Distinct mRNA and protein interactomes highlight functional differentiation of major eIF4F-like complexes from Trypanosoma brucei
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
36275617
PubMed Central
PMC9585242
DOI
10.3389/fmolb.2022.971811
PII: 971811
Knihovny.cz E-zdroje
- Klíčová slova
- PABP, RNA processing, eIF4E, eIF4G, protein synthesis, translation initiation, trypanosome,
- Publikační typ
- časopisecké články MeSH
Gene expression in pathogenic protozoans of the family Trypanosomatidae has several novel features, including multiple eIF4F-like complexes involved in protein synthesis. The eukaryotic eIF4F complex, formed mainly by eIF4E and eIF4G subunits, is responsible for the canonical selection of mRNAs required for the initiation of mRNA translation. The best-known complexes implicated in translation in trypanosomatids are based on two related pairs of eIF4E and eIF4G subunits (EIF4E3/EIF4G4 and EIF4E4/EIF4G3), whose functional distinctions remain to be fully described. Here, to define interactomes associated with both complexes in Trypanosoma brucei procyclic forms, we performed parallel immunoprecipitation experiments followed by identification of proteins co-precipitated with the four tagged eIF4E and eIF4G subunits. A number of different protein partners, including RNA binding proteins and helicases, specifically co-precipitate with each complex. Highlights with the EIF4E4/EIF4G3 pair include RBP23, PABP1, EIF4AI and the CRK1 kinase. Co-precipitated partners with the EIF4E3/EIF4G4 pair are more diverse and include DRBD2, PABP2 and different zinc-finger proteins and RNA helicases. EIF4E3/EIF4G4 are essential for viability and to better define their role, we further investigated their phenotypes after knockdown. Depletion of either EIF4E3/EIF4G4 mRNAs lead to aberrant morphology with a more direct impact on events associated with cytokinesis. We also sought to identify those mRNAs differentially associated with each complex through CLIP-seq with the two eIF4E subunits. Predominant among EIF4E4-bound transcripts are those encoding ribosomal proteins, absent from those found with EIF4E3, which are generally more diverse. RNAi mediated depletion of EIF4E4, which does not affect proliferation, does not lead to changes in mRNAs or proteins associated with EIF4E3, confirming a lack of redundancy and distinct roles for the two complexes.
Aggeu Magalhães Institute Oswaldo Cruz Foundation Recife Pernambuco Brazil
Carlos Chagas Institute Oswaldo Cruz Foundation Curitiba Pernambuco Brazil
Department of Biochemistry University of Cambridge Cambridge United Kingdom
Department of Genetics Federal University of Pernambuco Recife Pernambuco Brazil
Heidelberg University Center for Molecular Biology Heidelberg Germany
Institute of Parasitology Biology Centre Czech Academy of Sciences České Budějovice Czechia
School of Life Sciences University of Dundee Dundee United Kingdom
Zobrazit více v PubMed
Ali M. U., Ur Rahman M. S., Jia Z., Jiang C. (2017). Eukaryotic translation initiation factors and cancer. Tumour Biol. 39, 1010428317709805. 10.1177/1010428317709805 PubMed DOI
An T., Liu Y., Gourguechon S., Wang C. C., Li Z. (2018). CDK phosphorylation of translation initiation factors couples protein translation with cell-cycle transition. Cell. Rep. 25, 3204–3214. e5. 10.1016/j.celrep.2018.11.063 PubMed DOI PMC
