Hemodynamic adaptation of heart failure to percutaneous venoarterial extracorporeal circulatory supports

. 2020 Nov 16 ; 69 (5) : 739-757. [epub] 20200909

Jazyk angličtina Země Česko Médium print-electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid32901493

Extracorporeal life support (ECLS) is a treatment modality that provides prolonged blood circulation, gas exchange and can partially support or fully substitute functions of heart and lungs in patients with severe but potentially reversible cardiopulmonary failure refractory to conventional therapy. Due to high-volume bypass, the extracorporeal flow is interacting with native cardiac output. The pathophysiology of circulation and ECLS support reveals significant effects on arterial pressure waveforms, cardiac hemodynamics, and myocardial perfusion. Moreover, it is still subject of research, whether increasing stroke work caused by the extracorporeal flow is accompanied by adequate myocardial oxygen supply. The left ventricular (LV) pressure-volume mechanics are reflecting perfusion and loading conditions and these changes are dependent on the degree of the extracorporeal blood flow. By increasing the afterload, artificial circulation puts higher demands on heart work with increasing myocardial oxygen consumption. Further, this can lead to LV distention, pulmonary edema, and progression of heart failure. Multiple methods of LV decompression (atrial septostomy, active venting, intra-aortic balloon pump, pulsatility of flow) have been suggested to relieve LV overload but the main risk factors still remain unclear. In this context, it has been recommended to keep the rate of circulatory support as low as possible. Also, utilization of detailed hemodynamic monitoring has been suggested in order to avoid possible harm from excessive extracorporeal flow.

Zobrazit více v PubMed

ABRAMS D, COMBES A, BRODIE D. Extracorporeal membrane oxygenation in cardiopulmonary disease in adults. J Am Coll Cardiol. 2014;63:2769–2778. doi: 10.1016/j.jacc.2014.03.046. PubMed DOI

AISSAOUI N, GUEROT E, COMBES A, DELOUCHE A, CHASTRE J, LEPRINCE P, LEGER P, DIEHL JL, FAGON JY, DIEBOLD B. Two-dimensional strain rate and Doppler tissue myocardial velocities: analysis by echocardiography of hemodynamic and functional changes of the failed left ventricle during different degrees of extracorporeal life support. J Am Soc Echocardiogr. 2012;25:632–640. doi: 10.1016/j.echo.2012.02.009. PubMed DOI

AUGUSTIN S, HORTON A, BUTT W, BENNETT M, HORTON S. Centrifugal pump inlet pressure site affects measurement. Perfusion. 2010;25:313–320. doi: 10.1177/0267659110376697. PubMed DOI

AVALLI L, MAGGIONI E, SANGALLI F, FAVINI G, FORMICA F, FUMAGALLI R. Percutaneous left-heart decompression during extracorporeal membrane oxygenation: an alternative to surgical and transeptal venting in adult patients. ASAIO J. 2011;57:38–40. doi: 10.1097/mat.0b013e3181fe5d0b. PubMed DOI

BARBONE A, MALVINDI PG, FERRARA P, TARELLI G. Left ventricle unloading by percutaneous pigtail during extracorporeal membrane oxygenation. Interact Cardiovasc Thorac Surg. 2011;13:293–295. doi: 10.1510/icvts.2011.269795. PubMed DOI

BARTLETT RH. Physiology of gas exchange during ECMO for respiratory failure. J Intensive Care Med. 2016;32:243–248. doi: 10.1177/0885066616641383. PubMed DOI

BARTLETT RH, CONRAD SA. The physiology of extracorporeal life support. In: BROGAN TV, LEQUIER L, LORUSSO R, MacLAREN G, PEEK G, editors. Extracorporeal Life Support: The ELSO Red Book. 5th Edition. Ann Arbor, MI: ELSO; 2017. pp. 31–47.

