A comparative evaluation of nature-inspired algorithms for feature selection problems

. 2024 Jan 15 ; 10 (1) : e23571. [epub] 20231212

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38187288
Odkazy

PubMed 38187288
PubMed Central PMC10770462
DOI 10.1016/j.heliyon.2023.e23571
PII: S2405-8440(23)10779-1
Knihovny.cz E-zdroje

Feature selection is a critical component of machine learning and data mining which addresses challenges like irrelevance, noise, redundancy in large-scale data etc., which often result in the curse of dimensionality. This study employs a K-nearest neighbour wrapper to implement feature selection using six nature-inspired algorithms, derived from human behaviour and mammal-inspired techniques. Evaluated on six real-world datasets, the study aims to compare the performance of these algorithms in terms of accuracy, feature count, fitness, convergence and computational cost. The findings underscore the efficacy of the Human Learning Optimization, Poor and Rich Optimization and Grey Wolf Optimizer algorithms across multiple performance metrics. For instance, for mean fitness, Human Learning Optimization outperforms the others, followed by Poor and Rich Optimization and Harmony Search. The study suggests the potential of human-inspired algorithms, particularly Poor and Rich Optimization, in robust feature selection without compromising classification accuracy.

Zobrazit více v PubMed

Dhal P., Azad C. Applied Intelligence; 2022. A Comprehensive Survey on Feature Selection in the Various Fields of Machine Learning; pp. 1–39.

Dokeroglu T., Deniz A., Kiziloz H.E. Neurocomputing; 2022. A Comprehensive Survey on Recent Metaheuristics for Feature Selection.

Gunantara N., Nyoman D., Putra N. The characteristics of metaheuristic method in selection of path pairs on multicriteria ad hoc networks. Journal of Computer Networks and Communications. 2019;2019:1–6.

Sörensen K., Sevaux M., Glover F. Handbook of Heuristics. Springer International Publishing; 2018. A history of metaheuristics; pp. 791–808.

Trojovskỳ P., Dehghani M. Pelican optimization algorithm: a novel nature-inspired algorithm for engineering applications. Sensors. 2022;22:855. PubMed PMC

Suyanto S., Ariyanto A.A., Ariyanto A.F. Komodo mlipir algorithm. Appl. Soft Comput. 2022;114

Geem Z.W., Kim J.H., Loganathan G.V. A new heuristic optimization algorithm: harmony search. Simulation. 2001;76:60–68.

Wang L., Yang R., Ni H., Ye W., Fei M., Pardalos P.M. A human learning optimization algorithm and its application to multi-dimensional knapsack problems. Appl. Soft Comput. September 2015;34:736–743.

Moosavi S.H.S., Bardsiri V.K. Poor and rich optimization algorithm: a new human-based and multi populations algorithm. Eng. Appl. Artif. Intell. November 2019;86:165–181.

Yang X.-S., Gandomi A.H. Bat algorithm: a novel approach for global engineering optimization. Eng. Comput. July 2012;29:464–483.

Mirjalili S., Mirjalili S.M., Lewis A. Grey wolf optimizer. Adv. Eng. Software. 2014;69:46–61.

Mirjalili S., Lewis A. The whale optimization algorithm. Adv. Eng. Software. 2016;95:51–67.

Yusup N., Zain A.M., Latib A.A. A review of Harmony Search algorithm-based feature selection method for classification. J. Phys. Conf. March 2019;1192

Abualigah L.M., Khader A.T., Al-Betar M.A. 2016 7th International Conference on Computer Science and Information Technology. CSIT; 2016. Unsupervised feature selection technique based on harmony search algorithm for improving the text clustering.

Das S., Singh P.K., Bhowmik S., Sarkar R., Nasipuri M. A harmony search based wrapper feature selection method for holistic Bangla word recognition. Procedia Computer Science. 2016;89:395–403.

Ramos C.C.O., Souza A.N., Chiachia G., Falcão A.X., Papa J.P. A novel algorithm for feature selection using Harmony Search and its application for non-technical losses detection. Comput. Electr. Eng. November 2011;37:886–894.

Yu S., Jia Y., Hu X., Ni H., Wang L. Intelligent Equipment, Robots, and Vehicles. Springer Singapore; 2021. Feature selection based on a modified adaptive human learning optimization algorithm; pp. 783–794.

Zhang P., Wang L., Du J., Fei Z., Ye S., Fei M., Pardalos P.M. Differential human learning optimization algorithm. Comput. Intell. Neurosci. April 2022;2022:1–19. PubMed PMC

Thirumoorthy K., Muneeswaran K. An elitism based self-adaptive multi-population Poor and Rich optimization algorithm for grouping similar documents. J. Ambient Intell. Hum. Comput. February 2021;13:1925–1939.

