Electrocardiogram-synchronized pulsatile extracorporeal life support preserves left ventricular function and coronary flow in a porcine model of cardiogenic shock

. 2018 ; 13 (4) : e0196321. [epub] 20180424

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid29689088

INTRODUCTION: Veno-arterial extracorporeal life support (ECLS) is increasingly being used to treat rapidly progressing or severe cardiogenic shock. However, it has been repeatedly shown that increased afterload associated with ECLS significantly diminishes left ventricular (LV) performance. The objective of the present study was to compare LV function and coronary flow during standard continuous-flow ECLS support and electrocardiogram (ECG)-synchronized pulsatile ECLS flow in a porcine model of cardiogenic shock. METHODS: Sixteen female swine (mean body weight 45 kg) underwent ECLS implantation under general anesthesia and artificial ventilation. Subsequently, acute cardiogenic shock, with documented signs of tissue hypoperfusion, was induced by initiating global myocardial hypoxia. Hemodynamic cardiac performance variables and coronary flow were then measured at different rates of continuous or pulsatile ECLS flow (ranging from 1 L/min to 4 L/min) using arterial and venous catheters, a pulmonary artery catheter, an LV pressure-volume loop catheter, and a Doppler coronary guide-wire. RESULTS: Myocardial hypoxia resulted in declines in mean cardiac output to 1.7±0.7 L/min, systolic blood pressure to 64±22 mmHg, and LV ejection fraction (LVEF) to 22±7%. Synchronized pulsatile flow was associated with a significant reduction in LV end-systolic volume by 6.2 mL (6.7%), an increase in LV stroke volume by 5.0 mL (17.4%), higher LVEF by 4.5% (18.8% relative), cardiac output by 0.37 L/min (17.1%), and mean arterial pressure by 3.0 mmHg (5.5%) when compared with continuous ECLS flow at all ECLS flow rates (P<0.05). At selected ECLS flow rates, pulsatile flow also reduced LV end-diastolic pressure, end-diastolic volume, and systolic pressure. ECG-synchronized pulsatile flow was also associated with significantly increased (7% to 22%) coronary flow at all ECLS flow rates. CONCLUSION: ECG-synchronized pulsatile ECLS flow preserved LV function and coronary flow compared with standard continuous-flow ECLS in a porcine model of cardiogenic shock.

Zobrazit více v PubMed

Abrams D, Combes A, Brodie D. Extracorporeal membrane oxygenation in cardiopulmonary disease in adults. Journal of the American College of Cardiology. 2014;63(25 Pt A):2769–78. doi: 10.1016/j.jacc.2014.03.046 . PubMed DOI

Werdan K, Gielen S, Ebelt H, Hochman JS. Mechanical circulatory support in cardiogenic shock. Eur Heart J. 2014;35(3):156–67. doi: 10.1093/eurheartj/eht248 . PubMed DOI

ECMO: Extracorporeal Cardiopulmonary Support in Critical Care. 4 ed: Extracorporeal Life Support Organization; 2012.

Belohlavek J, Kucera K, Jarkovsky J, Franek O, Pokorna M, Danda J, et al. Hyperinvasive approach to out-of hospital cardiac arrest using mechanical chest compression device, prehospital intraarrest cooling, extracorporeal life support and early invasive assessment compared to standard of care. A randomized parallel groups comparative study proposal. "Prague OHCA study". J Transl Med. 2012;10:163 doi: 10.1186/1479-5876-10-163 . PubMed DOI PMC

Ostadal P, Rokyta R, Kruger A, Vondrakova D, Janotka M, Smid O, et al. Extra corporeal membrane oxygenation in the therapy of cardiogenic shock (ECMO-CS): rationale and design of the multicenter randomized trial. European journal of heart failure. 2017;19 Suppl 2:124–7. doi: 10.1002/ejhf.857 . PubMed DOI