BELOHLAVEK J, MLCEK M, HUPTYCH M, SVOBODA T, HAVRANEK S, OST’ADAL P, BOUCEK T, KOVARNIK T, MLEJNSKY F, MRAZEK V, BELOHLAVEK M, ASCHERMANN M, LINHART A, KITTNAR O. Coronary versus carotid blood flow and coronary perfusion pressure in a pig model of prolonged cardiac arrest treated by different modes of venoarterial ECMO and intraaortic balloon counterpulsation. Crit Care. 2012;16:R50. doi: 10.1186/cc11254. PubMed DOI PMC

BORLAUG BA, KASS DA. Ventricular-vascular interaction in heart failure. Heart Fail Clin. 2008;4:23–36. doi: 10.1016/j.hfc.2007.10.001. PubMed DOI PMC

BOULATE D, LUYT CE, POZZI M, NICULESCU M, COMBES A, LEPRINCE P, KIRSCH M. Acute lung injury after mechanical circulatory support implantation in patients on extracorporeal life support: an unrecognized problem. Eur J Cardiothorac Surg. 2013;44:544–549. doi: 10.1093/ejcts/ezt125. discussion 549–550. PubMed DOI

BRAZIER J, COOPER N, BUCKBERG G. The adequacy of subendocardial oxygen delivery: the interaction of determinants of flow, arterial oxygen content and myocardial oxygen need. Circulation. 1974;49:968–977. doi: 10.1161/01.cir.49.5.968. PubMed DOI

BRECHOT N, DEMONDION P, SANTI F, LEBRETON G, PHAM T, DALAKIDIS A, GAMBOTTI L, LUYT CE, SCHMIDT M, HEKIMIAN G, CLUZEL P, CHASTRE J, LEPRINCE P, COMBES A. Intra-aortic balloon pump protects against hydrostatic pulmonary oedema during peripheral venoarterial-extracorporeal membrane oxygenation. Eur Heart J Acute Cardiovasc Care. 2018;7:62–69. doi: 10.1177/2048872617711169. PubMed DOI

BRODIE D, SLUTSKY AS, COMBES A. Extracorporeal life support for adults with respiratory failure and related indications: A review. JAMA. 2019;322:557–568. doi: 10.1001/jama.2019.9302. PubMed DOI

BROOME M, DONKER DW. Individualized real-time clinical decision support to monitor cardiac loading during venoarterial ECMO. J Transl Med. 2016;14:4. doi: 10.1186/s12967-015-0760-1. PubMed DOI PMC

BUCKBERG GD, FIXLER DE, ARCHIE JP, HOFFMAN JI. Experimental subendocardial ischemia in dogs with normal coronary arteries. Circ Res. 1972;30:67–81. doi: 10.1161/01.res.30.1.67. PubMed DOI

BURKHOFF D, SAYER G, DOSHI D, URIEL N. Hemodynamics of mechanical circulatory support. J Am Coll Cardiol. 2015;66:2663–2674. doi: 10.1016/j.jacc.2015.10.017. PubMed DOI

CHENG R, HACHAMOVITCH R, KITTLESON M, PATEL J, ARABIA F, MORIGUCHI J, ESMAILIAN F, AZARBAL B. Complications of extracorporeal membrane oxygenation for treatment of cardiogenic shock and cardiac arrest: a meta-analysis of 1,866 adult patients. Ann Thorac Surg. 2014;97:610–616. doi: 10.1016/j.athoracsur.2013.09.008. PubMed DOI

CHUNG M, SHILOH AL, CARLESE A. Monitoring of the adult patient on venoarterial extracorporeal membrane oxygenation. ScientificWorldJournal. 2014;2014:393258. doi: 10.1155/2014/393258. PubMed DOI PMC

CHURCH JT, ALGHANEM F, DEATRICK KB, TRAHANAS JM, PHILLIPS JP, HEE SONG M, PERKINS EM, BARTLETT RH, ROJAS-PENA A, BOCKS ML, OWENS GE. Normothermic ex vivo heart perfusion: effects of live animal blood and plasma cross circulation. ASAIO J. 2017;63:766–773. doi: 10.1097/mat.0000000000000583. PubMed DOI PMC

