Coronary versus carotid blood flow and coronary perfusion pressure in a pig model of prolonged cardiac arrest treated by different modes of venoarterial ECMO and intraaortic balloon counterpulsation
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
22424292
PubMed Central
PMC3964801
DOI
10.1186/cc11254
PII: cc11254
Knihovny.cz E-zdroje
- MeSH
- analýza rozptylu MeSH
- arteriae carotides fyziologie MeSH
- hemodynamika MeSH
- intraaortální balónková pumpa * MeSH
- koronární cévy fyziologie MeSH
- koronární cirkulace fyziologie MeSH
- mimotělní membránová oxygenace metody MeSH
- modely nemocí na zvířatech MeSH
- náhodné rozdělení MeSH
- prasata MeSH
- rychlost toku krve fyziologie MeSH
- srdeční zástava patofyziologie MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
INTRODUCTION: Extracorporeal membrane oxygenation (ECMO) is increasingly used in cardiac arrest (CA). Adequacy of carotid and coronary blood flows (CaBF, CoBF) and coronary perfusion pressure (CoPP) in ECMO treated CA is not well established. This study compares femoro-femoral (FF) to femoro-subclavian (FS) ECMO and intraaortic balloon counterpulsation (IABP) contribution based on CaBF, CoBF, CoPP, myocardial and brain oxygenation in experimental CA managed by ECMO. METHODS: In 11 female pigs (50.3 ± 3.4 kg), CA was randomly treated by FF versus FS ECMO ± IABP. Animals under general anesthesia had undergone 15 minutes of ventricular fibrillation (VF) with ECMO flow of 5 to 10 mL/kg/min simulating low-flow CA followed by continued VF with ECMO flow of 100 mL/kg/min. CaBF and CoBF were measured by a Doppler flow wire, cerebral and peripheral oxygenation by near infrared spectroscopy. CoPP, myocardial oxygen metabolism and resuscitability were determined. RESULTS: CaBF reached values > 80% of baseline in all regimens. CoBF > 80% was reached only by the FF ECMO, 90.0% (66.1, 98.6). Addition of IABP to FF ECMO decreased CoBF to 60.7% (55.1, 86.2) of baseline, P = 0.004. FS ECMO produced 70.0% (49.1, 113.2) of baseline CoBF, significantly lower than FF, P = 0.039. Addition of IABP to FS did not change the CoBF; however, it provided significantly higher flow, 76.7% (71.9, 111.2) of baseline, compared to FF + IABP, P = 0.026. Both brain and peripheral regional oxygen saturations decreased after induction of CA to 23% (15.0, 32.3) and 34% (23.5, 34.0), respectively, and normalized after ECMO institution. For brain saturations, all regimens reached values exceeding 80% of baseline, none of the comparisons between respective treatment approaches differed significantly. After a decline to 15 mmHg (9.5, 20.8) during CA, CoPP gradually rose with time to 68 mmHg (43.3, 84.0), P = 0 .003, with best recovery on FF ECMO. Resuscitability of the animals was high, both 5 and 60 minutes return of spontaneous circulation occured in eight animals (73%). CONCLUSIONS: In a pig model of CA, both FF and FS ECMO assure adequate brain perfusion and oxygenation. FF ECMO offers better CoBF than FS ECMO. Addition of IABP to FF ECMO worsens CoBF. FF ECMO, more than FS ECMO, increases CoPP over time.