Nakamura R.Y.M., Pereira L.A.M., Rodrigues D., Costa K.A.P., Papa J.P., Yang X.-S. Swarm Intelligence and Bio-Inspired Computation. Elsevier; 2013. Binary bat algorithm for feature selection; pp. 225–237.

Jeyasingh S., Veluchamy M. Modified bat algorithm for feature selection with the Wisconsin diagnosis breast cancer (WDBC) dataset. Asian Pac. J. Cancer Prev. APJCP. 2017;18 PubMed PMC

Preeti, Kumar D. Feature selection for face recognition using DCT-PCA and Bat algorithm. Int. J. Inf. Technol. October 2017;9:411–423.

Al-Tashi Q., Rais H., Jadid S. Advances in Intelligent Systems and Computing. Springer International Publishing; 2018. Feature selection method based on grey wolf optimization for coronary artery disease classification; pp. 257–266.

Hu P., Pan J.-S., Chu S.-C. Improved binary grey wolf optimizer and its application for feature selection. Knowl. Base Syst. 2020;195

Emary E., Zawbaa H.M., Hassanien A.E. Binary grey wolf optimization approaches for feature selection. Neurocomputing. January 2016;172:371–381.

Sharawi M., Zawbaa H.M., Emary E., Zawbaa H.M., Emary E. 2017 Ninth International Conference on Advanced Computational Intelligence. ICACI; 2017. Feature selection approach based on whale optimization algorithm.

Zamani H., Nadimi-Shahraki M.-H. Feature selection based on whale optimization algorithm for diseases diagnosis. Int. J. Comput. Sci. Inf. Secur. 2016;14:1243.

Mafarja M., Mirjalili S. Whale optimization approaches for wrapper feature selection. Appl. Soft Comput. January 2018;62:441–453.

Bacanin N., Zivkovic M., Antonijevic M., Venkatachalam K., Lee J., Nam Y., Marjanovic M., Strumberger I., Abouhawwash M. Addressing feature selection and extreme learning machine tuning by diversity-oriented social network search: an application for phishing websites detection. Complex & Intelligent Systems. 2023:1–36.

Sun L., Qin H., Przystupa K., Cui Y., Kochan O., Skowron M., Su J. A hybrid feature selection framework using improved sine cosine algorithm with metaheuristic techniques. Energies. 2022;15:3485.

Kareem S.S., Mostafa R.R., Hashim F.A., El-Bakry H.M. An effective feature selection model using hybrid metaheuristic algorithms for iot intrusion detection. Sensors. 2022;22:1396. PubMed PMC

Zivkovic M., Stoean C., Chhabra A., Budimirovic N., Petrovic A., Bacanin N. Novel improved salp swarm algorithm: an application for feature selection. Sensors. 2022;22:1711. PubMed PMC

Gharehchopogh F.S., Maleki I., Dizaji Z.A. Chaotic vortex search algorithm: metaheuristic algorithm for feature selection. Evolutionary Intelligence. 2022;15:1777–1808.

Abdulkhaleq M.T., Rashid T.A., Alsadoon A., Hassan B.A., Mohammadi M., Abdullah J.M., Chhabra A., Ali S.L., Othman R.N., Hasan H.A., others Harmony search: current studies and uses on healthcare systems. Artif. Intell. Med. 2022 PubMed

Bangyal W.H., Hameed A., Ahmad J., Nisar K., Haque M.R., Ibrahim A.A.A., Rodrigues J.J.P.C., Khan M.A., Rawat D.B., Etengu R. New modified controlled bat algorithm for numerical optimization problem. Comput. Mater. Continua (CMC) 2022;70:2241–2259.

Akila S., Christe S.A. A wrapper based binary bat algorithm with greedy crossover for attribute selection. Expert Syst. Appl. 2022;187

Makhadmeh S.N., Alomari O.A., Mirjalili S., Al-Betar M.A., Elnagar A. Recent advances in multi-objective grey wolf optimizer, its versions and applications. Neural Comput. Appl. 2022;34:19723–19749. PubMed PMC

Nadimi-Shahraki M.H., Zamani H., Mirjalili S. Enhanced whale optimization algorithm for medical feature selection: a COVID-19 case study. Comput. Biol. Med. 2022;148 PubMed

Priyadarshini J., Premalatha M., Čep R., Jayasudha M., Kalita K. Analyzing physics-inspired metaheuristic algorithms in feature selection with K-nearest-neighbor. Appl. Sci. 2023;13:906.

Ganesh N., Shankar R., Čep R., Chakraborty S., Kalita K. Efficient feature selection using weighted superposition attraction optimization algorithm. Appl. Sci. 2023;13:3223.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...