Beurtheret S, Mordant P, Paoletti X, Marijon E, Celermajer DS, Leger P, et al. Emergency circulatory support in refractory cardiogenic shock patients in remote institutions: a pilot study (the cardiac-RESCUE program). Eur Heart J. 2013;34(2):112–20. doi: 10.1093/eurheartj/ehs081 . PubMed DOI

Pranikoff T, Hirschl RB, Steimle CN, Anderson HL 3rd, Bartlett RH. Efficacy of extracorporeal life support in the setting of adult cardiorespiratory failure. ASAIO J. 1994;40(3):M339–43. . PubMed

Combes A, Leprince P, Luyt CE, Bonnet N, Trouillet JL, Leger P, et al. Outcomes and long-term quality-of-life of patients supported by extracorporeal membrane oxygenation for refractory cardiogenic shock. Crit Care Med. 2008;36(5):1404–11. doi: 10.1097/CCM.0b013e31816f7cf7 . PubMed DOI

Fuhrman BP, Hernan LJ, Rotta AT, Heard CM, Rosenkranz ER. Pathophysiology of cardiac extracorporeal membrane oxygenation. Artificial organs. 1999;23(11):966–9. . PubMed

Sidebotham D, Allen S, McGeorge A, Beca J. Catastrophic left heart distension following initiation of venoarterial extracorporeal membrane oxygenation in a patient with mild aortic regurgitation. Anaesthesia and intensive care. 2012;40(3):568–9. . PubMed

Soleimani B, Pae WE. Management of left ventricular distension during peripheral extracorporeal membrane oxygenation for cardiogenic shock. Perfusion. 2012;27(4):326–31. doi: 10.1177/0267659112443722 . PubMed DOI

Barbone A, Malvindi PG, Ferrara P, Tarelli G. Left ventricle unloading by percutaneous pigtail during extracorporeal membrane oxygenation. Interactive cardiovascular and thoracic surgery. 2011;13(3):293–5. doi: 10.1510/icvts.2011.269795 . PubMed DOI

Ostadal P, Mlcek M, Kruger A, Hala P, Lacko S, Mates M, et al. Increasing venoarterial extracorporeal membrane oxygenation flow negatively affects left ventricular performance in a porcine model of cardiogenic shock. J Transl Med. 2015;13:266 Epub 2015/08/16. doi: 10.1186/s12967-015-0634-6 . PubMed DOI PMC

Hirschl RB, Heiss KF, Bartlett RH. Severe myocardial dysfunction during extracorporeal membrane oxygenation. Journal of pediatric surgery. 1992;27(1):48–53. . PubMed

Kimball TR, Daniels SR, Weiss RG, Meyer RA, Hannon DW, Ryckman FC, et al. Changes in cardiac function during extracorporeal membrane oxygenation for persistent pulmonary hypertension in the newborn infant. The Journal of pediatrics. 1991;118(3):431–6. . PubMed

Berdjis F, Takahashi M, Lewis AB. Left ventricular performance in neonates on extracorporeal membrane oxygenation. Pediatric cardiology. 1992;13(3):141–5. PubMed

Pyles LA, Gustafson RA, Fortney J, Einzig S. Extracorporeal membrane oxygenation induced cardiac dysfunction in newborn lambs. Journal of cardiovascular translational research. 2010;3(6):625–34. doi: 10.1007/s12265-010-9215-5 . PubMed DOI

Shen I, Levy FH, Vocelka CR, O’Rourke PP, Duncan BW, Thomas R, et al. Effect of extracorporeal membrane oxygenation on left ventricular function of swine. The Annals of thoracic surgery. 2001;71(3):862–7. . PubMed

Shen I, Levy FH, Benak AM, Rothnie CL, O’Rourke PP, Duncan BW, et al. Left ventricular dysfunction during extracorporeal membrane oxygenation in a hypoxemic swine model. The Annals of thoracic surgery. 2001;71(3):868–71. . PubMed

Aissaoui N, Guerot E, Combes A, Delouche A, Chastre J, Leprince P, et al. Two-dimensional strain rate and Doppler tissue myocardial velocities: analysis by echocardiography of hemodynamic and functional changes of the failed left ventricle during different degrees of extracorporeal life support. Journal of the American Society of Echocardiography: official publication of the American Society of Echocardiography. 2012;25(6):632–40. doi: 10.1016/j.echo.2012.02.009 . PubMed DOI

Wang S, Izer JM, Clark JB, Patel S, Pauliks L, Kunselman AR, et al. In Vivo Hemodynamic Performance Evaluation of Novel Electrocardiogram-Synchronized Pulsatile and Nonpulsatile Extracorporeal Life Support Systems in an Adult Swine Model. Artificial organs. 2015;39(7):E90–E101. Epub 2015/04/14. doi: 10.1111/aor.12482 . PubMed DOI

Wolfe R, Strother A, Wang S, Kunselman AR, Undar A. Impact of Pulsatility and Flow Rates on Hemodynamic Energy Transmission in an Adult Extracorporeal Life Support System. Artificial organs. 2015;39(7):E127–37. Epub 2015/04/22. doi: 10.1111/aor.12484 . PubMed DOI

Ostadal P, Mlcek M, Strunina S, Hrachovina M, Kruger A, Vondrakova D, et al. Novel porcine model of acute severe cardiogenic shock developed by upper-body hypoxia. Physiol Res. 2016;65(4):711–5. PubMed

Ostadal P, Mlcek M, Holy F, Horakova S, Kralovec S, Skoda J, et al. Direct comparison of percutaneous circulatory support systems in specific hemodynamic conditions in a porcine model. Circ Arrhythm Electrophysiol. 2012;5(6):1202–6. doi: 10.1161/CIRCEP.112.973123 . PubMed DOI

Broome M, Donker DW. Individualized real-time clinical decision support to monitor cardiac loading during venoarterial ECMO. J Transl Med. 2016;14(1):4 doi: 10.1186/s12967-015-0760-1 . PubMed DOI PMC

Strunina S, Ostadal P. Left ventricle unloading during veno-arterial extracorporeal membrane oxygenation Current Research: Cardiology. 2016;3(1):5–8.

Poss J, Kriechbaum S, Ewen S, Graf J, Hager I, Hennersdorf M, et al. First-in-man analysis of the i-cor assist device in patients with cardiogenic shock. European heart journal Acute cardiovascular care. 2015;4(5):475–81. doi: 10.1177/2048872614561481 . PubMed DOI

Cremers B, Link A, Werner C, Gorhan H, Simundic I, Matheis G, et al. Pulsatile venoarterial perfusion using a novel synchronized cardiac assist device augments coronary artery blood flow during ventricular fibrillation. Artificial organs. 2015;39(1):77–82. Epub 2014/12/17. doi: 10.1111/aor.12413 . PubMed DOI

Karaci AR, Sasmazel A, Aydemir NA, Saritas T, Harmandar B, Tuncel Z, et al. Comparison of parameters for detection of splanchnic hypoxia in children undergoing cardiopulmonary bypass with pulsatile versus nonpulsatile normothermia or hypothermia during congenital heart surgeries. Artificial organs. 2011;35(11):1010–7. Epub 2011/11/22. doi: 10.1111/j.1525-1594.2011.01378.x . PubMed DOI

Itoh H, Ichiba S, Ujike Y, Douguchi T, Obata H, Inamori S, et al. Effect of the Pulsatile Extracorporeal Membrane Oxygenation on Hemodynamic Energy and Systemic Microcirculation in a Piglet Model of Acute Cardiac Failure. Artificial organs. 2016;40(1):19–26. Epub 2015/11/04. doi: 10.1111/aor.12588 . PubMed DOI

Wang S, Krawiec C, Patel S, Kunselman AR, Song J, Lei F, et al. Laboratory Evaluation of Hemolysis and Systemic Inflammatory Response in Neonatal Nonpulsatile and Pulsatile Extracorporeal Life Support Systems. Artificial organs. 2015;39(9):774–81. Epub 2015/05/06. doi: 10.1111/aor.12466 . PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...