Archer S. K., Inchaustegui D., Queiroz R., Clayton C. (2011). The cell cycle regulated transcriptome of Trypanosoma brucei . PLoS One 6, e18425. 10.1371/journal.pone.0018425 PubMed DOI PMC
Assis L. A., Santos Filho M. V. C., da Cruz Silva J. R., Bezerra M. J. R., de Aquino I. R. P. U. C., Merlo K. C., et al. (2021). Identification of novel proteins and mrnas differentially bound to the leishmania poly(A) binding proteins reveals a direct association between pabp1, the rna-binding protein rbp23 and mrnas encoding ribosomal proteins. PLoS Negl. Trop. Dis. 15, 00098999–e9930. 10.1371/journal.pntd.0009899 PubMed DOI PMC
Bangs J. D., Crain P. F., Hashizume T., McCloskey J. A., Boothroyd J. C. (1992). Mass spectrometry of mRNA cap 4 from trypanosomatids reveals two novel nucleosides. J. Biol. Chem. 267, 9805–9815. 10.1016/s0021-9258(19)50165-x PubMed DOI
Bannerman B. P., Kramer S., Dorrell R. G., Carrington M. (2018). Multispecies reconstructions uncover widespread conservation, and lineage-specific elaborations in eukaryotic mRNA metabolism. PLoS One 13, 01926333–e192723. 10.1371/journal.pone.0192633 PubMed DOI PMC
Barthelme D., Sauer R. T. (2016). Origin and functional evolution of the Cdc48/p97/VCP AAA+ protein unfolding and remodeling machine. J. Mol. Biol. 428, 1861–1869. 10.1016/j.jmb.2015.11.015 PubMed DOI PMC
Bercovich N., Levin M. J., Clayton C., Vazquez M. P. (2009). Identification of core components of the exon junction complex in trypanosomes. Mol. Biochem. Parasitol. 166, 190–193. 10.1016/j.molbiopara.2009.03.008 PubMed DOI
Browning K. S., Bailey-Serres J. (2015). Mechanism of cytoplasmic mRNA translation. Arab. Book 13, e0176. 10.1199/tab.0176 PubMed DOI PMC
Castellano M. M., Merchante C. (2021). Peculiarities of the regulation of translation initiation in plants. Curr. Opin. Plant Biol. 63, 102073. 10.1016/j.pbi.2021.102073 PubMed DOI
Clayton C. (2019). Regulation of gene expression in trypanosomatids: Living with polycistronic transcription. Open Biol. 9, 190072. 10.1098/rsob.190072 PubMed DOI PMC
Costello J., Castelli L. M., Rowe W., Kershaw C. J., Talavera D., Mohammad-Qureshi S. S., et al. (2015). Global mRNA selection mechanisms for translation initiation. Genome Biol. 16, 10. 10.1186/s13059-014-0559-z PubMed DOI PMC
Cristodero M., Schimanski B., Heller M., Roditi I. (2014). Functional characterization of the trypanosome translational repressor SCD6. Biochem. J. 457, 57–67. 10.1042/BJ20130747 PubMed DOI
da Costa Lima T. D., Moura D. M. N., Reis C. R. S., Vasconcelos J. R. C., Ellis L., Carrington M., et al. (2010). Functional characterization of three leishmania poly(a) binding protein homologues with distinct binding properties to RNA and protein partners. Eukaryot. Cell. 9, 1484–1494. 10.1128/EC.00148-10 PubMed DOI PMC
de Melo Neto O. P., da Costa Lima T. D. C., Merlo K. C., Romão T. P., Rocha P. O., Assis L. A., et al. (2018). Phosphorylation and interactions associated with the control of the Leishmania Poly-A Binding Protein 1 (PABP1) function during translation initiation. RNA Biol. 6286, 739–755. 10.1080/15476286.2018.1445958 PubMed DOI PMC
de Melo Neto O. P., da Costa Lima T. D. C., Xavier C. C., Nascimento L. M., Romao T. P., Assis L. A., et al. (2015). The unique Leishmania EIF4E4 N-terminus is a target for multiple phosphorylation events and participates in critical interactions required for translation initiation. RNA Biol. 12, 1209–1221. 10.1080/15476286.2015.1086865 PubMed DOI PMC