Zobrazit více v PubMed
Mégarbane B, Leprince P, Deye N, Résière D, Guerrier G, Rettab S, Théodore J, Karyo S, Gandjbakhch I, Baud FJ. Emergency feasibility in medical intensive care unit of extracorporeal life support for refractory cardiac arrest. Intensive Care Med. 2007;16:758–764. doi: 10.1007/s00134-007-0568-4. PubMed DOI
Chen YS, Lin JW, Yu HY, Ko WJ, Jerng JS, Chang WT, Chen WJ, Huang SC, Chi NH, Wang CH, Chen LC, Tsai PR, Wang SS, Hwang JJ, Lin FY. Cardiopulmonary resuscitation with assisted extracorporeal life-support versus conventional cardiopulmonary resuscitation in adults with in-hospital cardiac arrest: an observational study and propensity analysis. Lancet. 2008;16:554–561. PubMed
Adnet F, Baud F, Cariou A, Carli P, Combes A, Devictor D, Dubois-Randé JL, Gérard JL, Gueugniaud PY, Ricard-Hebon A, Langeron O, Leprince P, Longrois D, Pavie A, Pouard P, Rozé JC, Trochu JN, Vincentelli A. Guidelines for indications for the use of extracorporeal life support in refractory cardiac arrest. French Ministry of Health. Ann Fr Anesth Reanim. 2009;16:182–190. PubMed
Kagawa E, Inoue I, Kawagoe T, Ishihara M, Shimatani Y, Kurisu S, Nakama Y, Dai K, Takauki O, Ikenaga H, Morimoto Y, Ejiri K, Oda N. Assessment of outcomes and differences between in- and out-of-hospital cardiac arrest treated with cardiopulmonary resuscitation with extracorporeal life support. Resuscitation. 2010;16:968–973. doi: 10.1016/j.resuscitation.2010.03.037. PubMed DOI
Jasbi BE, Ortiz B, Alla KR, Smith SC, Glaser D, Walsh C, Chillcott S, Stahovich M, Adamson R, Dembitsky W. A 20-year experience with urgent percutaneous cardiopulmonary bypass for salvage of potential survivors of refractory cardiovascular collapse. J Thorac Cardiovasc Surg. 2010;16:753–757. doi: 10.1016/j.jtcvs.2009.11.018. PubMed DOI
Morimura N, Sakamoto T, Nagao K, Asai Y, Yokota H, Tahara Y, Atsumi T, Nara S, Hase M. Extracorporeal cardiopulmonary resuscitation for out-of-hospital cardiac arrest: A review of the Japanese literature. Resuscitation. 2011;16:10–14. doi: 10.1016/j.resuscitation.2010.08.032. PubMed DOI
Le Guen M, Nicolas-Robin A, Carreira S, Raux M, Leprince P, Riou B, Langeron O. Extracorporeal life support following out-of-hospital refractory cardiac arrest. Crit Care. 2011;16:R29. doi: 10.1186/cc9976. PubMed DOI PMC
Massetti M, Tasle M, Le Page O, Deredec R, Babatasi G, Buklas D, Thuaudet S, Charbonneau P, Hamon M, Grollier G, Gerard JL, Khayat A. Back from irreversibility: extracorporeal life support for prolonged cardiac arrest. Ann Thorac Surg. 2005;16:178–183. doi: 10.1016/j.athoracsur.2004.06.095. discussion 183-184. PubMed DOI
Thiagarajan RR, Laussen PC, Rycus PT, Bartlett RH, Bratton SL. Extracorporeal membrane oxygenation to aid cardiopulmonary resuscitation in infants and children. Circulation. 2007;16:1693–1700. doi: 10.1161/CIRCULATIONAHA.106.680678. PubMed DOI
Kane DA, Thiagarajan RR, Wypij D, Scheurer MA, Fynn-Thompson F, Emani S, del Nido PJ, Betit P, Laussen PC. Rapid-response extracorporeal membrane oxygenation to support cardiopulmonary resuscitation in children with cardiac disease. Circulation. 2010;16:S241–S248. doi: 10.1161/CIRCULATIONAHA.109.928390. PubMed DOI
Peek GJ. Community extracorporeal life support for cardiac arrest - when should it be used? Resuscitation. 2011;16:1117. doi: 10.1016/j.resuscitation.2011.06.006. PubMed DOI
O'Connor RE, Bossaert L, Arntz HR, Brooks SC, Diercks D, Feitosa-Filho G, Nolan JP, Vanden Hoek TL, Walters DL, Wong A, Welsford M, Woolfrey K. Acute Coronary Syndrome Chapter Collaborators. Part 9: Acute coronary syndromes: 2010 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations. Circulation. 2010;16:S422–S465. doi: 10.1161/CIRCULATIONAHA.110.985549. PubMed DOI
Mateen FJ, Josephs KA, Trenerry MR, Felmlee-Devine MD, Weaver AL, Carone M, White RD. Long-term cognitive outcomes following out-of-hospital cardiac arrest: A population-based study. Neurology. 2011;16:1438–1445. doi: 10.1212/WNL.0b013e318232ab33. PubMed DOI
Becker LB, Aufderheide TP, Geocadin RG, Callaway CW, Lazar RM, Donnino MW, Nadkarni V, Abella BS, Adrie C, Berg RA, Merchant RA, O'Connor RE, Meltzer DO, Holm MB, Longstreth WT, Halperin HR. Primary outcomes for resuscitation science studies: a consensus statement from the American Heart Association. Circulation. 2011;16:2158–2177. doi: 10.1161/CIR.0b013e3182340239. PubMed DOI PMC
Madershahian N, Wippermann J, Liakopoulos O, Wittwer T, Kuhn E, Er F, Hoppe U, Wahlers T. The acute effect of IABP-induced pulsatility on coronary vascular resistance and graft flow in critical ill patients during ECMO. J Cardiovasc Surg (Torino) 2011;16:411–418. PubMed
Miyamoto S, Hadama T, Mori Y, Shigemitsu O, Sako H, Uchida U. Hemodynamic profiles during concurrent intraaortic balloon pumping and venoarterial bypass-a canine study comparing subclavian and femoral artery perfusion sites. Jpn Circ J. 1995;16:693–703. doi: 10.1253/jcj.59.693. PubMed DOI
Stulak JM, Dearani JA, Burkhart HM, Barnes RD, Scott PD, Schears GJ. ECMO cannulation controversies and complications. Semin Cardiothorac Vasc Anesth. 2009;16:176–182. doi: 10.1177/1089253209347943. PubMed DOI
Ganslmeier P, Philipp A, Rupprecht L, Diez C, Arlt M, Mueller T, Pfister K, Hilker M, Schmid C. Percutaneous cannulation for extracorporeal life support. Thorac Cardiovasc Surg. 2011;16:103–107. doi: 10.1055/s-0030-1250635. PubMed DOI
Doucette JW, Corl PD, Payne HM, Flynn AE, Goto M, Nassi M, Segal J. Validation of a Doppler guide wire for intravascular measurement of coronary artery flow velocity. Circulation. 1992;16:1899–1911. PubMed
Olivecrona GK, Götberg M, Harnek J, Van der Pals J, Erlinge D. Mild hypothermia reduces cardiac post-ischemic reactive hyperemia. BMC Cardiovasc Disord. 2007;16 PubMed PMC
Shen I, Levy FH, Benak AM, Rothnie CL, O'Rourke PP, Duncan BW, Verrier ED. Left ventricular dysfunction during extracorporeal membrane oxygenation in a hypoxemic swine model. Ann Thorac Surg. 2001;16:868–871. doi: 10.1016/S0003-4975(00)02281-5. PubMed DOI
Shen I, Levy FH, Vocelka CR, O'Rourke PP, Duncan BW, Thomas R, Verrier ED. Effect of extracorporeal membrane oxygenation on left ventricular function of swine. Ann Thorac Surg. 2001;16:862–867. doi: 10.1016/S0003-4975(00)02280-3. PubMed DOI
Pyles LA, Gustafson RA, Fortney J, Einzig S. Extracorporeal membrane oxygenation induced cardiac dysfunction in newborn lambs. J Cardiovasc Transl Res. 2010;16:625–634. doi: 10.1007/s12265-010-9215-5. PubMed DOI
Seo T, Ito T, Iio K, Kato J, Takagi H. Experimental study on the hemodynamic effects of veno-arterial extracorporeal membrane oxygenation with an automatically driven blood pump on puppies. Artif Organs. 1991;16:402–407. PubMed
Yu JJ, Son HS, Lim CH, Lee JJ, Park YW, Her K, Won YS, Sun K, Choi JY. Comparison of myocardial loading between asynchronous pulsatile and nonpulsatile percutaneous extracorporeal life support. ASAIO J. 2008;16:177–180. doi: 10.1097/MAT.0b013e318165f512. PubMed DOI
Smith HG, Whittlesey GC, Kundu SK, Salley SO, Kuhns LR, Chang CH, Klein MD. Regional blood flow during extracorporeal membrane oxygenation in lambs. ASAIO Trans. 1989;16:657–660. doi: 10.1097/00002480-198907000-00159. PubMed DOI
Kato J, Seo T, Ando H, Takagi H, Ito T. Coronary arterial perfusion during venoarterial extracorporeal membrane oxygenation. J Thorac Cardiovasc Surg. 1996;16:630–636. doi: 10.1016/S0022-5223(96)70315-X. PubMed DOI
Kamimura T, Sakamoto H, Misumi K. Regional blood flow distribution from the proximal arterial cannula during veno-arterial extracorporeal membrane oxygenation in neonatal dog. J Vet Med Sci. 1999;16:311–315. doi: 10.1292/jvms.61.311. PubMed DOI
Son HS, Sun K, Fang YH, Park SY, Hwang CM, Park SM, Lee SH, Kim KT, Lee IS. The effects of pulsatile versus non-pulsatile extracorporeal circulation on the pattern of coronary artery blood flow during cardiac arrest. Int J Artif Organs. 2005;16:609–616. PubMed
Jung JS, Son HS, Lim CH, Sun K. Pulsatile versus nonpulsatile flow to maintain the equivalent coronary blood flow in the fibrillating heart. ASAIO J. 2007;16:785–790. doi: 10.1097/MAT.0b013e31815b2d00. PubMed DOI
Lim CH, Son HS, Baek KJ, Lee JJ, Ahn CB, Moon KC, Khi W, Lee H, Sun K. Comparison of coronary artery blood flow and hemodynamic energy in a pulsatile pump versus a combined nonpulsatile pump and an intra-aortic balloon pump. ASAIO J. 2006;16:595–597. PubMed
Lim CH, Son HS, Fang YH, Lee JJ, Baik KJ, Kim KH, Kim BS, Lee HW, Sun K. Hemodynamic energy generated by a combined centrifugal pump with an intra-aortic balloon pump. ASAIO J. 2006;16:592–594. PubMed
Kim HK, Son HS, Fang YH, Park SY, Hwang CM, Sun K. The effects of pulsatile flow upon renal tissue perfusion during cardiopulmonary bypass: a comparative study of pulsatile and nonpulsatile flow. ASAIO J. 2005;16:30–36. doi: 10.1097/01.MAT.0000150324.02040.B4. PubMed DOI
Sauren LD, Reesink KD, Selder JL, Beghi C, van der Veen FH, Maessen JG. The acute effect of intra-aortic balloon counterpulsation during extracorporeal life support: an experimental study. Artif Organs. 2007;16:31–38. doi: 10.1111/j.1525-1594.2007.00337.x. PubMed DOI
Drakos SG, Charitos CE, Ntalianis A, Terrovitis JV, Siafakas KX, Dolou P, Pierrakos C, Charitos E, Karelas J, Nanas JN. Comparison of pulsatile with nonpulsatile mechanical support in a porcine model of profound cardiogenic shock. ASAIO J. 2005;16:26–29. doi: 10.1097/01.MAT.0000150323.62708.35. PubMed DOI
Jung C, Lauten A, Roediger C, Fritzenwanger M, Schumm J, Figulla HR, Ferrari M. In vivo evaluation of tissue microflow under combined therapy with extracorporeal life support and intra-aortic balloon counterpulsation. Anaesth Intensive Care. 2009;16:833–835. PubMed
Jung C, Rödiger C, Fritzenwanger M, Schumm J, Lauten A, Figulla HR, Ferrari M. Acute microflow changes after stop and restart of intra-aortic balloon pump in cardiogenic shock. Clin Res Cardiol. 2009;16:469–475. doi: 10.1007/s00392-009-0018-0. PubMed DOI
