encoded genes for chloroplast proteins in the flagellate Euglena gracilis. Folia Microbiologica 46, 433-441.
Valach, M., Léveillé-Kunst, A., Gray, M. W. & Burger, G. (2018). Respiratory chain Complex I of unparalleled divergence in diplonemids. Journal of Biological Chemistry 293, 16043-16056.
Valach, M., Moreira, S., Kiethega, G. N. & Burger, G. (2014). Trans-splicing and RNA editing of LSUrRNA in Diplonema mitochondria. Nucleic Acids Research 42, 2660-2672.
Vasquez, J. J., Hon, C. C., Vanselow, J. T., Schlosser, A. & Siegel, T. N. (2014). Comparative ribosome profiling reveals extensive translational complexity in different Trypanosoma brucei life cycle stages. Nucleic Acids Research 42, 3623-3637.
Verner, Z., Basu, S., Benz, C., Dixit, S., Dobáková, E., Faktorová, D., Hashimi, H., Horáková, E., Huang, Z., Paris, Z., Peña-Diaz, P., Ridlon, L., To, J., Wildridge, D., Zíková, A. & Lukeš, J. (2015). Malleable mitochondrion of Trypanosoma brucei. In International Review of Cell and Molecular Biology (Volume 315, ed. K. W. Jeon), pp. 73-151. Elsevier Inc., Academic Press.
Vesteg, M. & Krajčovič, J. (2011). The falsifiability of the models for the origin of eukaryotes. Current Genetics 57, 367-390.
Vesteg, M., Šándorová, Z. & Krajčovič, J. (2012). Selective forces for the origin of spliceosomes. Journal of Molecular Evolution 74, 226-231.
Vesteg, M., Vacula, R., Burey, S., Löffelhardt, W., Drahovská, H., Martin, W. & Krajčovič, J. (2009). Expression of nucleus-encoded genes for chloroplast proteins in the flagellate Euglena gracilis. Journal of Eukaryotic Microbiology 56, 159-166.
Vesteg, M., Vacula, R., Steiner, J. M., Mateášiková, B., Löffelhardt, W., Brejová, B. & Krajčovič, J. (2010). A possible role for short introns in the acquisition of stroma-targeting peptides in the flagellate Euglena gracilis. DNA Research 17, 223-231.
Vlček, Č., Marande, W., Teijeiro, S., Lukeš, J. & Burger, G. (2011). Systematically fragmented genes in a multipartite mitochondrial genome. Nucleic Acids Research 39, 979-988.
Weatherly, D. B., Boehlke, C. & Tarleton, R. L. (2009). Chromosome level assembly of the hybrid Trypanosoma cruzi genome. BMC Genomics 10, 255.
Wedel, C., Forstner, K. U., Derr, R. & Siegel, T. N. (2017). GT-rich promoters can drive RNA pol II transcription and deposition of H2A.Z in African trypanosomes. EMBO Journal 36, 2581-2594.
Weiss, C., Houlne, G., Schantz, M. L. & Schantz, R. (1988). Photoregulation of the synthesis of chloroplast membrane proteins in Euglena gracilis. Journal of Plant Physiology 133, 521-528.
Weiss, C., Houlne, G. & Schantz, R. (1992). Photocontrol of thylakoid protein synthesis in Euglena: differential post-transcriptional regulation depending on nutritional conditions. Planta 188, 468-477.
White, T. C., Rudenko, G. & Borst, P. (1986). Three small RNAs within the 10 kb trypanosome rRNA transcription unit are analogous to domain VII of other eukaryotic 28S rRNAs. Nucleic Acids Research 14, 9471-9489.
Yamaguchi, A., Yubuki, N. & Leander, B. S. (2012). Morphostasis in a novel eukaryote illuminates the evolutionary transition from phagotrophy: description of Rapaza viridis n. gen. et sp. (Euglenozoa, Euglenida). BMC Evolutionary Biology 12, 29.
Yasuhira, S. & Simpson, L. (1997). Phylogenetic affinity of mitochondria of Euglena gracilis and kinetoplastids using cytochrome oxidase I and hsp60. Journal of Molecular Evolution 44, 341-347.
Yoshida, Y., Tomiyama, T., Maruta, T., Tomita, M., Ishikawa, T. & Arakawa, K. (2016). De novo assembly and comparative transcriptome analysis of Euglena gracilis in response to anaerobic conditions. BMC Genomics 17, 182.
Yubuki, N., Edgcomb, V. P., Bernhardt, J. M. & Leander, B. S. (2009). Ultrastructure and molecular phylogeny of Calkinsia aureus: cellular identity of a novel clade of deep-sea euglenozoans with epibiotic bacteria. BMC Microbiology 9, 16.
Záhonová, K., Füssy, Z., Birčák, E., Novák Vanclová, A. M. G., Klimeš, V., Vesteg, M., Krajčovič, J., Oborník, M. & Eliáš, M. (2018). Peculiar features of the plastids of the colourless alga Euglena longa and photosynthetic euglenophytes unveiled by transcriptome analyses. Scientific Reports 8, 17012.
Záhonová, K., Füssy, Z., Oborník, M., Eliáš, M. & Yurchenko, V. (2016). RuBisCO in non-photosynthetic alga Euglena longa: divergent features, transcriptomic analysis and regulation of complex formation. PLoS ONE 11, e0158790.
Záhonová, K., Hadariová, L., Vacula, R., Yurchenko, V., Eliáš, M., Krajčovič, J. & Vesteg, M. (2014). A small portion of plastid transcripts is polyadenylated in the flagellate Euglena gracilis. FEBS Letters 588, 783-788.
Zakryś, B., Milanowski, R. & Karnkowska, A. (2017). Evolutionary origin of Euglena. In Euglena: Biochemistry, Cell and Molecular Biology. Advances in Experimental Medicine and Biology (Volume 979, eds S. D. Schwartzbach and S. Shigeoka), pp. 3-17. Springer International Publishing AG, Cham, Switzerland.
Žárský, V., Tachezy, J. & Doležal, P. (2012). Tom40 is likely common to all mitochondria. Current Biology 22, R479-R481.
Zimorski, V., Rauch, C., van Hellemond, J. J., Tielens, A. G. M. & Martin, W. F. (2017). The Mitochondrion of Euglena gracilis In Euglena: Biochemistry, Cell and Molecular Biology. Advances in Experimental Medicine and Biology (Volume 979, eds S. D. Schwartzbach and S. Shigeoka), pp. 19-37. Springer International Publishing AG, Cham, Switzerland.
A Uniquely Complex Mitochondrial Proteome from Euglena gracilis