Dhalia R., Marinsek N., Reis C. R. S. R., Katz R., Muniz J. R. C. R., Standart N., et al. (2006). The two eIF4A helicases in Trypanosoma brucei are functionally distinct. Nucleic Acids Res. 34, 2495–2507. 10.1093/nar/gkl290 PubMed DOI PMC
Dhalia R., Reis C. R. S. R., Freire E. R. R., Rocha P. O. O., Katz R., Muniz J. R. C. R., et al. (2005). Translation initiation in Leishmania major: Characterisation of multiple eIF4F subunit homologues. Mol. Biochem. Parasitol. 140, 23–41. 10.1016/j.molbiopara.2004.12.001 PubMed DOI
Dobin A., Davis C. A., Schlesinger F., Drenkow J., Zaleski C., Jha S., et al. (2013). Star: Ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21. 10.1093/bioinformatics/bts635 PubMed DOI PMC
dos Santos Rodrigues F. H., Firczuk H., Breeze A. L., Cameron A. D., Walko M., Wilson A. J., et al. (2018). The leishmania PABP1–eIF4E4 interface: A novel 5′–3′ interaction architecture for trans-spliced mRNAs. Nucleic Acids Res. 1, 1493–1504. 10.1093/nar/gky1187 PubMed DOI PMC
Erben E. D., Fadda A., Lueong S., Hoheisel J. D., Clayton C. (2014). A genome-wide tethering screen reveals novel potential post-transcriptional regulators in Trypanosoma brucei. PLoS Pathog. 10, e1004178. 10.1371/journal.ppat.1004178 PubMed DOI PMC
Falk F., Marucha K. K., Clayton C. (2021). The EIF4E1-4EIP cap-binding complex of Trypanosoma brucei interacts with the terminal uridylyl transferase TUT3. PLoS One 16, e0258903–e0258924. 10.1371/journal.pone.0258903 PubMed DOI PMC
Fernandez-Moya S. M., Garcia-Perez A., Kramer S., Carrington M., Estevez A. M., Fernández-Moya S. M., et al. (2012). Alterations in DRBD3 ribonucleoprotein complexes in response to stress in Trypanosoma brucei . PLoS One 7, e48870. 10.1371/journal.pone.0048870 PubMed DOI PMC
Field M. C., Adung’A V., Obado S., Chait B. T., Rout M. P. (2012). Proteomics on the rims: Insights into the biology of the nuclear envelope and flagellar pocket of trypanosomes. Parasitology 139, 1158–1167. 10.1017/S0031182011002125 PubMed DOI PMC
Fonseca B. D., Lahr R. M., Damgaard C. K., Alain T., Berman A. J. (2018). LARP1 on TOP of ribosome production. Wiley Interdiscip. Rev. RNA 9, 14800–e1516. 10.1002/wrna.1480 PubMed DOI PMC
Freire E. R., Dhalia R., Moura D. M. N., Da Costa Lima T. D., Lima R. P., Reis C. R. S., et al. (2011). The four trypanosomatid eIF4E homologues fall into two separate groups, with distinct features in primary sequence and biological properties. Mol. Biochem. Parasitol. 176, 25–36. 10.1016/j.molbiopara.2010.11.011 PubMed DOI PMC
Freire E. R., Malvezzi A. M., Vashisht A. A., Zuberek J., Saada E. A., Langousis G., et al. (2014a). Trypanosoma brucei translation initiation factor homolog EIF4E6 forms a tripartite cytosolic complex with EIF4G5 and a capping enzyme homolog. Eukaryot. Cell. 13, 896–908. 10.1128/EC.00071-14 PubMed DOI PMC
Freire E. R., Moura D. M. N., Bezerra M. J. R., Xavier C. C., Morais M. C., Vashisht A. A., et al. (2018). Trypanosoma brucei EIF4E2 cap-binding protein binds a homolog of the histone-mRNA stem-loop-binding protein. Curr. Genet. 64, 821–839. 10.1007/s00294-017-0795-3 PubMed DOI
