Microcirculatory blood flow during cardiac arrest and cardiopulmonary resuscitation does not correlate with global hemodynamics: an experimental study

. 2016 Jun 08 ; 14 (1) : 163. [epub] 20160608

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid27277706
Odkazy

PubMed 27277706
PubMed Central PMC4898356
DOI 10.1186/s12967-016-0934-5
PII: 10.1186/s12967-016-0934-5
Knihovny.cz E-zdroje

BACKGROUND: Current research highlights the role of microcirculatory disorders in post-cardiac arrest patients. Affected microcirculation shows not only dissociation from systemic hemodynamics but also strong connection to outcome of these patients. However, only few studies evaluated microcirculation directly during cardiac arrest (CA) and cardiopulmonary resuscitation (CPR). The aim of our experimental study in a porcine model was to describe sublingual microcirculatory changes during CA and CPR using recent videomicroscopic technology and provide a comparison to parameters of global hemodynamics. METHODS: Cardiac arrest was induced in 18 female pigs (50 ± 3 kg). After 3 min without treatment, 5 min of mechanical CPR followed. Continuous hemodynamic monitoring including systemic blood pressure and carotid blood flow was performed and blood lactate was measured at the end of baseline and CPR. Sublingual microcirculation was assessed by the Sidestream Dark Field (SDF) technology during baseline, CA and CPR. Following microcirculatory parameters were assessed off-line separately for capillaries (≤20 µm) and other vessels: total and perfused vessel density (TVD, PVD), proportion of perfused vessels (PPV), microvascular flow index (MFI) and heterogeneity index (HI). RESULTS: In comparison to baseline the CA small vessel microcirculation was only partially preserved: TVD 15.64 (13.59-18.48) significantly decreased to 12.51 (10.57-13.98) mm/mm(2), PVD 15.57 (13.56-17.80) to 5.53 (4.17-6.60) mm/mm(2), PPV 99.64 (98.05-100.00) to 38.97 (27.60-46.29) %, MFI 3.00 (3.00-3.08) to 1.29 (1.08-1.58) and HI increased from 0.08 (0.00-0.23) to 1.5 (0.71-2.00), p = 0.0003 for TVD and <0.0001 for others, respectively. Microcirculation during ongoing CPR in small vessels reached 59-85 % of the baseline values: TVD 13.33 (12.11-15.11) mm/mm(2), PVD 9.34 (7.34-11.52) mm/mm(2), PPV 72.34 (54.31-87.87) %, MFI 2.04 (1.58-2.42), HI 0.65 (0.41-1.07). The correlation between microcirculation and global hemodynamic parameters as well as to lactate was only weak to moderate (i.e. Spearman's ρ 0.02-0.51) and after adjustment for multiple correlations it was non-significant. CONCLUSIONS: Sublingual microcirculatory parameters did not correlate with global hemodynamic parameters during simulated porcine model of CA and CPR. SDF imaging provides additional information about tissue perfusion in the course of CPR.

Zobrazit více v PubMed

Monsieurs KG, Nolan JP, Bossaert LL, Greif R, Maconochie IK, Nikolaou NI, et al. European Resuscitation Council Guidelines for Resuscitation 2015: Section 1. Executive summary. Resuscitation. 2015;95:1–80. doi: 10.1016/j.resuscitation.2015.07.038. PubMed DOI

Sans S, Kesteloot H, Kromhout D. The burden of cardiovascular diseases mortality in Europe. Task Force of the European Society of Cardiology on Cardiovascular Mortality and Morbidity Statistics in Europe. Eur Heart J. 1997;18(12):1231–1248. doi: 10.1093/oxfordjournals.eurheartj.a015434. PubMed DOI

van Genderen ME, Lima A, Akkerhuis M, Bakker J, van Bommel J. Persistent peripheral and microcirculatory perfusion alterations after out-of-hospital cardiac arrest are associated with poor survival. Crit Care Med. 2012;40(8):2287–2294. doi: 10.1097/CCM.0b013e31825333b2. PubMed DOI

Donadello K, Favory R, Salgado-Ribeiro D, Vincent JL, Gottin L, Scolletta S, et al. Sublingual and muscular microcirculatory alterations after cardiac arrest: a pilot study. Resuscitation. 2011;82(6):690–695. doi: 10.1016/j.resuscitation.2011.02.018. PubMed DOI

Qian J, Yang Z, Cahoon J, Xu J, Zhu C, Yang M, et al. Post-resuscitation intestinal microcirculation: its relationship with sublingual microcirculation and the severity of post-resuscitation syndrome. Resuscitation. 2014;85(6):833–839. doi: 10.1016/j.resuscitation.2014.02.019. PubMed DOI

Buijs EA, Verboom EM, Top AP, Andrinopoulou ER, Buysse CM, Ince C, et al. Early microcirculatory impairment during therapeutic hypothermia is associated with poor outcome in post-cardiac arrest children: a prospective observational cohort study. Resuscitation. 2014;85(3):397–404. doi: 10.1016/j.resuscitation.2013.10.024. PubMed DOI

Omar YG, Massey M, Andersen LW, Giberson TA, Berg K, Cocchi MN, et al. Sublingual microcirculation is impaired in post-cardiac arrest patients. Resuscitation. 2013;84(12):1717–1722. doi: 10.1016/j.resuscitation.2013.07.012. PubMed DOI PMC

Fries M, Weil MH, Chang YT, Castillo C, Tang W. Microcirculation during cardiac arrest and resuscitation. Crit Care Med. 2006;34(12 Suppl):S454–S457. doi: 10.1097/01.CCM.0000247717.81480.B2. PubMed DOI

Wu J, Li C, Yuan W. Phosphodiesterase-5 inhibition improves macrocirculation and microcirculation during cardiopulmonary resuscitation. Am J Emerg Med. 2016;34(2):162–166. doi: 10.1016/j.ajem.2015.09.033. PubMed DOI

Yang L, Wang S, Li CS. Effect of continuous compression and 30:2 cardiopulmonary resuscitation on cerebral microcirculation in a porcine model of cardiac arrest. Scand J Trauma Resusc Emerg Med. 2013;21:55. doi: 10.1186/1757-7241-21-55. PubMed DOI PMC

Ristagno G, Tang W, Sun S, Weil MH. Cerebral cortical microvascular flow during and following cardiopulmonary resuscitation after short duration of cardiac arrest. Resuscitation. 2008;77(2):229–234. doi: 10.1016/j.resuscitation.2007.12.013. PubMed DOI

Massey MJ, Shapiro NI. A guide to human in vivo microcirculatory flow image analysis. Crit Care. 2016;20(1):35. doi: 10.1186/s13054-016-1213-9. PubMed DOI PMC

den Uil CA, Lagrand WK, van der Ent M, Jewbali LS, Cheng JM, Spronk PE, et al. Impaired microcirculation predicts poor outcome of patients with acute myocardial infarction complicated by cardiogenic shock. Eur Heart J. 2010;31(24):3032–3039. doi: 10.1093/eurheartj/ehq324. PubMed DOI

den Uil CA, Lagrand WK, van der Ent M, Nieman K, Struijs A, Jewbali LS, et al. Conventional hemodynamic resuscitation may fail to optimize tissue perfusion: an observational study on the effects of dobutamine, enoximone, and norepinephrine in patients with acute myocardial infarction complicated by cardiogenic shock. PLoS One. 2014;9(8):e103978. doi: 10.1371/journal.pone.0103978. PubMed DOI PMC

Belohlavek J, Mlcek M, Huptych M, Svoboda T, Havranek S, Ost’adal P, et al. Coronary versus carotid blood flow and coronary perfusion pressure in a pig model of prolonged cardiac arrest treated by different modes of venoarterial ECMO and intraaortic balloon counterpulsation. Crit Care. 2012;16(2):R50. doi: 10.1186/cc11254. PubMed DOI PMC

Kudlicka J, Mlcek M, Belohlavek J, Hala P, Lacko S, Janak D, et al. Inducibility of ventricular fibrillation during mild therapeutic hypothermia: electrophysiological study in a swine model. J Transl Med. 2015;13:72. doi: 10.1186/s12967-015-0429-9. PubMed DOI PMC

