Coronary versus carotid blood flow and coronary perfusion pressure in a pig model of prolonged cardiac arrest treated by different modes of venoarterial ECMO and intraaortic balloon counterpulsation

. 2012 Dec 12 ; 16 (2) : R50. [epub] 20121212

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid22424292

INTRODUCTION: Extracorporeal membrane oxygenation (ECMO) is increasingly used in cardiac arrest (CA). Adequacy of carotid and coronary blood flows (CaBF, CoBF) and coronary perfusion pressure (CoPP) in ECMO treated CA is not well established. This study compares femoro-femoral (FF) to femoro-subclavian (FS) ECMO and intraaortic balloon counterpulsation (IABP) contribution based on CaBF, CoBF, CoPP, myocardial and brain oxygenation in experimental CA managed by ECMO. METHODS: In 11 female pigs (50.3 ± 3.4 kg), CA was randomly treated by FF versus FS ECMO ± IABP. Animals under general anesthesia had undergone 15 minutes of ventricular fibrillation (VF) with ECMO flow of 5 to 10 mL/kg/min simulating low-flow CA followed by continued VF with ECMO flow of 100 mL/kg/min. CaBF and CoBF were measured by a Doppler flow wire, cerebral and peripheral oxygenation by near infrared spectroscopy. CoPP, myocardial oxygen metabolism and resuscitability were determined. RESULTS: CaBF reached values > 80% of baseline in all regimens. CoBF > 80% was reached only by the FF ECMO, 90.0% (66.1, 98.6). Addition of IABP to FF ECMO decreased CoBF to 60.7% (55.1, 86.2) of baseline, P = 0.004. FS ECMO produced 70.0% (49.1, 113.2) of baseline CoBF, significantly lower than FF, P = 0.039. Addition of IABP to FS did not change the CoBF; however, it provided significantly higher flow, 76.7% (71.9, 111.2) of baseline, compared to FF + IABP, P = 0.026. Both brain and peripheral regional oxygen saturations decreased after induction of CA to 23% (15.0, 32.3) and 34% (23.5, 34.0), respectively, and normalized after ECMO institution. For brain saturations, all regimens reached values exceeding 80% of baseline, none of the comparisons between respective treatment approaches differed significantly. After a decline to 15 mmHg (9.5, 20.8) during CA, CoPP gradually rose with time to 68 mmHg (43.3, 84.0), P = 0 .003, with best recovery on FF ECMO. Resuscitability of the animals was high, both 5 and 60 minutes return of spontaneous circulation occured in eight animals (73%). CONCLUSIONS: In a pig model of CA, both FF and FS ECMO assure adequate brain perfusion and oxygenation. FF ECMO offers better CoBF than FS ECMO. Addition of IABP to FF ECMO worsens CoBF. FF ECMO, more than FS ECMO, increases CoPP over time.

Zobrazit více v PubMed

Mégarbane B, Leprince P, Deye N, Résière D, Guerrier G, Rettab S, Théodore J, Karyo S, Gandjbakhch I, Baud FJ. Emergency feasibility in medical intensive care unit of extracorporeal life support for refractory cardiac arrest. Intensive Care Med. 2007;16:758–764. doi: 10.1007/s00134-007-0568-4. PubMed DOI

Chen YS, Lin JW, Yu HY, Ko WJ, Jerng JS, Chang WT, Chen WJ, Huang SC, Chi NH, Wang CH, Chen LC, Tsai PR, Wang SS, Hwang JJ, Lin FY. Cardiopulmonary resuscitation with assisted extracorporeal life-support versus conventional cardiopulmonary resuscitation in adults with in-hospital cardiac arrest: an observational study and propensity analysis. Lancet. 2008;16:554–561. PubMed

Adnet F, Baud F, Cariou A, Carli P, Combes A, Devictor D, Dubois-Randé JL, Gérard JL, Gueugniaud PY, Ricard-Hebon A, Langeron O, Leprince P, Longrois D, Pavie A, Pouard P, Rozé JC, Trochu JN, Vincentelli A. Guidelines for indications for the use of extracorporeal life support in refractory cardiac arrest. French Ministry of Health. Ann Fr Anesth Reanim. 2009;16:182–190. PubMed