Freire E. R., Vashisht A. A., Malvezzi A. M., Zuberek J., Langousis G., Saada E. A., et al. (2014b). eIF4F-like complexes formed by cap-binding homolog TbEIF4E5 with TbEIF4G1 or TbEIF4G2 are implicated in post-transcriptional regulation in Trypanosoma brucei. RNA 20, 1272–1286. 10.1261/rna.045534.114 PubMed DOI PMC
Freire E., Sturm N., Campbell D., de Melo Neto O. (2017). The Role of Cytoplasmic mRNA cap-binding protein complexes in Trypanosoma brucei and other trypanosomatids. Pathogens 6, 55. 10.3390/pathogens6040055 PubMed DOI PMC
Fritz M., Vanselow J., Sauer N., Lamer S., Goos C., Siegel T. N., et al. (2015). Novel insights into RNP granules by employing the trypanosome’s microtubule skeleton as a molecular sieve. Nucleic Acids Res. 43, 8013–8032. 10.1093/nar/gkv731 PubMed DOI PMC
Genuth N. R., Barna M. (2018). Heterogeneity and specialized functions of translation machinery: From genes to organisms. Nat. Rev. Genet. 19, 431–452. 10.1038/s41576-018-0008-z PubMed DOI PMC
Goos C., Dejung M., Janzen C. J., Butter F., Kramer S. (2017). The nuclear proteome of Trypanosoma brucei . PLoS One 12, 01818844–e181914. 10.1371/journal.pone.0181884 PubMed DOI PMC
Hernández G., García A., Sonenberg N., Lasko P. (2020). Unorthodox mechanisms to initiate translation open novel paths for gene expression. J. Mol. Biol. 432, 166702. 10.1016/j.jmb.2020.10.035 PubMed DOI
Hill K. L., Hutchings N. R., Russell D. G., Donelson J. E. (1999). A novel protein targeting domain directs proteins to the anterior cytoplasmic face of the flagellar pocket in African trypanosomes. J. Cell. Sci. 112, 3091–3101. 10.1242/jcs.112.18.3091 PubMed DOI
Hinnebusch A. G. (2014). The scanning mechanism of eukaryotic translation initiation. Annu. Rev. Biochem. 83, 779–812. 10.1146/annurev-biochem-060713-035802 PubMed DOI
Holetz F. B., Alves L. R., Probst C. M., Dallagiovanna B., Marchini F. K., Manque P., et al. (2010). Protein and mRNA content of TcDHH1-containing mRNPs in Trypanosoma cruzi . FEBS J. 277, 3415–3426. 10.1111/j.1742-4658.2010.07747.x PubMed DOI
Inoue A. H., Domingues P. F., Serpeloni M., Hiraiwa P. M., Vidal N. M., Butterfield E. R., et al. (2022). Proteomics uncovers novel components of an interactive protein network supporting RNA export in trypanosomes. Mol. Cell. Proteomics. 21, 100208. 10.1016/j.mcpro.2022.100208 PubMed DOI PMC
Jackson A. P., Otto T. D., Aslett M., Armstrong S. D., Bringaud F., Schlacht A., et al. (2016). Kinetoplastid phylogenomics reveals the evolutionary innovations associated with the origins of parasitism. Curr. Biol. 26, 161–172. 10.1016/j.cub.2015.11.055 PubMed DOI PMC
Jensen B. C., Ramasamy G., Vasconcelos E. J. R., Ingolia N. T., Myler P. J., Parsons M. (2014). Extensive stage-regulation of translation revealed by ribosome profiling of Trypanosoma brucei . BMC Genomics 15, 911. 10.1186/1471-2164-15-911 PubMed DOI PMC
Karamysheva Z. N., Guarnizo S. A. G., Karamyshev A. L. (2020). Regulation of translation in the protozoan parasite leishmania. Int. J. Mol. Sci. 21, 29811–E3015. 10.3390/ijms21082981 PubMed DOI PMC
Klein C., Terrao M., Inchaustegui Gil D., Clayton C. (2015). Polysomes of Trypanosoma brucei: Association with initiation factors and RNA-binding proteins. PLoS One 10, e0135973. 10.1371/journal.pone.0135973 PubMed DOI PMC
Kolev N. G., Franklin J. B., Carmi S., Shi H., Michaeli S., Tschudi C. (2010). The transcriptome of the human pathogen Trypanosoma brucei at single-nucleotide resolution. PLoS Pathog. 6, 10010900–e1001115. 10.1371/journal.ppat.1001090 PubMed DOI PMC