COMBES A, LEPRINCE P, LUYT CE, BONNET N, TROUILLET JL, LEGER P, PAVIE A, CHASTRE J. Outcomes and long-term quality-of-life of patients supported by extracorporeal membrane oxygenation for refractory cardiogenic shock. Crit Care Med. 2008;36:1404–1411. doi: 10.1097/ccm.0b013e31816f7cf7. PubMed DOI

CREMERS B, LINK A, WERNER C, GORHAN H, SIMUNDIC I, MATHEIS G, SCHELLER B, BOHM M, LAUFS U. Pulsatile venoarterial perfusion using a novel synchronized cardiac assist device augments coronary artery blood flow during ventricular fibrillation. Artif Organs. 2015;39:77–82. doi: 10.1111/aor.12413. PubMed DOI

DAVIES CH, DAVIA K, BENNETT JG, PEPPER JR, POOLE-WILSON PA, HARDING SE. Reduced contraction and altered frequency response of isolated ventricular myocytes from patients with heart failure. Circulation. 1995;92:2540–2549. doi: 10.1161/01.cir.92.9.2540. PubMed DOI

DIXON JA, SPINALE FG. Large animal models of heart failure: a critical link in the translation of basic science to clinical practice. Circ Heart Fail. 2009;2:262–271. doi: 10.1161/circheartfailure.108.814459. PubMed DOI PMC

DOLL N, KIAII B, BORGER M, BUCERIUS J, KRAMER K, SCHMITT DV, WALTHER T, MOHR FW. Five-year results of 219 consecutive patients treated with extracorporeal membrane oxygenation for refractory postoperative cardiogenic shock. Ann Thorac Surg. 2004;77:151–157. doi: 10.1016/s0003-4975(03)01329-8. discussion 157. PubMed DOI

DONKER DW, BRODIE D, HENRIQUES JPS, BROOME M. Left ventricular unloading during veno-arterial ECMO. A review of percutaneous and surgical unloading interventions. Perfusion. 2019;34:98–105. doi: 10.1177/0267659118794112. PubMed DOI PMC

ELSO Guidelines for Cardiopulmonary Extracorporeal Life Support, Version 1.3. Ann Arbor, MI, USA: Nov, 2013. 2013.

FLORAS JS. Sympathetic nervous system activation in human heart failure: clinical implications of an updated model. J Am Coll Cardiol. 2009;54:375–385. doi: 10.1016/j.jacc.2009.03.061. PubMed DOI

FOUILLOUX V, LEBRUN L, MACE L, KREITMANN B. Extracorporeal membranous oxygenation and left atrial decompression: a fast and minimally invasive approach. Ann Thorac Surg. 2011;91:1996–1997. doi: 10.1016/j.athoracsur.2011.01.005. PubMed DOI

FUHRMAN BP, HERNAN LJ, ROTTA AT, HEARD CM, ROSENKRANZ ER. Pathophysiology of cardiac extracorporeal membrane oxygenation. Artif Organs. 1999;23:966–969. doi: 10.1046/j.1525-1594.1999.06484.x. PubMed DOI

FUMAGALLI R, BOMBINO M, BORELLI M, ROSSI F, COLOMBO V, OSCULATI G, FERRAZZI P, PESENTI A, GATTINONI L. Percutaneous bridge to heart transplantation by venoarterial ECMO and transaortic left ventricular venting. Int J Artif Organs. 2004;27:410–413. doi: 10.1177/039139880402700510. PubMed DOI

GALLETTI PM, RICHARDSON PD, SNIDER MT, FRIEDMAN LI. A standardized method for defining the overall gas transfer performance of artificial lungs. Trans Am Soc Artif Intern Organs. 1972;18:359–368. 374. doi: 10.1097/00002480-197201000-00090. PubMed DOI

GLOWER DD, SPRATT JA, SNOW ND, KABAS JS, DAVIS JW, OLSEN CO, TYSON GS, SABISTON DC, JR, RANKIN JS. Linearity of the Frank-Starling relationship in the intact heart: the concept of preload recruitable stroke work. Circulation. 1985;71:994–1009. doi: 10.1161/01.cir.71.5.994. PubMed DOI