Kagawa E, Inoue I, Kawagoe T, Ishihara M, Shimatani Y, Kurisu S, Nakama Y, Dai K, Takauki O, Ikenaga H, Morimoto Y, Ejiri K, Oda N. Assessment of outcomes and differences between in- and out-of-hospital cardiac arrest treated with cardiopulmonary resuscitation with extracorporeal life support. Resuscitation. 2010;16:968–973. doi: 10.1016/j.resuscitation.2010.03.037. PubMed DOI

Jasbi BE, Ortiz B, Alla KR, Smith SC, Glaser D, Walsh C, Chillcott S, Stahovich M, Adamson R, Dembitsky W. A 20-year experience with urgent percutaneous cardiopulmonary bypass for salvage of potential survivors of refractory cardiovascular collapse. J Thorac Cardiovasc Surg. 2010;16:753–757. doi: 10.1016/j.jtcvs.2009.11.018. PubMed DOI

Morimura N, Sakamoto T, Nagao K, Asai Y, Yokota H, Tahara Y, Atsumi T, Nara S, Hase M. Extracorporeal cardiopulmonary resuscitation for out-of-hospital cardiac arrest: A review of the Japanese literature. Resuscitation. 2011;16:10–14. doi: 10.1016/j.resuscitation.2010.08.032. PubMed DOI

Le Guen M, Nicolas-Robin A, Carreira S, Raux M, Leprince P, Riou B, Langeron O. Extracorporeal life support following out-of-hospital refractory cardiac arrest. Crit Care. 2011;16:R29. doi: 10.1186/cc9976. PubMed DOI PMC

Massetti M, Tasle M, Le Page O, Deredec R, Babatasi G, Buklas D, Thuaudet S, Charbonneau P, Hamon M, Grollier G, Gerard JL, Khayat A. Back from irreversibility: extracorporeal life support for prolonged cardiac arrest. Ann Thorac Surg. 2005;16:178–183. doi: 10.1016/j.athoracsur.2004.06.095. discussion 183-184. PubMed DOI

Thiagarajan RR, Laussen PC, Rycus PT, Bartlett RH, Bratton SL. Extracorporeal membrane oxygenation to aid cardiopulmonary resuscitation in infants and children. Circulation. 2007;16:1693–1700. doi: 10.1161/CIRCULATIONAHA.106.680678. PubMed DOI

Kane DA, Thiagarajan RR, Wypij D, Scheurer MA, Fynn-Thompson F, Emani S, del Nido PJ, Betit P, Laussen PC. Rapid-response extracorporeal membrane oxygenation to support cardiopulmonary resuscitation in children with cardiac disease. Circulation. 2010;16:S241–S248. doi: 10.1161/CIRCULATIONAHA.109.928390. PubMed DOI

Peek GJ. Community extracorporeal life support for cardiac arrest - when should it be used? Resuscitation. 2011;16:1117. doi: 10.1016/j.resuscitation.2011.06.006. PubMed DOI

O'Connor RE, Bossaert L, Arntz HR, Brooks SC, Diercks D, Feitosa-Filho G, Nolan JP, Vanden Hoek TL, Walters DL, Wong A, Welsford M, Woolfrey K. Acute Coronary Syndrome Chapter Collaborators. Part 9: Acute coronary syndromes: 2010 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations. Circulation. 2010;16:S422–S465. doi: 10.1161/CIRCULATIONAHA.110.985549. PubMed DOI

Mateen FJ, Josephs KA, Trenerry MR, Felmlee-Devine MD, Weaver AL, Carone M, White RD. Long-term cognitive outcomes following out-of-hospital cardiac arrest: A population-based study. Neurology. 2011;16:1438–1445. doi: 10.1212/WNL.0b013e318232ab33. PubMed DOI

Becker LB, Aufderheide TP, Geocadin RG, Callaway CW, Lazar RM, Donnino MW, Nadkarni V, Abella BS, Adrie C, Berg RA, Merchant RA, O'Connor RE, Meltzer DO, Holm MB, Longstreth WT, Halperin HR. Primary outcomes for resuscitation science studies: a consensus statement from the American Heart Association. Circulation. 2011;16:2158–2177. doi: 10.1161/CIR.0b013e3182340239. PubMed DOI PMC

Madershahian N, Wippermann J, Liakopoulos O, Wittwer T, Kuhn E, Er F, Hoppe U, Wahlers T. The acute effect of IABP-induced pulsatility on coronary vascular resistance and graft flow in critical ill patients during ECMO. J Cardiovasc Surg (Torino) 2011;16:411–418. PubMed

Miyamoto S, Hadama T, Mori Y, Shigemitsu O, Sako H, Uchida U. Hemodynamic profiles during concurrent intraaortic balloon pumping and venoarterial bypass-a canine study comparing subclavian and femoral artery perfusion sites. Jpn Circ J. 1995;16:693–703. doi: 10.1253/jcj.59.693. PubMed DOI

Stulak JM, Dearani JA, Burkhart HM, Barnes RD, Scott PD, Schears GJ. ECMO cannulation controversies and complications. Semin Cardiothorac Vasc Anesth. 2009;16:176–182. doi: 10.1177/1089253209347943. PubMed DOI

Ganslmeier P, Philipp A, Rupprecht L, Diez C, Arlt M, Mueller T, Pfister K, Hilker M, Schmid C. Percutaneous cannulation for extracorporeal life support. Thorac Cardiovasc Surg. 2011;16:103–107. doi: 10.1055/s-0030-1250635. PubMed DOI

Doucette JW, Corl PD, Payne HM, Flynn AE, Goto M, Nassi M, Segal J. Validation of a Doppler guide wire for intravascular measurement of coronary artery flow velocity. Circulation. 1992;16:1899–1911. PubMed

Olivecrona GK, Götberg M, Harnek J, Van der Pals J, Erlinge D. Mild hypothermia reduces cardiac post-ischemic reactive hyperemia. BMC Cardiovasc Disord. 2007;16 PubMed PMC

Shen I, Levy FH, Benak AM, Rothnie CL, O'Rourke PP, Duncan BW, Verrier ED. Left ventricular dysfunction during extracorporeal membrane oxygenation in a hypoxemic swine model. Ann Thorac Surg. 2001;16:868–871. doi: 10.1016/S0003-4975(00)02281-5. PubMed DOI

Shen I, Levy FH, Vocelka CR, O'Rourke PP, Duncan BW, Thomas R, Verrier ED. Effect of extracorporeal membrane oxygenation on left ventricular function of swine. Ann Thorac Surg. 2001;16:862–867. doi: 10.1016/S0003-4975(00)02280-3. PubMed DOI

Pyles LA, Gustafson RA, Fortney J, Einzig S. Extracorporeal membrane oxygenation induced cardiac dysfunction in newborn lambs. J Cardiovasc Transl Res. 2010;16:625–634. doi: 10.1007/s12265-010-9215-5. PubMed DOI

Seo T, Ito T, Iio K, Kato J, Takagi H. Experimental study on the hemodynamic effects of veno-arterial extracorporeal membrane oxygenation with an automatically driven blood pump on puppies. Artif Organs. 1991;16:402–407. PubMed

Yu JJ, Son HS, Lim CH, Lee JJ, Park YW, Her K, Won YS, Sun K, Choi JY. Comparison of myocardial loading between asynchronous pulsatile and nonpulsatile percutaneous extracorporeal life support. ASAIO J. 2008;16:177–180. doi: 10.1097/MAT.0b013e318165f512. PubMed DOI

Smith HG, Whittlesey GC, Kundu SK, Salley SO, Kuhns LR, Chang CH, Klein MD. Regional blood flow during extracorporeal membrane oxygenation in lambs. ASAIO Trans. 1989;16:657–660. doi: 10.1097/00002480-198907000-00159. PubMed DOI

Kato J, Seo T, Ando H, Takagi H, Ito T. Coronary arterial perfusion during venoarterial extracorporeal membrane oxygenation. J Thorac Cardiovasc Surg. 1996;16:630–636. doi: 10.1016/S0022-5223(96)70315-X. PubMed DOI

Kamimura T, Sakamoto H, Misumi K. Regional blood flow distribution from the proximal arterial cannula during veno-arterial extracorporeal membrane oxygenation in neonatal dog. J Vet Med Sci. 1999;16:311–315. doi: 10.1292/jvms.61.311. PubMed DOI

Son HS, Sun K, Fang YH, Park SY, Hwang CM, Park SM, Lee SH, Kim KT, Lee IS. The effects of pulsatile versus non-pulsatile extracorporeal circulation on the pattern of coronary artery blood flow during cardiac arrest. Int J Artif Organs. 2005;16:609–616. PubMed

Jung JS, Son HS, Lim CH, Sun K. Pulsatile versus nonpulsatile flow to maintain the equivalent coronary blood flow in the fibrillating heart. ASAIO J. 2007;16:785–790. doi: 10.1097/MAT.0b013e31815b2d00. PubMed DOI

Lim CH, Son HS, Baek KJ, Lee JJ, Ahn CB, Moon KC, Khi W, Lee H, Sun K. Comparison of coronary artery blood flow and hemodynamic energy in a pulsatile pump versus a combined nonpulsatile pump and an intra-aortic balloon pump. ASAIO J. 2006;16:595–597. PubMed

Lim CH, Son HS, Fang YH, Lee JJ, Baik KJ, Kim KH, Kim BS, Lee HW, Sun K. Hemodynamic energy generated by a combined centrifugal pump with an intra-aortic balloon pump. ASAIO J. 2006;16:592–594. PubMed

Kim HK, Son HS, Fang YH, Park SY, Hwang CM, Sun K. The effects of pulsatile flow upon renal tissue perfusion during cardiopulmonary bypass: a comparative study of pulsatile and nonpulsatile flow. ASAIO J. 2005;16:30–36. doi: 10.1097/01.MAT.0000150324.02040.B4. PubMed DOI

Sauren LD, Reesink KD, Selder JL, Beghi C, van der Veen FH, Maessen JG. The acute effect of intra-aortic balloon counterpulsation during extracorporeal life support: an experimental study. Artif Organs. 2007;16:31–38. doi: 10.1111/j.1525-1594.2007.00337.x. PubMed DOI

Drakos SG, Charitos CE, Ntalianis A, Terrovitis JV, Siafakas KX, Dolou P, Pierrakos C, Charitos E, Karelas J, Nanas JN. Comparison of pulsatile with nonpulsatile mechanical support in a porcine model of profound cardiogenic shock. ASAIO J. 2005;16:26–29. doi: 10.1097/01.MAT.0000150323.62708.35. PubMed DOI

Jung C, Lauten A, Roediger C, Fritzenwanger M, Schumm J, Figulla HR, Ferrari M. In vivo evaluation of tissue microflow under combined therapy with extracorporeal life support and intra-aortic balloon counterpulsation. Anaesth Intensive Care. 2009;16:833–835. PubMed

Jung C, Rödiger C, Fritzenwanger M, Schumm J, Lauten A, Figulla HR, Ferrari M. Acute microflow changes after stop and restart of intra-aortic balloon pump in cardiogenic shock. Clin Res Cardiol. 2009;16:469–475. doi: 10.1007/s00392-009-0018-0. PubMed DOI

den Uil CA, Lagrand WK, van der Ent M, Jewbali LS, Brugts JJ, Spronk PE, Simoons ML. The effects of intra-aortic balloon pump support on macrocirculation and tissue microcirculation in patients with cardiogenic shock. Cardiology. 2009;16:42–46. doi: 10.1159/000212060. PubMed DOI

Munsterman LD, Elbers PW, Ozdemir A, van Dongen EP, van Iterson M, Ince C. Withdrawing intra-aortic balloon pump support paradoxically improves microvascular flow. Critical Care. 2010;16:R161. doi: 10.1186/cc9242. PubMed DOI PMC

De Backer D, Creteur J, Dubois MJ, Sakr Y, Vincent JL. Microvascular alterations in patients with acute severe heart failure and cardiogenic shock. Am Heart J. 2004;16:91–99. doi: 10.1016/j.ahj.2003.07.006. PubMed DOI

Sakr Y, Dubois MJ, De Backer D, Creteur J, Vincent JL. Persistent microcirculatory alterations are associated with organ failure and death in patients with septic shock. Crit Care Med. 2004;16:1825–1831. doi: 10.1097/01.CCM.0000138558.16257.3F. PubMed DOI

Top AP, Ince C, van Dijk M, Tibboel D. Changes in buccal microcirculation following extracorporeal membrane oxygenation in term neonates with severe respiratory failure. Crit Care Med. 2009;16:1121–1124. doi: 10.1097/CCM.0b013e3181962a5f. PubMed DOI