Kramer S., Bannerman-Chukualim B., Ellis L., Boulden E. A., Kelly S., Field M. C., et al. (2013). Differential localization of the two T. brucei Poly(A) Binding Proteins to the nucleus and RNP granules suggests binding to distinct mRNA Pools. PLoS One 8, e54004. 10.1371/journal.pone.0054004 PubMed DOI PMC
Kressler D., Hurt E., Bergler H., Baßler J. (2012). The power of AAA-ATPases on the road of pre-60S ribosome maturation - molecular machines that strip pre-ribosomal particles. Biochim. Biophys. Acta 1823, 92–100. 10.1016/j.bbamcr.2011.06.017 PubMed DOI PMC
Kruzel E. K., Zimmett G. P., Bangs J. D. (2017). Life stage-specific cargo receptors facilitate glycosylphosphatidylinositol-anchored surface coat protein transport in Trypanosoma brucei . mSphere 2, 002822-17–e318. 10.1128/mSphere.00282-17 PubMed DOI PMC
Lanker S., Muller P. P., Altmann M., Goyer C., Sonenberg N., Trachsel H. (1992). Interactions of the eIF-4F subunits in the yeast Saccharomyces cerevisiae . J. Biol. Chem. 267, 21167–21171. 10.1016/s0021-9258(19)36812-7 PubMed DOI
Liu B., Kamanyi Marucha K., Clayton C. (2020). The zinc finger proteins ZC3H20 and ZC3H21 stabilise mRNAs encoding membrane proteins and mitochondrial proteins in insect-form Trypanosoma brucei . Mol. Microbiol. 113, 430–451. 10.1111/mmi.14429 PubMed DOI
Lueong S., Merce C., Fischer B., Hoheisel J. D., Erben E. D. (2016). Gene expression regulatory networks in Trypanosoma brucei: Insights into the role of the mRNA-binding proteome. Mol. Microbiol. 100, 457–471. 10.1111/mmi.13328 PubMed DOI
Martinez-Calvillo S., Vizuet-de-Rueda J. C., Florencio-Martinez L. E., Manning-Cela R. G., Figueroa-Angulo E. E. (2010). Gene expression in trypanosomatid parasites. J. Biomed. Biotechnol. 2010, 525241. 10.1155/2010/525241 PubMed DOI PMC
Maslov D. A., Opperdoes F. R., Kostygov A. Y., Hashimi H., Lukeš J., Yurchenko V. (2019). Recent advances in trypanosomatid research: Genome organization, expression, metabolism, taxonomy and evolution. Parasitology 146, 1–27. 10.1017/S0031182018000951 PubMed DOI
Meleppattu S., Kamus-Elimeleh D., Zinoviev A., Cohen-Mor S., Orr I., Shapira M. (2015). The eIF3 complex of Leishmania-subunit composition and mode of recruitment to different cap-binding complexes. Nucleic Acids Res. 43, 6222–6235. 10.1093/nar/gkv564 PubMed DOI PMC
Melo do Nascimento L., Egler F., Arnold K., Papavasiliou N., Clayton C., Erben E. (2021). Functional insights from a surface antigen mRNA-bound proteome. Elife 10, 681366–e68226. 10.7554/eLife.68136 PubMed DOI PMC
Melo do Nascimento L., Terrao M., Marucha K. K., Liu B., Egler F., Clayton C., et al. (2020). The RNA-associated proteins MKT1 and MKT1L form alternative PBP1-containing complexes in Trypanosoma brucei . J. Biol. Chem. 295, 10940–10955. 10.1074/jbc.ra120.013306 PubMed DOI PMC
Merrick W. C. (2015). eIF4F: A Retrospective. J. Biol. Chem. 290, 24091–24099. 10.1074/jbc.R115.675280 PubMed DOI PMC
Michaeli S. (2011). Trans-splicing in trypanosomes: Machinery and its impact on the parasite transcriptome. Future Microbiol. 6, 459–474. 10.2217/fmb.11.20 PubMed DOI