GUANG C, PHILLIPS RD, JIANG B, MILANI F. Three key proteases--angiotensin-I-converting enzyme (ACE), ACE2 and renin--within and beyond the renin-angiotensin system. Arch Cardiovasc Dis. 2012;105:373–385. doi: 10.1016/j.acvd.2012.02.010. PubMed DOI PMC

GUYTON AC. Determination of cardiac output by equating venous return curves with cardiac response curves. Physiol Rev. 1955;35:123–129. doi: 10.1152/physrev.1955.35.1.123. PubMed DOI

HALA P, MLCEK M, OSTADAL P, JANAK D, POPKOVA M, BOUCEK T, LACKO S, KUDLICKA J, NEUZIL P, KITTNAR O. Regional tissue oximetry reflects changes in arterial flow in porcine chronic heart failure treated with venoarterial extracorporeal membrane oxygenation. Physiol Res. 2016;65(Suppl 5):S621–S631. doi: 10.33549/physiolres.933532. PubMed DOI

HALA P, MLCEK M, OSTADAL P, JANAK D, POPKOVA M, BOUCEK T, LACKO S, KUDLICKA J, NEUZIL P, KITTNAR O. Tachycardia-induced cardiomyopathy as a chronic heart failure model in swine. J Vis Exp. 2018;132:57030. doi: 10.3791/57030. PubMed DOI PMC

HÁLA P, MLČEK M, OŠŤÁDAL P, POPKOVÁ M, JANÁK D, BOUČEK T, LACKO S, KUDLIČKA J, NEUŽIL P, KITTNAR O. Increasing venoarterial extracorporeal membrane oxygenation flow puts higher demands on left ventricular work in a porcine model of chronic heart failure. J Transl Med. 2020;18:75. doi: 10.1186/s12967-020-02250-x. PubMed DOI PMC

HARTUPEE J, MANN DL. Neurohormonal activation in heart failure with reduced ejection fraction. Nat Rev Cardiol. 2017;14:30–38. doi: 10.1038/nrcardio.2016.163. PubMed DOI PMC

ITOH H, ICHIBA S, UJIKE Y, DOUGUCHI T, OBATA H, INAMORI S, IWASAKI T, KASAHARA S, SANO S, UNDAR A. Effect of the pulsatile extracorporeal membrane oxygenation on hemodynamic energy and systemic microcirculation in a piglet model of acute cardiac failure. Artif Organs. 2016;40:19–26. doi: 10.1111/aor.12588. PubMed DOI

JACKSON G, GIBBS CR, DAVIES MK, LIP GY. ABC of heart failure. Pathophysiology. BMJ. 2000;320:167–170. doi: 10.1136/bmj.320.7228.167. PubMed DOI PMC

JANAK D, HALA P, MLCEK M, POPKOVA M, LACKO S, KUDLICKA J, KITTNAR O. Detection of microembolic signals in the common carotid artery using Doppler sonography in the porcine model of acute heart failure treated by veno-arterial extracorporeal membrane oxygenation. Physiol Res. 2017;66(Suppl 4):S529–S536. doi: 10.33549/physiolres.933806. PubMed DOI

KAMIMURA T, SAKAMOTO H, MISUMI K. Regional blood flow distribution from the proximal arterial cannula during veno-arterial extracorporeal membrane oxygenation in neonatal dog. J Vet Med Sci. 1999;61:311–315. doi: 10.1292/jvms.61.311. PubMed DOI

KATO J, SEO T, ANDO H, TAKAGI H, ITO T. Coronary arterial perfusion during venoarterial extracorporeal membrane oxygenation. J Thorac Cardiovasc Surg. 1996;111:630–636. doi: 10.1016/s0022-5223(96)70315-x. PubMed DOI

KAWASHIMA D, GOJO S, NISHIMURA T, ITODA Y, KITAHORI K, MOTOMURA N, MOROTA T, MURAKAMI A, TAKAMOTO S, KYO S, ONO M. Left ventricular mechanical support with Impella provides more ventricular unloading in heart failure than extracorporeal membrane oxygenation. ASAIO J. 2011;57:169–176. doi: 10.1097/mat.0b013e31820e121c. PubMed DOI

KINSELLA JP, GERSTMANN DR, ROSENBERG AA. The effect of extracorporeal membrane oxygenation on coronary perfusion and regional blood flow distribution. Pediatr Res. 1992;31:80–84. doi: 10.1203/00006450-199201000-00015. PubMed DOI

KLABUNDE RE. Cardiovascular Physiology Concepts. 2nd Edition. Baltimore, MD, USA: Lippincott Williams & Wilkins; 2012. p. 256.