Paradis NA, Martin GB, Rivers EP, Goetting MG, Appleton TJ, Feingold M, Nowak RM. Coronary perfusion pressure and the return of spontaneous circulation in human cardiopulmonary resuscitation. JAMA. 1990;16:1106–1113. doi: 10.1001/jama.1990.03440080084029. PubMed DOI

Reynolds JC, Salcido DD, Menegazzi JJ. Coronary perfusion pressure and return of spontaneous circulation after prolonged cardiac arrest. Prehosp Emerg Care. 2010;16:78–84. doi: 10.3109/10903120903349796. PubMed DOI PMC

Halperin HR, Lee K, Zviman M, Illindala U, Lardo A, Kolandaivelu A, Paradis NA. Outcomes from low versus high-flow cardiopulmonary resuscitation in a swine model of cardiac arrest. Am J Emerg Med. 2010;16:195–202. doi: 10.1016/j.ajem.2009.10.006. PubMed DOI

Neumar RW. Optimal oxygenation during and after cardiopulmonary resuscitation. Curr Opin Crit Care. 2011;16:236–240. doi: 10.1097/MCC.0b013e3283454c8c. PubMed DOI

Kilgannon JH, Jones AE, Parrillo JE, Dellinger RP, Milcarek B, Hunter K, Shapiro NI, Trzeciak S. Emergency Medicine Shock Research Network (EMShockNet) Investigators. Relationship between supranormal oxygen tension and outcome after resuscitation from cardiac arrest. Circulation. 2011;16:2717–2722. doi: 10.1161/CIRCULATIONAHA.110.001016. PubMed DOI

Xanthos T, Bassiakou E, Koudouna E, Tsirikos-Karapanos N, Lelovas P, Papadimitriou D, Dontas I, Papadimitriou L. Baseline hemodynamics in anesthetized landrace-large white swine: reference values for research in cardiac arrest and cardiopulmonary resuscitation models. J Am Assoc Lab Anim Sci. 2007;16:21–25. PubMed

Ito N, Nanto S, Nagao K, Hatanaka T, Nishiyama K, Kai T. Regional cerebral oxygen saturation on hospital arrival is a potential novel predictor of neurological outcomes at hospital discharge in patients with out-of-hospital cardiac arrest. Resuscitation. 2012;16:46–50. doi: 10.1016/j.resuscitation.2011.10.016. PubMed DOI

Xanthos T, Lelovas P, Vlachos I, Tsirikos-Karapanos N, Kouskouni E, Perrea D, Dontas I. Cardiopulmonary arrest and resuscitation in Landrace/Large White swine: a research model. Lab Anim. 2007;16:353–362. doi: 10.1258/002367707781282820. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Ten years of our translational research in the field of veno-arterial extracorporeal membrane oxygenation

. 2022 Dec 31 ; 71 (S2) : S163-S178.

Extracorporeal cardiopulmonary resuscitation in adults: evidence and implications

. 2022 Jan ; 48 (1) : 1-15. [epub] 20210910

Hemodynamic adaptation of heart failure to percutaneous venoarterial extracorporeal circulatory supports

. 2020 Nov 16 ; 69 (5) : 739-757. [epub] 20200909

Increasing venoarterial extracorporeal membrane oxygenation flow puts higher demands on left ventricular work in a porcine model of chronic heart failure

. 2020 Feb 13 ; 18 (1) : 75. [epub] 20200213

Microcirculatory blood flow during cardiac arrest and cardiopulmonary resuscitation does not correlate with global hemodynamics: an experimental study

. 2016 Jun 08 ; 14 (1) : 163. [epub] 20160608

Inducibility of ventricular fibrillation during mild therapeutic hypothermia: electrophysiological study in a swine model

. 2015 Feb 22 ; 13 () : 72. [epub] 20150222

Renal denervation decreases effective refractory period but not inducibility of ventricular fibrillation in a healthy porcine biomodel: a case control study

. 2015 Jan 16 ; 13 () : 4. [epub] 20150116

Hyperinvasive approach to out-of hospital cardiac arrest using mechanical chest compression device, prehospital intraarrest cooling, extracorporeal life support and early invasive assessment compared to standard of care. A randomized parallel groups comparative study proposal. "Prague OHCA study"

. 2012 Aug 10 ; 10 () : 163. [epub] 20120810

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...