Mokdadi M., Abdelkrim Y. Z., Banroques J., Huvelle E., Oualha R., Yeter-Alat H., et al. (2021). The in silico identification of potential members of the ded1/ddx3 subfamily of dead-box rna helicases from the protozoan parasite leishmania infantum and their analyses in yeast. Genes. 12, 212–222. 10.3390/genes12020212 PubMed DOI PMC
Moura D. M. N., Reis C. R. S., Xavier C. C., da Costa Lima T. D., Lima R. P., Carrington M., et al. (2015). Two related trypanosomatid eIF4G homologues have functional differences compatible with distinct roles during translation initiation. RNA Biol. 12, 305–319. 10.1080/15476286.2015.1017233 PubMed DOI PMC
Mureev S., Kovtun O., Nguyen U. T. T., Alexandrov K. (2009). Species-independent translational leaders facilitate cell-free expression. Nat. Biotechnol. 27, 747–752. 10.1038/nbt.1556 PubMed DOI
Naguleswaran A., Doiron N., Roditi I. (2018). RNA-Seq analysis validates the use of culture-derived Trypanosoma brucei and provides new markers for mammalian and insect life-cycle stages. BMC Genomics 19, 227–311. 10.1186/s12864-018-4600-6 PubMed DOI PMC
Padmanabhan P. K., Zghidi-Abouzid O., Samant M., Dumas C., Aguiar B. G., Estaquier J., et al. (2016). DDX3 DEAD-box RNA helicase plays a central role in mitochondrial protein quality control in leishmania. Cell. Death Dis. 7, e2406. 10.1038/cddis.2016.315 PubMed DOI PMC
Pandey M., Huang Y., Lim T. K., Lin Q., He C. Y. (2020). Flagellar targeting of an arginine kinase requires a conserved lipidated protein intraflagellar transport (LIFT) pathway in Trypanosoma brucei . J. Biol. Chem. 295, 11326–11336. 10.1074/jbc.ra120.014287 PubMed DOI PMC
Pereira M. M. C. M. C., Malvezzi A. M. M., Nascimento L. M. M., Da Costa Lima T. D. C. D. C., Alves V. S. S., Palma M. L. L., et al. (2013). The eIF4E subunits of two distinct trypanosomatid eIF4F complexes are subjected to differential post-translational modifications associated to distinct growth phases in culture. Mol. Biochem. Parasitol. 190, 82–86. 10.1016/j.molbiopara.2013.06.008 PubMed DOI
Perez-Riverol Y., Csordas A., Bai J., Bernal-Llinares M., Hewapathirana S., Kundu D. J., et al. (2019). The PRIDE database and related tools and resources in 2019: Improving support for quantification data. Nucleic Acids Res. 47, D442-D450–D450. 10.1093/nar/gky1106 PubMed DOI PMC
Pham K. T. M., Hu H., Li Z. (2020). Maintenance of hook complex integrity and centrin arm assembly facilitates flagellum inheritance in Trypanosoma brucei. J. Biol. Chem. 295, 12962–12974. 10.1074/jbc.ra120.014237 PubMed DOI PMC
Poon S. K., Peacock L., Gibson W., Gull K., Kelly S. (2012). A modular and optimized single marker system for generating Trypanosoma brucei cell lines expressing T7 RNA polymerase and the tetracycline repressor. Open Biol. 2, 110037. 10.1098/rsob.110037 PubMed DOI PMC
Romagnoli A., D’Agostino M., Ardiccioni C., Maracci C., Motta S., La Teana A., et al. (2021). Control of the eIF4E activity: Structural insights and pharmacological implications. Cell. Mol. Life Sci. 78, 6869–6885. 10.1007/s00018-021-03938-z PubMed DOI PMC
Shirokikh N. E., Preiss T. (2018). Translation initiation by cap-dependent ribosome recruitment: Recent insights and open questions. Wiley Interdiscip. Rev. RNA 9, 14733–e1545. 10.1002/wrna.1473 PubMed DOI
Shrivastava R., Drory-Retwitzer M., Shapira M. (2019a). Nutritional stress targets LeishIF4E-3 to storage granules that contain RNA and ribosome components in Leishmania . PLoS Negl. Trop. Dis. 13, e0007237. 10.1371/journal.pntd.0007237 PubMed DOI PMC