KOECKERT MS, JORDE UP, NAKA Y, MOSES JW, TAKAYAMA H. Impella LP 2.5 for left ventricular unloading during venoarterial extracorporeal membrane oxygenation support. J Card Surg. 2011;26:666–668. doi: 10.1111/j.1540-8191.2011.01338.x. PubMed DOI

KOLOBOW T, BOWMAN RL. Construction and evaluation of an alveolar membrane artificial heart-lung. Trans Am Soc Artif Intern Organs. 1963;9:238–243. PubMed

KOLOBOW T, ROSSI F, BORELLI M, FOTI G. Long-term closed chest partial and total cardiopulmonary bypass by peripheral cannulation for severe right and/or left ventricular failure, including ventricular fibrillation. The use of a percutaneous spring in the pulmonary artery position to decompress the left heart. ASAIO Trans. 1988;34:485–489. doi: 10.1097/00002480-199711000-00015. PubMed DOI

KRUPICKOVA P, HUPTYCH M, MORMANOVA Z, BOUCEK T, BELZA T, SMID O, KRAL A, SKALICKA H, LINHART A, BELOHLAVEK J. Effect of pulsatility on microcirculation in patients treated with extracorporeal cardiopulmonary resuscitation: a pilot study. ASAIO J. 2017;63:386–391. doi: 10.1097/mat.0000000000000492. PubMed DOI

LACKO S, MLCEK M, HALA P, POPKOVA M, JANAK D, HRACHOVINA M, KUDLICKA J, HRACHOVINA V, OSTADAL P, KITTNAR O. Severe acute heart failure – experimental model with very low mortality. Physiol Res. 2018;67:555–562. doi: 10.33549/physiolres.933774. PubMed DOI

LAWSON DS, LAWSON AF, WALCZAK R, McROBB C, McDERMOTT P, SHEARER IR, LODGE A, JAGGERS J. North American neonatal extracorporeal membrane oxygenation (ECMO) devices and team roles: 2008 survey results of Extracorporeal Life Support Organization (ELSO) centers. J Extra Corpor Technol. 2008;40:166–174. doi: 10.1191/0267659105pf819oa. PubMed DOI PMC

LEQUIER L, HORTON SB, McMULLAN DM, BARTLETT RH. Extracorporeal membrane oxygenation circuitry. Pediatr Crit Care Med. 2013;14(Suppl 1):S7–S12. doi: 10.1097/pcc.0b013e318292dd10. PubMed DOI PMC

MAJOR TC, HANDA H, ANNICH GM, BARTLETT RH. Development and hemocompatibility testing of nitric oxide releasing polymers using a rabbit model of thrombogenicity. J Biomater Appl. 2014;29:479–501. doi: 10.1177/0885328214538866. PubMed DOI PMC

MAKDISI G, WANG IW. Extra corporeal membrane oxygenation (ECMO) review of a lifesaving technology. J Thorac Dis. 2015;7:E166–E176. doi: 10.3978/j.issn.2072-1439.2015.07.17. PubMed DOI PMC

MARTI CN, GHEORGHIADE M, KALOGEROPOULOS AP, GEORGIOPOULOU VV, QUYYUMI AA, BUTLER J. Endothelial dysfunction, arterial stiffness, and heart failure. J Am Coll Cardiol. 2012;60:1455–1469. doi: 10.1016/j.jacc.2011.11.082. PubMed DOI

MONTOYA JP, MERZ SI, BARTLETT RH. A standardized system for describing flow/pressure relationships in vascular access devices. ASAIO Trans. 1991;37:4–8. doi: 10.1097/00002216-199101000-00003. PubMed DOI

NA SJ, YANG JH, YANG JH, SUNG K, CHOI JO, HAHN JY, JEON ES, CHO YH. Left heart decompression at venoarterial extracorporeal membrane oxygenation initiation in cardiogenic shock: prophylactic versus therapeutic strategy. J Thorac Dis. 2019;11:3746–3756. doi: 10.21037/jtd.2019.09.35. PubMed DOI PMC

OŠŤÁDAL B, VÍZEK M. Patologická Fyziologie Srdce a Cév. Karolinum; Prague: 2005. p. 168.