den Uil CA, Lagrand WK, van der Ent M, Jewbali LS, Brugts JJ, Spronk PE, Simoons ML. The effects of intra-aortic balloon pump support on macrocirculation and tissue microcirculation in patients with cardiogenic shock. Cardiology. 2009;16:42–46. doi: 10.1159/000212060. PubMed DOI
Munsterman LD, Elbers PW, Ozdemir A, van Dongen EP, van Iterson M, Ince C. Withdrawing intra-aortic balloon pump support paradoxically improves microvascular flow. Critical Care. 2010;16:R161. doi: 10.1186/cc9242. PubMed DOI PMC
De Backer D, Creteur J, Dubois MJ, Sakr Y, Vincent JL. Microvascular alterations in patients with acute severe heart failure and cardiogenic shock. Am Heart J. 2004;16:91–99. doi: 10.1016/j.ahj.2003.07.006. PubMed DOI
Sakr Y, Dubois MJ, De Backer D, Creteur J, Vincent JL. Persistent microcirculatory alterations are associated with organ failure and death in patients with septic shock. Crit Care Med. 2004;16:1825–1831. doi: 10.1097/01.CCM.0000138558.16257.3F. PubMed DOI
Top AP, Ince C, van Dijk M, Tibboel D. Changes in buccal microcirculation following extracorporeal membrane oxygenation in term neonates with severe respiratory failure. Crit Care Med. 2009;16:1121–1124. doi: 10.1097/CCM.0b013e3181962a5f. PubMed DOI
Paradis NA, Martin GB, Rivers EP, Goetting MG, Appleton TJ, Feingold M, Nowak RM. Coronary perfusion pressure and the return of spontaneous circulation in human cardiopulmonary resuscitation. JAMA. 1990;16:1106–1113. doi: 10.1001/jama.1990.03440080084029. PubMed DOI
Reynolds JC, Salcido DD, Menegazzi JJ. Coronary perfusion pressure and return of spontaneous circulation after prolonged cardiac arrest. Prehosp Emerg Care. 2010;16:78–84. doi: 10.3109/10903120903349796. PubMed DOI PMC
Halperin HR, Lee K, Zviman M, Illindala U, Lardo A, Kolandaivelu A, Paradis NA. Outcomes from low versus high-flow cardiopulmonary resuscitation in a swine model of cardiac arrest. Am J Emerg Med. 2010;16:195–202. doi: 10.1016/j.ajem.2009.10.006. PubMed DOI
Neumar RW. Optimal oxygenation during and after cardiopulmonary resuscitation. Curr Opin Crit Care. 2011;16:236–240. doi: 10.1097/MCC.0b013e3283454c8c. PubMed DOI
Kilgannon JH, Jones AE, Parrillo JE, Dellinger RP, Milcarek B, Hunter K, Shapiro NI, Trzeciak S. Emergency Medicine Shock Research Network (EMShockNet) Investigators. Relationship between supranormal oxygen tension and outcome after resuscitation from cardiac arrest. Circulation. 2011;16:2717–2722. doi: 10.1161/CIRCULATIONAHA.110.001016. PubMed DOI
Xanthos T, Bassiakou E, Koudouna E, Tsirikos-Karapanos N, Lelovas P, Papadimitriou D, Dontas I, Papadimitriou L. Baseline hemodynamics in anesthetized landrace-large white swine: reference values for research in cardiac arrest and cardiopulmonary resuscitation models. J Am Assoc Lab Anim Sci. 2007;16:21–25. PubMed
Ito N, Nanto S, Nagao K, Hatanaka T, Nishiyama K, Kai T. Regional cerebral oxygen saturation on hospital arrival is a potential novel predictor of neurological outcomes at hospital discharge in patients with out-of-hospital cardiac arrest. Resuscitation. 2012;16:46–50. doi: 10.1016/j.resuscitation.2011.10.016. PubMed DOI
Xanthos T, Lelovas P, Vlachos I, Tsirikos-Karapanos N, Kouskouni E, Perrea D, Dontas I. Cardiopulmonary arrest and resuscitation in Landrace/Large White swine: a research model. Lab Anim. 2007;16:353–362. doi: 10.1258/002367707781282820. PubMed DOI
Extracorporeal cardiopulmonary resuscitation in adults: evidence and implications