Shrivastava R., Tupperwar N., Drory-Retwitzer M., Shapira M. (2019b). Deletion of a single LeishIF4E-3 allele by the CRISPR-Cas9 system alters cell morphology and infectivity of Leishmania . mSphere 4, 004500-19–e517. 10.1128/msphere.00450-19 PubMed DOI PMC
Siegel T. N., Hekstra D. R., Wang X., Dewell S., Cross G. A. M. (2010). Genome-wide analysis of mRNA abundance in two life-cycle stages of Trypanosoma brucei and identification of splicing and polyadenylation sites. Nucleic Acids Res. 38, 4946–4957. 10.1093/nar/gkq237 PubMed DOI PMC
Stern M. Z., Gupta S. K., Haham T., Barda O., Levi S., Wachtel C., et al. (2009). Multiple roles for polypyrimidine tract binding ( PTB ) proteins in trypanosome RNA metabolism, 648–665. 10.1261/rna.1230209.U1 PubMed DOI PMC
Terrao M., Marucha K. K., Mugo E., Droll D., Minia I., Egler F., et al. (2018). The suppressive cap-binding complex factor 4EIP is required for normal differentiation. Nucleic Acids Res. 46, 8993–9010. 10.1093/nar/gky733 PubMed DOI PMC
Tinti M., Ferguson M. A. J. (2022). Visualisation of proteome-wide ordered protein abundances in Trypanosoma brucei . Wellcome Open Res. 7, 34–11. 10.12688/wellcomeopenres.17607.1 PubMed DOI PMC
Vesteg M., Hadariová L., Horváth A., Estraño C. E., Schwartzbach S. D., Krajčovič J. (2019). Comparative molecular cell biology of phototrophic euglenids and parasitic trypanosomatids sheds light on the ancestor of Euglenozoa. Biol. Rev. Camb. Philos. Soc. 94, 1701–1721. 10.1111/brv.12523 PubMed DOI
von der Haar T., McCarthy J. E. (2002). Intracellular translation initiation factor levels in Saccharomyces cerevisiae and their role in cap-complex function. Mol. Microbiol. 46, 531–544. 10.1046/j.1365-2958.2002.03172.x PubMed DOI
Wagner G. P., Kin K., Lynch V. J. (2012). Measurement of mRNA abundance using RNA-seq data: RPKM measure is inconsistent among samples. Theory Biosci. 131, 281–285. 10.1007/s12064-012-0162-3 PubMed DOI
Wippel H. H., Malgarin J. S., Inoue A. H., Leprevost F. D. V., Carvalho P. C., Goldenberg S., et al. (2019). Unveiling the partners of the DRBD2-mRNP complex, an RBP in Trypanosoma cruzi and ortholog to the yeast SR-protein Gbp2. BMC Microbiol. 19, 128–212. 10.1186/s12866-019-1505-8 PubMed DOI PMC
Ye Y., Tang W. K., Zhang T., Xia D. (2017). A mighty “protein extractor” of the cell: Structure and function of the p97/CDC48 ATPase. Front. Mol. Biosci. 4, 39–20. 10.3389/fmolb.2017.00039 PubMed DOI PMC
Zinoviev A., Akum Y., Yahav T., Shapira M. (2012a). Gene duplication in trypanosomatids – two DED1 paralogs are functionally redundant and differentially expressed during the life cycle. Mol. Biochem. Parasitol. 185, 127–136. 10.1016/j.molbiopara.2012.08.001 PubMed DOI
Zinoviev A., Léger M., Wagner G., Shapira M. (2011). A novel 4E-interacting protein in Leishmania is involved in stage-specific translation pathways. Nucleic Acids Res. 39, 8404–8415. 10.1093/nar/gkr555 PubMed DOI PMC
Zinoviev A., Manor S., Shapira M. (2012b). Nutritional stress affects an atypical cap-binding protein in Leishmania . RNA Biol. 9, 1450–1460. 10.4161/rna.22709 PubMed DOI
Zoltner M., Krienitz N., Field M. C., Kramer S. (2018). Comparative proteomics of the two T. brucei PABPs suggests that PABP2 controls bulk mRNA. PLoS Negl. Trop. Dis. 12, e0006679. 10.1371/journal.pntd.0006679 PubMed DOI PMC