OŠŤÁDAL P, BĚLOHLÁVEK J, BALÍK M, ŘÍHA H. Extracorporeal Membrane Oxygenation – Manual for Use in Adult Patients. Maxdorf, Prague: 2018. p. 95.

OSTADAL P, MLCEK M, GORHAN H, SIMUNDIC I, STRUNINA S, HRACHOVINA M, KRUGER A, VONDRAKOVA D, JANOTKA M, HALA P, MATES M, OSTADAL M, LEITER JC, KITTNAR O, NEUZIL P. Electrocardiogram-synchronized pulsatile extracorporeal life support preserves left ventricular function and coronary flow in a porcine model of cardiogenic shock. PLoS One. 2018;13:e0196321. doi: 10.1371/journal.pone.0196321. PubMed DOI PMC

OSTADAL P, MLCEK M, KRUGER A, HALA P, LACKO S, MATES M, VONDRAKOVA D, SVOBODA T, HRACHOVINA M, JANOTKA M, PSOTOVA H, STRUNINA S, KITTNAR O, NEUZIL P. Increasing venoarterial extracorporeal membrane oxygenation flow negatively affects left ventricular performance in a porcine model of cardiogenic shock. J Transl Med. 2015;13:266. doi: 10.1186/s12967-015-0634-6. PubMed DOI PMC

OSTADAL P, MLCEK M, STRUNINA S, HRACHOVINA M, KRUGER A, VONDRAKOVA D, JANOTKA M, HALA P, KITTNAR O, NEUZIL P. Novel porcine model of acute severe cardiogenic shock developed by upper-body hypoxia. Physiol Res. 2016;65:711–715. doi: 10.33549/physiolres.933294. PubMed DOI

PACKER M. The neurohormonal hypothesis: a theory to explain the mechanism of disease progression in heart failure. J Am Coll Cardiol. 1992;20:248–254. doi: 10.1016/0735-1097(92)90167-l. PubMed DOI

PEEK GJ, FIRMIN RK. The inflammatory and coagulative response to prolonged extracorporeal membrane oxygenation. ASAIO J. 1999;45:250–263. doi: 10.1097/00002480-199907000-00003. PubMed DOI

POPKOVÁ M, KURIŠČÁK E, HÁLA P, JANÁK D, TEJKL L, BĚLOHLÁVEK J, OŠŤÁDAL P, NEUŽIL P, KITTNAR O, MLČEK M. Increasing veno-arterial extracorporeal membrane oxygenation flow reduces electrical impedance of the lung regions in porcine acute heart failure. Physiol Res. 2020;69:609–620. doi: 10.33549/physiolres.933532. PubMed DOI PMC

POWER JM, TONKIN AM. Large animal models of heart failure. Aust N Z J Med. 1999;29:395–402. doi: 10.1111/j.1445-5994.1999.tb00734.x. PubMed DOI

PRANIKOFF T, HIRSCHL RB, STEIMLE CN, ANDERSON HL, 3RD, BARTLETT RH. Efficacy of extracorporeal life support in the setting of adult cardiorespiratory failure. ASAIO J. 1994;40:M339–M343. doi: 10.1097/00002480-199407000-00020. PubMed DOI

ELSO. Extracorporeal Life Support Registry Report. International Summary. Available online: https://www.elso.org/Registry/Statistics/. published January 30, 2020.