Goedhart PT, Khalilzada M, Bezemer R, Merza J, Ince C. Sidestream dark field (SDF) imaging: a novel stroboscopic LED ring-based imaging modality for clinical assessment of the microcirculation. Opt Express. 2007;15(23):15101–15114. doi: 10.1364/OE.15.015101. PubMed DOI

Maier S, Hasibeder WR, Hengl C, Pajk W, Schwarz B, Margreiter J, et al. Effects of phenylephrine on the sublingual microcirculation during cardiopulmonary bypass. Br J Anaesth. 2009;102(4):485–491. doi: 10.1093/bja/aep018. PubMed DOI

Top AP, Buijs EA, Schouwenberg PH, van Dijk M, Tibboel D, Ince C. The microcirculation is unchanged in neonates with severe respiratory failure after the initiation of ECMO treatment. Crit Care Res Pract. 2012;2012:372956. PubMed PMC

Top AP, Ince C, van Dijk M, Tibboel D. Changes in buccal microcirculation following extracorporeal membrane oxygenation in term neonates with severe respiratory failure. Crit Care Med. 2009;37(3):1121–1124. doi: 10.1097/CCM.0b013e3181962a5f. PubMed DOI

De Backer D, Hollenberg S, Boerma C, Goedhart P, Buchele G, Ospina-Tascon G, et al. How to evaluate the microcirculation: report of a round table conference. Crit Care. 2007;11(5):101. doi: 10.1186/cc6118. PubMed DOI PMC

Fries M, Tang W, Chang YT, Wang J, Castillo C, Weil MH. Microvascular blood flow during cardiopulmonary resuscitation is predictive of outcome. Resuscitation. 2006;71(2):248–253. doi: 10.1016/j.resuscitation.2006.02.023. PubMed DOI

De Backer D, Ortiz JA, Salgado D. Coupling microcirculation to systemic hemodynamics. Curr Opin Crit Care. 2010;16(3):250–254. doi: 10.1097/MCC.0b013e3283383621. PubMed DOI

Secher N, Ostergaard L, Iversen NK, Lambertsen KL, Clausen BH, Tonnesen E, et al. Preserved cerebral microcirculation after cardiac arrest in a rat model. Microcirculation. 2015;22(6):464–474. doi: 10.1111/micc.12217. PubMed DOI

Ristagno G, Tang W, Sun S, Weil MH. Spontaneous gasping produces carotid blood flow during untreated cardiac arrest. Resuscitation. 2007;75(2):366–371. doi: 10.1016/j.resuscitation.2007.04.020. PubMed DOI

Rudikoff MT, Maughan WL, Effron M, Freund P, Weisfeldt ML. Mechanisms of blood flow during cardiopulmonary resuscitation. Circulation. 1980;61(2):345–352. doi: 10.1161/01.CIR.61.2.345. PubMed DOI

He X, Su F, Taccone FS, Maciel LK, Vincent JL. Cardiovascular and microvascular responses to mild hypothermia in an ovine model. Resuscitation. 2012;83(6):760–766. doi: 10.1016/j.resuscitation.2011.11.031. PubMed DOI

Dobosz M, Mionskowska L, Hac S, Dobrowolski S, Dymecki D, Wajda Z. Heparin improves organ microcirculatory disturbances in caerulein-induced acute pancreatitis in rats. World J Gastroenterol. 2004;10(17):2553–2556. doi: 10.3748/wjg.v10.i17.2553. PubMed DOI PMC

Szczesny G, Veihelmann A, Nolte D, Olszewski WL, Messmer K. Heparin protects local skin microcirculation in 210 minutes-long intravital microscopy observations under general anaesthesia. Eur J Med Res. 2001;6(4):175–180. PubMed

Koch M, De Backer D, Vincent JL, Barvais L, Hennart D, Schmartz D. Effects of propofol on human microcirculation. Br J Anaesth. 2008;101(4):473–478. doi: 10.1093/bja/aen210. PubMed DOI

Curtin F, Schulz P. Multiple correlations and Bonferroni’s correction. Biol Psychiatry. 1998;44(8):775–777. doi: 10.1016/S0006-3223(98)00043-2. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace