Metabolomics and transcriptomics to decipher molecular mechanisms underlying ectomycorrhizal root colonization of an oak tree
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
33883599
PubMed Central
PMC8060265
DOI
10.1038/s41598-021-87886-5
PII: 10.1038/s41598-021-87886-5
Knihovny.cz E-zdroje
- MeSH
- Basidiomycota metabolismus MeSH
- dub (rod) metabolismus mikrobiologie MeSH
- GABA biosyntéza MeSH
- kořeny rostlin metabolismus mikrobiologie MeSH
- metabolické sítě a dráhy MeSH
- metabolomika MeSH
- regulace genové exprese u rostlin MeSH
- stanovení celkové genové exprese MeSH
- symbióza MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- GABA MeSH
Mycorrhizas are known to have a positive impact on plant growth and ability to resist major biotic and abiotic stresses. However, the metabolic alterations underlying mycorrhizal symbiosis are still understudied. By using metabolomics and transcriptomics approaches, cork oak roots colonized by the ectomycorrhizal fungus Pisolithus tinctorius were compared with non-colonized roots. Results show that compounds putatively corresponding to carbohydrates, organic acids, tannins, long-chain fatty acids and monoacylglycerols, were depleted in ectomycorrhizal cork oak colonized roots. Conversely, non-proteogenic amino acids, such as gamma-aminobutyric acid (GABA), and several putative defense-related compounds, including oxylipin-family compounds, terpenoids and B6 vitamers were induced in mycorrhizal roots. Transcriptomic analysis suggests the involvement of GABA in ectomycorrhizal symbiosis through increased synthesis and inhibition of degradation in mycorrhizal roots. Results from this global metabolomics analysis suggest decreases in root metabolites which are common components of exudates, and in compounds related to root external protective layers which could facilitate plant-fungal contact and enhance symbiosis. Root metabolic pathways involved in defense against stress were induced in ectomycorrhizal roots that could be involved in a plant mechanism to avoid uncontrolled growth of the fungal symbiont in the root apoplast. Several of the identified symbiosis-specific metabolites, such as GABA, may help to understand how ectomycorrhizal fungi such as P. tinctorius benefit their host plants.
CREAF 08193 Cerdanyola del Vallès Catalonia Spain
CSIC Global Ecology Unit CREAF CSIC UAB 08193 Bellaterra Catalonia Spain
Linking Landscape Environment Agriculture and Food Universidade de Lisboa Lisbon Portugal
Zobrazit více v PubMed
Smith SE, Read D. 9 - Nitrogen mobilization and nutrition in ectomycorrhizal plants. In: Smith SE, Read D, editors. Mycorrhizal Symbiosis. 3. Cambridge: Academic Press; 2008. pp. 321–348.
Luo Z-B, et al. Upgrading root physiology for stress tolerance by ectomycorrhizas: insights from metabolite and transcriptional profiling into reprogramming for stress anticipation. Plant Physiol. 2009;151:1902–1917. doi: 10.1104/pp.109.143735. PubMed DOI PMC
Gianinazzi S, et al. Agroecology: the key role of arbuscular mycorrhizas in ecosystem services. Mycorrhiza. 2010;20:519–530. doi: 10.1007/s00572-010-0333-3. PubMed DOI
Jung SC, Martinez-Medina A, Lopez-Raez JA, Pozo MJ. Mycorrhiza-induced resistance and priming of plant defenses. J. Chem. Ecol. 2012;38:651–664. doi: 10.1007/s10886-012-0134-6. PubMed DOI
Song Y, Chen D, Lu K, Sun Z, Zeng R. Enhanced tomato disease resistance primed by arbuscular mycorrhizal fungus. Front. Plant Sci. 2015;6:786. PubMed PMC