RIHAL CS, NAIDU SS, GIVERTZ MM, SZETO WY, BURKE JA, KAPUR NK, KERN M, GARRATT KN, GOLDSTEIN JA, DIMAS V, TU T. 2015 SCAI/ACC/HFSA/STS Clinical Expert Consensus Statement on the Use of Percutaneous Mechanical Circulatory Support Devices in Cardiovascular Care (Endorsed by the American Heart Association, the Cardiological Society of India, and Sociedad Latino Americana de Cardiologia Intervencion; Affirmation of Value by the Canadian Association of Interventional Cardiology-Association Canadienne de Cardiologie d'intervention) J Card Fail. 2015;21:499–518. doi: 10.1016/j.cardfail.2015.03.002. PubMed DOI

ROBINSON SG. Indications and contraindications for ECLS in children with respiratory failure. In: BROGAN TV, LEQUIER L, LORUSSO R, MacLAREN G, PEEK G, editors. Extracorporeal Life Support: The ELSO Red Book. 5th Edition. Ann Arbor, MI, USA: ELSO; 2017. pp. 239–245.

ROZENCWAJG S, HEINSAR S, SUEN J, BASSI GL, MALFERTHEINER M, VERCAEMST L, BROMAN LM, SCHMIDT M, COMBES A, RATSEP I, FRASER JF, MILLAR JE EUROPEAN EXTRACORPOREAL LIFE SUPPORT ORGANISATION INNOVATIONS W, THE NATIONAL HEALTH MEDICAL RESEARCH COUNCIL AUSTRALIA CENTRE OF RESEARCH EXCELLENCE FOR ADVANCED CARDIO-RESPIRATORY THERAPIES IMPROVING ORGAN S. Heart failure supported by veno-arterial extracorporeal membrane oxygenation (ECMO): a systematic review of pre-clinical models. Intensive Care Med Exp. 2020;8:16. doi: 10.1186/s40635-020-00303-5. PubMed DOI PMC

SCHMITTO JD, MOKASHI SA, CHEN FY. Letter by Schmitto et al regarding article “Large animal models of heart failure: a critical link in the translation of basic science to clinical practice”. Circ Heart Fail. 2010;3:e3. doi: 10.1161/circheartfailure.109.930149. author reply e4. PubMed DOI

SCHMITTO JD, MOKASHI SA, LEE LS, POPOV AF, COSKUN KO, SOSSALLA S, SOHNS C, BOLMAN RM, 3RD, COHN LH, CHEN FY. Large animal models of chronic heart failure (CHF) J Surg Res. 2011;166:131–137. doi: 10.1016/j.jss.2009.11.737. PubMed DOI

SEIB PM, FAULKNER SC, ERICKSON CC, Van DEVANTER SH, HARRELL JE, FASULES JW, FRAZIER EA, MORROW WR. Blade and balloon atrial septostomy for left heart decompression in patients with severe ventricular dysfunction on extracorporeal membrane oxygenation. Catheter Cardiovasc Interv. 1999;46:179–186. doi: 10.1002/(sici)1522-726x(199902)46:2<179::aid-ccd13>3.0.co;2-w. PubMed DOI

SEO T, ITO T, IIO K, KATO J, TAKAGI H. Experimental study on the hemodynamic effects of veno-arterial extracorporeal membrane oxygenation with an automatically driven blood pump on puppies. Artif Organs. 1991;15:402–407. PubMed

SHEN I, LEVY FH, BENAK AM, ROTHNIE CL, O’ROURKE PP, DUNCAN BW, VERRIER ED. Left ventricular dysfunction during extracorporeal membrane oxygenation in a hypoxemic swine model. Ann Thorac Surg. 2001;71:868–871. doi: 10.1016/s0003-4975(00)02281-5. PubMed DOI

SHEN I, LEVY FH, VOCELKA CR, O’ROURKE PP, DUNCAN BW, THOMAS R, VERRIER ED. Effect of extracorporeal membrane oxygenation on left ventricular function of swine. Ann Thorac Surg. 2001;71:862–867. doi: 10.1016/s0003-4975(00)02280-3. PubMed DOI

SIDEBOTHAM D, ALLEN S, McGEORGE A, BECA J. Catastrophic left heart distension following initiation of venoarterial extracorporeal membrane oxygenation in a patient with mild aortic regurgitation. Anaesth Intensive Care. 2012;40:568–569. PubMed

SINGH A, LARIBI S, TEERLINK JR, MEBAZAA A. Agents with vasodilator properties in acute heart failure. Eur Heart J. 2017;38:317–325. doi: 10.1093/eurheartj/ehv755. PubMed DOI

SOLEIMANI B, PAE WE. Management of left ventricular distension during peripheral extracorporeal membrane oxygenation for cardiogenic shock. Perfusion. 2012;27:326–331. doi: 10.1177/0267659112443722. PubMed DOI

STRUNINA S, OSTADAL P. Left ventricle unloading during veno-arterial extracorporeal membrane oxygenation. Curr Res Cardiol. 2016;1:5–8. doi: 10.4172/2368-0512.1000054. DOI

SUGA H. Total mechanical energy of a ventricle model and cardiac oxygen consumption. Am J Physiol. 1979;236:H498–H505. doi: 10.1152/ajpheart.1979.236.3.h498. PubMed DOI

SWOL J, BELOHLAVEK J, HAFT JW, ICHIBA S, LORUSSO R, PEEK GJ. Conditions and procedures for in-hospital extracorporeal life support (ECLS) in cardiopulmonary resuscitation (CPR) of adult patients. Perfusion. 2016;31:182–188. doi: 10.1177/0267659115591622. PubMed DOI

THIAGARAJAN RR, BARBARO RP, RYCUS PT, McMULLAN DM, CONRAD SA, FORTENBERRY JD, PADEN ML. Extracorporeal Life Support Organization Registry International Report 2016. ASAIO J. 2017;63:60–67. doi: 10.1097/mat.0000000000000475. PubMed DOI

TOISCHER K, ROKITA AG, UNSOLD B, ZHU W, KARARIGAS G, SOSSALLA S, REUTER SP, BECKER A, TEUCHER N, SEIDLER T, GREBE C, PREUSS L, GUPTA SN, SCHMIDT K, LEHNART SE, KRUGER M, LINKE WA, BACKS J, REGITZ-ZAGROSEK V, SCHAFER K, FIELD LJ, MAIER LS, HASENFUSS G. Differential cardiac remodeling in preload versus afterload. Circulation. 2010;122:993–1003. doi: 10.1161/circulationaha.110.017566. PubMed DOI PMC

TOOMASIAN JM, VERCAEMST L, BOTTRELL S, HORTON SB. The circuit. In: BROGAN TV, LEQUIER L, LORUSSO R, MacLAREN G, PEEK G, editors. Extracorporeal Life Support: The ELSO Red Book. 5th Edition. Ann Arbor, MI: ELSO; 2017. pp. 49–75.

TRAHANAS JM, WITER LJ, ALGHANEM F, BRYNER BS, IYENGAR A, HIRSCHL JR, HOENERHOFF MJ, POTKAY JA, BARTLETT RH, ROJAS-PENA A, OWENS GE, BOCKS ML. Achieving 12 hour normothermic ex situ heart perfusion: an experience of 40 porcine hearts. ASAIO J. 2016;62:470–476. doi: 10.1097/mat.0000000000000382. PubMed DOI PMC

TRUBY LK, TAKEDA K, MAURO C, YUZEFPOLSKAYA M, GARAN AR, KIRTANE AJ, TOPKARA VK, ABRAMS D, BRODIE D, COLOMBO PC, NAKA Y, TAKAYAMA H. Incidence and implications of left ventricular distention during venoarterial extracorporeal membrane oxygenation support. ASAIO J. 2017;63:257–265. doi: 10.1097/mat.0000000000000553. PubMed DOI

VOLPE M, CARNOVALI M, MASTROMARINO V. The natriuretic peptides system in the pathophysiology of heart failure: from molecular basis to treatment. Clin Sci (Lond) 2016;130:57–77. doi: 10.1042/cs20150469. PubMed DOI PMC

WERDAN K, GIELEN S, EBELT H, HOCHMAN JS. Mechanical circulatory support in cardiogenic shock. Eur Heart J. 2014;35:156–167. doi: 10.1093/eurheartj/eht248. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace