Ten years of our translational research in the field of veno-arterial extracorporeal membrane oxygenation

. 2022 Dec 31 ; 71 (S2) : S163-S178.

Jazyk angličtina Země Česko Médium print

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid36647905

Extracorporeal life support is a treatment modality that provides prolonged blood circulation, gas exchange and can substitute functions of heart and lungs to provide urgent cardio-respiratory stabilization in patients with severe but potentially reversible cardiopulmonary failure refractory to conventional therapy. Generally, the therapy targets blood pressure, volume status, and end-organs perfusion. As there are significant differences in hemodynamic efficacy among different percutaneous circulatory support systems, it should be carefully considered when selecting the most appropriate circulatory support for specific medical conditions in individual patients. Despite severe metabolic and hemodynamic deterioration during prolonged cardiac arrest, venoarterial extracorporeal membrane oxygenation (VA ECMO) can rapidly revert otherwise fatal prognosis, thus carrying a potential for improvement in survival rate, which can be even improved by introduction of mild therapeutic hypothermia. In order to allow a rapid transfer of knowledge to clinical medicine two porcine models were developed for studying efficiency of the VA ECMO in treatments of acute cardiogenic shock and progressive chronic heart failure. These models allowed also an intensive research of adverse events accompanying a clinical use of VA ECMO and their possible compensations. The results indicated that in order to weaken the negative effects of increased afterload on the left ventricular function the optimal VA ECMO flow in cardiogenic shock should be as low as possible to allow adequate tissue perfusion. The left ventricle can be also unloaded by an ECG-synchronized pulsatile flow if using a novel pulsatile ECMO system. Thus, pulsatility of VA ECMO flow may improve coronary perfusion even under conditions of high ECMO blood flows. And last but not least, also the percutaneous balloon atrial septostomy is a very perspective method how to passively decompress overloaded left heart.

Zobrazit více v PubMed

Hála P, Kittnar O. Hemodynamic adaptation of heart failure to percutaneous venoarterial extracorporeal circulatory supports. Physiol Res. 2020;69:739–757. doi: 10.33549/physiolres.934332. PubMed DOI PMC

Richardson AC, Tonna JE, Nanjayya V, Nixon P, Abrams D, Raman L, Bernard S, et al. Extracorporeal Cardiopulmonary Resuscitation in Adults. Interim Guideline Consensus Statement From the Extracorporeal Life Support Organization. ASAIO J. 2021;67:221–228. doi: 10.1097/MAT.0000000000001344. PubMed DOI PMC

REGISTRY: Extracorporeal Life Support Registry Report. Available online: https://www.elso.org/Registry/Statistics/published January 30, 2020.

Massetti M, Tasle M, Le Page O, Deredec R, Babatasi G, Buklas D, Thuaudet S, et al. Back from irreversibility: extracorporeal life support for prolonged cardiac arrest. Ann Thorac Surg. 2005;79:178–183. doi: 10.1016/j.athoracsur.2004.06.095. PubMed DOI

Fredriksson M, Aune S, Bang A, Thoren AB, Lindqvist J, Karlsson T, Herlitz J. Cardiac arrest outside and inside hospital in a community: mechanisms behind the differences in outcome and outcome in relation to time of arrest. Am Heart J. 2010;159:749–756. doi: 10.1016/j.ahj.2010.01.015. PubMed DOI

Kagawa E, Inoue I, Kawagoe T, Ishihara M, Shimatani Y, Kurisu S, Nakama Y, Dai K, Takayuki O, Ikenaga H, Morimoto Y, Ejiri K, Oda N. Assessment of outcomes and differences between in- and out-of-hospital cardiac arrest patients treated with cardiopulmonary resuscitation using extracorporeal life support. Resuscitation. 2010;81:968–973. doi: 10.1016/j.resuscitation.2010.03.037. PubMed DOI

Avalli L, Maggioni E, Formica F, Redaelli G, Migliari M, Scanziani M, Celotti S, et al. Favourable survival of in-hospital compared to out-of-hospital refractory cardiac arrest patients treated with extracorporeal membrane oxygenation: an Italian tertiary care centre experience. Resuscitation. 2012;83:579–583. doi: 10.1016/j.resuscitation.2011.10.013. PubMed DOI

Le Guen M, Nicolas-Robin A, Carreira S, Raux M, Leprince P, Riou B, Langeron O. Extracorporeal life support following out-of-hospital refractory cardiac arrest. Crit Care. 2011;15:R29. doi: 10.1186/cc9976. PubMed DOI PMC

Ostadal P, Mlcek M, Holy F, Horakova S, Kralovec S, Skoda J, Petru J, et al. Direct comparison of percutaneous circulatory support systems in specific hemodynamic conditions in a porcine model. Circ Arrhythm Electrophysiol. 2012;5:1202–1206. doi: 10.1161/CIRCEP.112.973123. PubMed DOI

De Souza CF, De Souza Brito F, De Lima VC, De Camargo Carvalho AC. Percutaneous mechanical assistance for the failing heart. J Interv Cardiol. 2010;23:195–202. doi: 10.1111/j.1540-8183.2010.00536.x. PubMed DOI

Seyfarth M, Sibbing D, Bauer I, Fröhlich G, Bott-Flügel L, Byrne R, Dirschinger J, Kastrati A, Schömig A. A randomized clinical trial to evaluate the safety and efficacy of a percutaneous left ventricular assist device versus intra-aortic balloon pumping for treatment of cardiogenic shock caused by myocardial infarction. J Am Coll Cardiol. 2008;52:1584–1588. doi: 10.1016/j.jacc.2008.05.065. PubMed DOI

Thiele H, Sick P, Boudriot E, Diederich Kw, Hambrecht R, Niebauer J, Schuler G. Randomized comparison of intra-aortic balloon support with a percutaneous left ventricular assist device in patients with revascularized acute myocardial infarction complicated by cardiogenic shock. Eur Heart J. 2005;26:1276–1283. doi: 10.1093/eurheartj/ehi161. PubMed DOI

Mateen FJ, Josephs KA, Trenerry MR, Felmlee-Devine MD, Weaver AL, Carone M, White RD. Long-term cognitive outcomes following out-of-hospital cardiac arrest: A population-based study. Neurology. 2011;16:1438–1445. doi: 10.1212/WNL.0b013e318232ab33. PubMed DOI

Bouček T, Mlček M, Krupičková P, Huptych M, Belza T, Kittnar O, Linhart A, Bělohlávek J. Brain perfusion evaluated by regional tissue oxygenation as a possible quality indicator of ongoing cardiopulmonary resuscitation. An experimental porcine cardiac arrest study. Perfusion. 2018;33(1_suppl):65–70. doi: 10.1177/0267659118766282. PubMed DOI

Madershahian N, Wippermann J, Liakopoulos O, Wittwer T, Kuhn E, Er F, Hoppe U, Wahlers T. The acute effect of IABP-induced pulsatility on coronary vascular resistance and graft flow in critical ill patients during ECMO. J Cardiovasc Surg (Torino) 2011;52:411–418. PubMed

Bělohlávek J, Mlček M, Huptych M, Svoboda T, Havránek S, Ošt’ádal P, Bouček T, et al. Coronary versus carotid blood flow and coronary perfusion pressure in a pig model of prolonged cardiac arrest treated by different modes of venoarterial ECMO and intraaortic balloon counterpulsation. Crit Care. 2012;16:R50. doi: 10.1186/cc11254. PubMed DOI PMC

Sasson C, Rogers MA, Dahl J, Kellermann AL. Predictors of survival from out-of-hospital cardiac arrest: a systematic review and meta-analysis. Circ Cardiovasc Qual Outcomes. 2010;3:63–81. doi: 10.1161/CIRCOUTCOMES.109.889576. PubMed DOI

Mlček M, Ošt’ádal P, Bělohlávek J, Havránek Š, Hrachovina M, Huptych M, Hála P, et al. Hemodynamic and metabolic parameters during prolonged cardiac arrest and reperfusion by extracorporeal circulation. Physiol Res. 2012;61(Suppl 2):S57–S65. doi: 10.33549/physiolres.932454. PubMed DOI

Bernard SA, Gray TW, Buist MD, Jones BM, Silvester W, Gutteridge G, Smith K. Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia. N Engl J Med. 2002;346:557–563. doi: 10.1056/NEJMoa003289. PubMed DOI

Nielsen N, Friberg H. Insights from the evidence evaluation process-do we have the answers for therapeutic hypothermia? Resuscitation. 2011;82:501–502. doi: 10.1016/j.resuscitation.2011.02.041. PubMed DOI

Ostadal P, Mlcek M, Kruger A, Horakova S, Skabradova M, Holy F, Svoboda T, et al. Mild therapeutic hypothermia is superior to controlled normothermia for the maintenance of blood pressure and cerebral oxygenation, prevention of organ damage and suppression of oxidative stress after cardiac arrest in a porcine model. J Transl Med. 2013;11:124. doi: 10.1186/1479-5876-11-124. PubMed DOI PMC

Kudlicka J, Mlcek M, Belohlavek J, Hala P, Lacko S, Janak D, Havranek S, et al. Inducibility of ventricular fibrillation during mild therapeutic hypothermia: electrophysiological study in a swine model. J Transl Med. 2015;13:72. doi: 10.1186/s12967-015-0429-9. PubMed DOI PMC

Crick S, Sheppard M, Ho S, Gebstein L, Anderson R. Anatomy of the pig heart : comparisons with normal human cardiac structure. J Anat. 1998;193:105–119. doi: 10.1046/j.1469-7580.1998.19310105.x. PubMed DOI PMC

Hughes HC. Swine in cardiovascular research. Lab Anim Sci. 1986;36:348–350. PubMed

Lacko S, Mlček M, Hála P, Popková M, Janák D, Hrachovina M, Kudlička J, Hrachovina V, Ošt’ádal P, Kittnar O. Severe acute heart failure - experimental model with very low mortality. Physiol Res. 2018;67:555–562. doi: 10.33549/physiolres.933774. PubMed DOI

Hála P, Mlček M, Ošt’ádal P, Janák D, Popková M, Bouček T, Lacko S, Kudlička J, Neužil P, Kittnar O. Tachycardia-induced cardiomyopathy as a chronic heart failure model in swine. J Vis Exp. 2018;132:57030. doi: 10.3791/57030. PubMed DOI PMC

Hirschl RB, Heiss KF, Bartlett RH. Severe myocardial dysfunction during extracorporeal membrane oxygenation. J Pediatr Surg. 1992;27:48–53. doi: 10.1016/0022-3468(92)90103-E. PubMed DOI

Ostadal P, Mlcek M, Kruger A, Hala P, Lacko S, Mates M, Vondrakova D, Svoboda T, Hrachovina M, Janotka M, Psotova H, Strunina S, Kittnar O, Neuzil P. Increasing venoarterial extracorporeal membrane oxygenation flow negatively affects left ventricular performance in a porcine model of cardiogenic shock. J Transl Med. 2015;13:266. doi: 10.1186/s12967-015-0634-6. PubMed DOI PMC

Fuhrman BP, Hernan LJ, Rotta AT, Heard CM, Rosenkranz ER. Pathophysiology of cardiac extracorporeal membrane oxygenation. Artif Organs. 1999;23:966–969. doi: 10.1046/j.1525-1594.1999.06484.x. PubMed DOI

Kim H, Paek JH, Song JH, Lee H, Jhee JH, Park S, Yun HR, et al. Permissive fluid volume in adult patients undergoing extracorporeal membrane oxygenation treatment. Crit Care. 2018;22:270. doi: 10.1186/s13054-018-2211-x. PubMed DOI PMC

Popková M, Kuriščák E, Hála P, Janák D, Tejkl L, Bělohlávek J, Ošt’ádal P, Neužil P, Kittnar O, Mlček M. Increasing veno-arterial extracorporeal membrane oxygenation flow reduces electrical impedance of the lung regions in porcine acute heart failure. Physiol Res. 2020;69:609–620. doi: 10.33549/physiolres.934429. PubMed DOI PMC

Wolfe R, Strother A, Wang S, Kunselman AR, Undar A. Impact of pulsatility and flow rates on hemodynamic energy transmission in an adult extracorporeal life support system. Artif Organs. 2015;39:E127–E137. doi: 10.1111/aor.12484. PubMed DOI

Ostadal P, Mlcek M, Gorhan H, Simundic I, Strunina S, Hrachovina M, Krüger A, et al. Electrocardiogram-synchronized pulsatile extracorporeal life support preserves left ventricular function and coronary flow in a porcine model of cardiogenic shock. PLoS One. 2018;13:e0196321. doi: 10.1371/journal.pone.0196321. PubMed DOI PMC

Prasad A, Ghodsizad A, Brehm C, Kozak M, Körner M, El Banayosy A, Singbartl K. Refractory pulmonary edema and upper body hypoxemia during veno-arterial extracorporeal membrane oxygenation-a case for atrial septostomy. Artif Organs. 2018;42:664–669. doi: 10.1111/aor.13082. PubMed DOI

O’Byrne ML, Glatz AC, Rossano JW, Schiavo KL, Dori Y, RomE JJ, Gillespie MJ. Middle-term results of trans-catheter creation of atrial communication in patients receiving mechanical circulatory support. Catheter Cardiovasc Interv. 2015;85:1189–1195. doi: 10.1002/ccd.25824. PubMed DOI PMC

Mlcek M, Meani P, Cotza M, Kowalewski M, Raffa GM, Kuriscak E, Popkova M, et al. Atrial septostomy for left ventricular unloading during extracorporeal membrane oxygenation for cardiogenic shock: Animal model. JACC Cardiovasc Interv. 2021;14:2698–2707. doi: 10.1016/j.jcin.2021.09.011. PubMed DOI

Hála P, Mlček M, Ošt’ádal P, Popková M, Janák D, Bouček T, Lacko S, et al. Increasing venoarterial extracorporeal membrane oxygenation flow puts higher demands on left ventricular work in a porcine model of chronic heart failure. J Transl Med. 2020;18:75. doi: 10.1186/s12967-020-02250-x. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...