Sebastiana M, et al. Oak root response to ectomycorrhizal symbiosis establishment: RNA-seq derived transcript identification and expression profiling. PLoS ONE. 2014;9:e98376. doi: 10.1371/journal.pone.0098376. PubMed DOI PMC
Sebastiana M, et al. Oak protein profile alterations upon root colonization by an ectomycorrhizal fungus. Mycorrhiza. 2017;27:109–128. doi: 10.1007/s00572-016-0734-z. PubMed DOI
Gougeon RD, et al. The chemodiversity of wines can reveal a metabologeography expression of cooperage oak wood. Proc. Natl. Acad. Sci. 2009;106:9174–9179. doi: 10.1073/pnas.0901100106. PubMed DOI PMC
Sardans J, Peñuelas J, Rivas-Ubach A. Ecological metabolomics: overview of current developments and future challenges. Chemoecology. 2011;21:191–225. doi: 10.1007/s00049-011-0083-5. DOI
Rivero J, Gamir J, Aroca R, Pozo MJ, Flors V. Metabolic transition in mycorrhizal tomato roots. Front. Microbiol. 2015;6:598. doi: 10.3389/fmicb.2015.00598. PubMed DOI PMC
Gargallo-Garriga A, et al. Root exudate metabolomes change under drought and show limited capacity for recovery. Sci. Rep. 2018;8:12696. doi: 10.1038/s41598-018-30150-0. PubMed DOI PMC
Tschaplinski TJ, et al. Populus trichocarpa and Populus deltoides exhibit different metabolomic responses to colonization by the symbiotic fungus Laccaria bicolor. Mol. Plant-Microbe Interact. 2014;27:546–556. doi: 10.1094/MPMI-09-13-0286-R. PubMed DOI
Li Q, et al. Chinese black truffle (Tuber indicum) alters the ectomycorrhizosphere and endoectomycosphere microbiome and metabolic profiles of the host tree Quercus aliena. Front. Microbiol. 2018;9:2202. doi: 10.3389/fmicb.2018.02202. PubMed DOI PMC
Wong JWH, et al. The influence of contrasting microbial lifestyles on the pre-symbiotic metabolite responses of Eucalyptus grandis roots. Front. Ecol. Evol. 2019;7:10. doi: 10.3389/fevo.2019.00010. DOI
Cho H-W, et al. Discovery of metabolite features for the modelling and analysis of high-resolution NMR spectra. Int. J. Data Min. Bioinform. 2008;2:176–192. doi: 10.1504/IJDMB.2008.019097. PubMed DOI PMC
Weljie AM, Bondareva A, Zang P, Jirik FR. 1H NMR metabolomics identification of markers of hypoxia-induced metabolic shifts in a breast cancer model system. J. Biomol. NMR. 2011;49:185–193. doi: 10.1007/s10858-011-9486-4. PubMed DOI
Duft RG, et al. Metabolomics approach in the investigation of metabolic changes in obese men after 24 weeks of combined training. J. Proteome Res. 2017;16:2151–2159. doi: 10.1021/acs.jproteome.6b00967. PubMed DOI
Tarkowski ŁP, Signorelli S, Höfte M. γ-Aminobutyric acid and related amino acids in plant immune responses: emerging mechanisms of action. Plant. Cell Environ. 2020;43:1103–1116. doi: 10.1111/pce.13734. PubMed DOI
Bouché N, Fait A, Zik M, Fromm H. The root-specific glutamate decarboxylase (GAD1) is essential for sustaining GABA levels in Arabidopsis. Plant Mol. Biol. 2004;55:315–325. doi: 10.1007/s11103-004-0650-z. PubMed DOI
Ditengou FA, et al. Volatile signalling by sesquiterpenes from ectomycorrhizal fungi reprogrammes root architecture. Nat. Commun. 2015;6:6279. doi: 10.1038/ncomms7279. PubMed DOI PMC
Mello A, Balestrini R. Recent insights on biological and ecological aspects of ectomycorrhizal fungi and their interactions. Front. Microbiol. 2018;9:216. doi: 10.3389/fmicb.2018.00216. PubMed DOI PMC
Herrmann S, et al. Endogenous rhythmic growth in oak trees is regulated by internal clocks rather than resource availability. J. Exp. Bot. 2015;66:7113–7127. doi: 10.1093/jxb/erv408. PubMed DOI PMC
Reich PB, Teskey RO, Johnson PS, Hinckley TM. Periodic root and shoot growth in oak. For. Sci. 1980;26:590–598.
Herrmann S, et al. Endogenous rhythmic growth, a trait suitable for the study of interplays between multitrophic interactions and tree development. Perspect. Plant Ecol. Evol. Syst. 2016;19:40–48. doi: 10.1016/j.ppees.2016.02.003. DOI
Herrmann S, Munch J-C, Buscot F. A gnotobiotic culture system with oak microcuttings to study specific effects of mycobionts on plant morphology before, and in the early phase of, ectomycorrhiza formation by Paxillus involutus and Piloderma croceum. New Phytol. 1998;138:203–212. doi: 10.1046/j.1469-8137.1998.00105.x. PubMed DOI
Badri DV, Vivanco JM. Regulation and function of root exudates. Plant Cell Environ. 2009;32:666–681. doi: 10.1111/j.1365-3040.2009.01926.x. PubMed DOI
Ucar MB, Ucar G. Characterization of methanol extracts from Quercus hartwissiana wood and bark. Chem. Nat. Compd. 2011;47:697–703. doi: 10.1007/s10600-011-0039-6. DOI
Escudero N, Marhuenda-Egea FC, Ibanco-Cañete R, Zavala-Gonzalez EA, Lopez-Llorca LV. A metabolomic approach to study the rhizodeposition in the tritrophic interaction: tomato Pochonia chlamydosporia and Meloidogyne javanica. Metabolomics. 2014;10:788–804. doi: 10.1007/s11306-014-0632-3. DOI
Prescott CE, et al. Surplus carbon drives allocation and plant–soil interactions. Trends Ecol. Evol. 2020;35:1110–1118. doi: 10.1016/j.tree.2020.08.007. PubMed DOI
Canarini A, Kaiser C, Merchant A, Richter A, Wanek W. Root Exudation of primary metabolites: mechanisms and their roles in plant responses to environmental stimuli. Front. Plant Sci. 2019;10:157. doi: 10.3389/fpls.2019.00157. PubMed DOI PMC
Rudrappa T, Czymmek KJ, Paré PW, Bais HP. Root-secreted malic acid recruits beneficial soil bacteria. Plant Physiol. 2008;148:1547–1556. doi: 10.1104/pp.108.127613. PubMed DOI PMC
van Dam NM, Bouwmeester HJ. Metabolomics in the rhizosphere: tapping into belowground chemical communication. Trends Plant Sci. 2016;21:256–265. doi: 10.1016/j.tplants.2016.01.008. PubMed DOI
Merchant A, Tausz M, Arndt SK, Adams MA. Cyclitols and carbohydrates in leaves and roots of 13 Eucalyptus species suggest contrasting physiological responses to water deficit. Plant Cell Environ. 2006;29:2017–2029. doi: 10.1111/j.1365-3040.2006.01577.x. PubMed DOI
Passarinho JAP, Lamosa P, Baeta JP, Santos H, Ricardo CPP. Annual changes in the concentration of minerals and organic compounds of Quercus suber leaves. Physiol. Plant. 2006;127:100–110. doi: 10.1111/j.1399-3054.2006.00655.x. DOI
Buscot F, Herrmann S. At the frontier between basiodiomycotes and plants: reciprocal interactions between mycorrhiza formation and root development in an in vitro system with oaks and hymenomycetes. In: Agerer R, Piepenbring M, Blanz P, editors. Frontiers in Basidiomycote Mycology. Eching: IHW; 2004. pp. 361–376.
Smith SE, Read D. 4 - Growth and carbon economy of arbuscular mycorrhizal symbionts. In: Smith SE, Read D, editors. Mycorrhizal Symbiosis. 3. Cambridge: Academic Press; 2008.
Keymer A, et al. Lipid transfer from plants to arbuscular mycorrhiza fungi. Elife. 2017;6:e29107. doi: 10.7554/eLife.29107. PubMed DOI PMC
Tang N, et al. A Survey of the gene repertoire of Gigaspora rosea unravels conserved features among Glomeromycota for obligate biotrophy. Front. Microbiol. 2016;7:233. PubMed PMC
Reich M, et al. Fatty acid metabolism in the ectomycorrhizal fungus Laccaria bicolor. New Phytol. 2009;182:950–964. doi: 10.1111/j.1469-8137.2009.02819.x. PubMed DOI
Olivella MÀ, Río JCD. Suberin composition from different bark layers of Quercus suber L by Py-GC/MS in the presence of tetramethylammonium hydroxide (TMAH) BioResources. 2011;6:4936–4941.
Ferreira JPA, Miranda I, Sousa VB, Pereira H. Chemical composition of barks from Quercus faginea trees and characterization of their lipophilic and polar extracts. PLoS ONE. 2018;13:1–18. PubMed PMC
Balestrini R, Bonfante P. Cell wall remodeling in mycorrhizal symbiosis: a way towards biotrophism. Front. Plant Sci. 2014;5:237. doi: 10.3389/fpls.2014.00237. PubMed DOI PMC
Sharma E, Anand G, Kapoor R. Terpenoids in plant and arbuscular mycorrhiza-reinforced defence against herbivorous insects. Ann. Bot. 2017;119:791–801. PubMed PMC
Almeida T, et al. In-depth analysis of the Quercus suber metabolome under drought stress and recovery reveals potential key metabolic players. Plant Sci. 2020;299:110606. doi: 10.1016/j.plantsci.2020.110606. PubMed DOI
Rivero J, Álvarez D, Flors V, Azcón-Aguilar C, Pozo MJ. Root metabolic plasticity underlies functional diversity in mycorrhiza-enhanced stress tolerance in tomato. New Phytol. 2018;220:1322–1336. doi: 10.1111/nph.15295. PubMed DOI
Sanchez-Bel P, et al. The nitrogen availability interferes with mycorrhiza-induced resistance against Botrytis cinerea in tomato. Front. Microbiol. 2016;7:1598. doi: 10.3389/fmicb.2016.01598. PubMed DOI PMC
Copley TR, Duggavathi R, Jabaji S. The transcriptional landscape of Rhizoctonia solani AG1-IA during infection of soybean as defined by RNA-seq. PLoS ONE. 2017;12:e0184095. doi: 10.1371/journal.pone.0184095. PubMed DOI PMC
Brilli M, et al. A multi-omics study of the grapevine-downy mildew (Plasmopara viticola) pathosystem unveils a complex protein coding- and noncoding-based arms race during infection. Sci. Rep. 2018;8:757. doi: 10.1038/s41598-018-19158-8. PubMed DOI PMC
Hua MD-S, et al. Metabolomic compounds identified in Piriformospora indica-colonized Chinese cabbage roots delineate symbiotic functions of the interaction. Sci. Rep. 2017;7:9291. doi: 10.1038/s41598-017-08715-2. PubMed DOI PMC
Solomon PS, Oliver RP. The nitrogen content of the tomato leaf apoplast increases during infection by Cladosporium fulvum. Planta. 2001;213:241–249. doi: 10.1007/s004250000500. PubMed DOI
Solomon PS, Oliver RP. Evidence that γ-aminobutyric acid is a major nitrogen source during Cladosporium fulvum infection of tomato. Planta. 2002;214:414–420. doi: 10.1007/s004250100632. PubMed DOI
Okada T, Matsubara Y. Tolerance to Fusarium root rot and the changes in free amino acid contents in mycorrhizal Asparagus plants. HortScience horts. 2012;47:751–754. doi: 10.21273/HORTSCI.47.6.751. DOI
Plett JM, et al. Effector MiSSP7 of the mutualistic fungus Laccaria bicolor stabilizes the Populus JAZ6 protein and represses jasmonic acid (JA) responsive genes. Proc. Natl. Acad. Sci. U. S. A. 2014;111:8299–8304. doi: 10.1073/pnas.1322671111. PubMed DOI PMC
Szuba A, Marczak Ł, Ratajczak I, Kasprowicz-Maluśki A, Mucha J. Integrated proteomic and metabolomic analyses revealed molecular adjustments in Populus × canescens colonized with the ectomycorrhizal fungus Paxillus involutus, which limited plant host growth. Environ. Microbiol. 2020;22:3754–3771. doi: 10.1111/1462-2920.15146. PubMed DOI
Maboreke HR, et al. Transcriptome analysis in oak uncovers a strong impact of endogenous rhythmic growth on the interaction with plant-parasitic nematodes. BMC Genom. 2016;17:627. doi: 10.1186/s12864-016-2992-8. PubMed DOI PMC
Rodrigues CI, Maia R, Máguas C. Comparing total nitrogen and crude protein content of green coffee beans (Coffea spp.) from different geographical origins. Coffee Sci. 2011;5:197–205.
Rivas-Ubach A, Sardans J, Pérez-Trujillo M, Estiarte M, Peñuelas J. Strong relationship between elemental stoichiometry and metabolome in plants. Proc. Natl. Acad. Sci. 2012;109:4181–4186. doi: 10.1073/pnas.1116092109. PubMed DOI PMC
Gargallo-Garriga A, et al. Opposite metabolic responses of shoots and roots to drought. Sci. Rep. 2014;4:6829. doi: 10.1038/srep06829. PubMed DOI PMC
Fan TW-M. Metabolite profiling by one- and two-dimensional NMR analysis of complex mixtures. Prog. Nucl. Magn. Reson. Spectrosc. 1996;28:161–219. doi: 10.1016/0079-6565(95)01017-3. DOI
Fan TW-M, Lane AN. Structure-based profiling of metabolites and isotopomers by NMR. Prog. Nucl. Magn. Reson. Spectrosc. 2008;52:69–117. doi: 10.1016/j.pnmrs.2007.03.002. DOI
Walker TE, Han CH, Kollman VH, London RE, Matwiyoff NA. 13C nuclear magnetic resonance studies of the biosynthesis by Microbacterium ammoniaphilum of L-glutamate selectively enriched with carbon-13. J. Biol. Chem. 1982;257:1189–1195. doi: 10.1016/S0021-9258(19)68173-1. PubMed DOI
Breitmaier E. Atlas of carbon-13 NMR data. Organic Magnetic Resonanc. Berlin: Springer; 1976.
Iles RA, Hind AJ, Chalmers RA. Use of proton nuclear magnetic resonance spectroscopy in detection and study of organic acidurias. Clin. Chem. 1985;31:1795–1801. doi: 10.1093/clinchem/31.11.1795. PubMed DOI
Bolinger L., S., S., J., K. & J.S., L. A guide to chemical shifts of 31-P, 1-H, and 13-C. News Metab. Res.1, 32–45 (1984).
Brown JCC, Mills GA, Sadler PJ, Walker V. 1H NMR studies of urine from premature and sick babies. Magn. Reson. Med. 1989;11:193–201. doi: 10.1002/mrm.1910110207. PubMed DOI
Corse J, Lundin RE. Diastereomers of quinic acid. Chemical and nuclear magnetic resonance studies. J. Org. Chem. 1970;35:1904–1909. doi: 10.1021/jo00831a040. DOI
Ulrich EL, et al. BioMagResBank. Nucleic Acids Res. 2007;36:D402–D408. doi: 10.1093/nar/gkm957. PubMed DOI PMC
Sacchi R, Addeo F, Paolillo L. 1H and 13C NMR of virgin olive oil. An overview. Magn. Reson. Chem. 1997;35:S133–S145. doi: 10.1002/(SICI)1097-458X(199712)35:13<S133::AID-OMR213>3.0.CO;2-K. DOI
Lie Ken Jie MSF, Lam CC. 1H-Nuclear magnetic resonance spectroscopic studies of saturated, acetylenic and ethylenic triacylglycerols. Chem. Phys. Lipids. 1995;77:155–171. doi: 10.1016/0009-3084(95)02463-S. DOI
Llusià J, Peñuelas J, Alessio GA, Estiarte M. Contrasting species-specific, compound-specific, seasonal, and interannual responses of foliar isoprenoid emissions to experimental drought in a mediterranean shrubland. Int. J. Plant Sci. 2008;169:637–645. doi: 10.1086/533603. DOI
Mangold HK. The Lipid Handbook. Lipid/Fett. London: Chapman & Hall; 1995.
The AOCS Lipid Library. (2012).
Maia M, et al. Metabolite extraction for high-throughput FTICR-MS-based metabolomics of grapevine leaves. EuPA Open Proteom. 2016;12:4–9. doi: 10.1016/j.euprot.2016.03.002. PubMed DOI PMC
Kind T, Fiehn O. Seven golden rules for heuristic filtering of molecular formulas obtained by accurate mass spectrometry. BMC Bioinform. 2007;8:105. doi: 10.1186/1471-2105-8-105. PubMed DOI PMC
Chong J, et al. MetaboAnalyst 4.0: towards more transparent and integrative metabolomics analysis. Nucleic Acids Res. 2018;46:W486–W494. doi: 10.1093/nar/gky310. PubMed DOI PMC
Suhre K, Schmitt-Kopplin P. MassTRIX: mass translator into pathways. Nucleic Acids Res. 2008;36:W481–W484. doi: 10.1093/nar/gkn194. PubMed DOI PMC
Nascimento R, et al. Early stage metabolic events associated with the establishment of Vitis vinifera – Plasmopara viticola compatible interaction. Plant Physiol. Biochem. 2019;137:1–13. doi: 10.1016/j.plaphy.2019.01.026. PubMed DOI
Wan CY, Wilkins TA. A modified hot borate method significantly enhances the yield of high-quality RNA from cotton (Gossypium hirsutum L.) Anal. Biochem. 1994;223:7–12. doi: 10.1006/abio.1994.1538. PubMed DOI
Sebastiana M, et al. The leaf lipid composition of ectomycorrhizal oak plants shows a drought-tolerance signature. Plant Physiol. Biochem. 2019;144:157–165. doi: 10.1016/j.plaphy.2019.09.032. PubMed DOI
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI
Sebastiana, M. et al. The metabolome of an oak tree root colonized by an ectomycorrhizal fungus by FT-ICR-MS analysis. (2020). Figshare. Dataset. https://doi.org/10.6084/m9.figshare.14096213.v1
Sebastiana, M., Gargallo-Garriga, A., Sardans, J., Pérez-Trujillo, M. & Peñuelas, J. Metabolic fingerprinting of the ectomycorrhizal roots of an oak tree analysed by 1H NMR. (2021). Figshare. Dataset. https://doi.org/10.6084/m9.figshare.14096213.v1
RStudio Team . RStudio: Integrated Development for R. Boston: RStudio, PBC; 2020.
figshare
10.6084/m9.figshare.13379852.v1, 10.6084/m9.figshare.14096213.v1