Unexpectedly Streamlined Mitochondrial Genome of the Euglenozoan Euglena gracilis
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26590215
PubMed Central
PMC4700960
DOI
10.1093/gbe/evv229
PII: evv229
Knihovny.cz E-zdroje
- Klíčová slova
- Euglena gracilis, RNA editing, mitochondrial genome, transcription,
- MeSH
- editace RNA MeSH
- elektronový transportní řetězec genetika MeSH
- Euglena gracilis genetika MeSH
- genom mitochondriální * MeSH
- molekulární evoluce * MeSH
- RNA ribozomální genetika MeSH
- sestřih RNA MeSH
- transkriptom MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- elektronový transportní řetězec MeSH
- RNA ribozomální MeSH
In this study, we describe the mitochondrial genome of the excavate flagellate Euglena gracilis. Its gene complement is reduced as compared with the well-studied sister groups Diplonemea and Kinetoplastea. We have identified seven protein-coding genes: Three subunits of respiratory complex I (nad1, nad4, and nad5), one subunit of complex III (cob), and three subunits of complex IV (cox1, cox2, and a highly divergent cox3). Moreover, fragments of ribosomal RNA genes have also been identified. Genes encoding subunits of complex V, ribosomal proteins and tRNAs were missing, and are likely located in the nuclear genome. Although mitochondrial genomes of diplonemids and kinetoplastids possess the most complex RNA processing machineries known, including trans-splicing and editing of the uridine insertion/deletion type, respectively, our transcriptomic data suggest their total absence in E. gracilis. This finding supports a scenario in which the complex mitochondrial processing machineries of both sister groups evolved relatively late in evolution from a streamlined genome and transcriptome of their common predecessor.
Zobrazit více v PubMed
Adl SM, et al. 2012. The revised classification of eukaryotes. J Eukaryot Microbiol. 59:429–493. PubMed PMC
Alfonzo JD, Blanc V, Estévez AM, Rubio MAT, Simpson L. 1999. C to U editing of the anticodon of imported mitochondrial tRNA (Trp) allows decoding of the UGA stop codon in Leishmania tarentolae. EMBO J. 18:7056–7062. PubMed PMC
Aphasizhev R, Aphasizheva I. 2014. Mitochondrial RNA editing in trypanosomes: small RNAs in control. Biochimie. 100:125–131. PubMed PMC
Attardi G, Schatz G. 1988. Biogenesis of mitochondria. Annu Rev Cell Biol. 4:289–333. PubMed
Benne R, et al. 1986. Major transcript of the frameshifted coxII gene from trypanosome mitochondria contains four nucleotides that are not encoded in the DNA. Cell 46:819–826. PubMed
Boer PH, Gray MW. 1988. Scrambled ribosomal RNA gene pieces in Chlamydomonas reinhardtii mitochondrial DNA. Cell 55:399–411. PubMed
Buetow DE, editor. 1989. The mitochondrion. In: The biology of Euglena. Vol. 4. San Diego (CA): Academic Press; p. 247–314.
Buetow DE. 2011. Euglena. In: Battista J, editor. Encyclopedia of life sciences (ELS). Chichester (United Kingdom): John Wiley & Sons, Ltd; 1–5.
Burger G, Gray MW, Forget L, Lang BF. 2013. Strikingly bacteria-like and gene-rich mitochondrial genomes throughout jakobid protists. Genome Biol Evol. 5:418–438. PubMed PMC
Burger G, Gray MW, Lang BF. 2003. Mitochondrial genomes: anything goes. Trends Genet. 19:709–716. PubMed
Burger G, Lang BF, Reith M, Gray MW. 1996. Genes encoding the same three subunits of respiratory complex II are present in the mitochondrial DNA of two phylogenetically distant eukaryotes. Proc Natl Acad Sci U S A. 93:2328–2332. PubMed PMC
Clare EL, Kerr KCR, von Konigslow TE, Wilson JJ, Hebert PDN. 2008. Diagnosing mitochondrial DNA diversity: applications of a sentinel gene approach. J Mol Evol. 66:362–367. PubMed
David V, et al. 2015. Gene loss and error-prone RNA editing in the mitochondrion of Perkinsela, an endosymbiotic kinetoplastid. MBio; 6(6). pii: e01498-15. PubMed PMC
Davis B, Merrett MJ. 1973. Malate dehydrogenase isoenzymes in division synchronized cultures of Euglena. Plant Physiol. 51:1127–1132. PubMed PMC
Feagin JE. 2000. Mitochondrial genome diversity in parasites. Int J Parasitol. 30:371–390. PubMed
Feagin JE, et al. 2012. The fragmented mitochondrial ribosomal RNAs of Plasmodium falciparum. PLoS One 7:e38320. PubMed PMC
Figueroa-Martínez F, et al. 2011. What limits the allotopic expression of nucleus-encoded mitochondrial genes? The case of the chimeric cox3 and atp6 genes. Mitochondrion 11:147–154. PubMed
Flegontov P, et al. 2015. Divergent mitochondrial respiratory chains in phototrophic relatives of apicomplexan parasites. Mol Biol Evol. 32:1115–1131. PubMed
Flegontov P, Gray MW, Burger G, Lukeš J. 2011. Gene fragmentation: a key to mitochondrial genome evolution in Euglenozoa? Curr Genet. 57:225–232. PubMed
Fonty G, Crouse EJ, Stutz E, Bernardi G. 1975. The mitochondrial genome of Euglena gracilis. Eur J Biochem. 54:367–372. PubMed
Fricova D, et al. 2010. The mitochondrial genome of the pathogenic yeast Candida subhashii: GC-rich linear DNA with a protein covalently attached to the 5′ termini. Microbiology 156:2153–2163. PubMed PMC
Funes S, et al. 2002. The typically mitochondrial DNA-encoded ATP6 subunit of the F1F0-ATPase is encoded by a nuclear gene in Chlamydomonas reinhardtii. J Biol Chem. 277:6051–6058. PubMed
Gott JM, Emeson RB. 2000. Functions and mechanisms of RNA editing. Annu Rev Genet. 34:499–531. PubMed
Gray MW. 2003. Diversity and evolution of mitochondrial RNA editing systems. IUBMB Life 55:227–233. PubMed
Gray MW. 2012. Mitochondrial evolution. Cold Spring Harb Perspect Biol. 4(9):a011403. PubMed PMC
Gray MW, Doolittle WF. 1982. Has the endosymbiont hypothesis been proven? Microbiol Rev. 46:1–42. PubMed PMC
Gray MW, Lukeš J, Archibald JM., Keeling PJ, Doolittle PF. 2010. Irremediable complexity? Science 330:929–921. PubMed
Hallick RB, et al. 1993. Complete sequence of Euglena gracilis chloroplast DNA. Nucleic Acids Res. 21:3537–3544. PubMed PMC
Hashimi H, Zimmer SL, Ammerman ML, Read LK, Lukeš J. 2013. Dual core processing: MRB1 is an emerging kinetoplast RNA editing complex. Trends Parasitol. 29:91–99. PubMed PMC
Hecht J, Grewe F, Knoop V. 2011. Extreme RNA editing in coding islands and abundant microsatellites in repeat sequences of Selaginella moellendorffii mitochondria: the root of frequent plant mtDNA recombination in early tracheophytes. Genome Biol Evol. 3:344–358. PubMed PMC
Hutner SH, Zahalsky AC, Aaronson SA, Baker H, Frank O. 1966. Culture media for Euglena gracilispter. Methods Cell Biol. 2:217–228.
Jensen RE, Englund PT. 2012. Network News: the replication of kinetoplast DNA. Annu Rev Microbiol. 66:473–491. PubMed
Kiethega GN, Yan Y, Turcotte M, Burger G. 2013. RNA-level unscrambling of fragmented genes in Diplonema mitochondria. RNA Biol. 10:301–313. PubMed PMC
Krajčovič J, Vesteg M, Schwartzbach SD. 2015. Euglenoid flagellates: a multifaceted biotechnology platform. J Biotechnol. 202:135–145. PubMed
Krnáčová K, et al. 2015. Characterization of oxidative phosphorylation enzymes in Euglena gracilis and its white mutant strain WgmZOflL. FEBS Lett. 589:687–694. PubMed
Langmead B, Salzberg S. 2012. Fast gapped-read alignment with Bowtie 2. Nat Methods. 9:357–359. PubMed PMC
Leister D. 2005. Genomics-based dissection of the cross-talk of chloroplasts with the nucleus and mitochondria in Arabidopsis. Gene 354:110–116. PubMed
Lewis LA, McCourt RM. 2004. Green algae and the origin of land plants. Am J Bot. 91:1535–1556. PubMed
Liu B, Shawn YL, Motyka A, Agbo EEC, Englund PT. 2005. Fellowship of the rings: the replication of kinetoplast DNA. Trends Parasitol. 21:363–369. PubMed
Lukeš J, Archibald JM, Keeling PJ, Doolittle WF, Gray MW. 2011. How a neutral evolutionary ratchet can build cellular complexity. IUBMB Life 63:528–537. PubMed
Lukeš J, et al. 2002. Kinetoplast DNA network: evolution of an improbable structure. Eukaryot Cell. 1:495–502. PubMed PMC
Lukeš J, Flegontova O, Horák A. 2015. Diplonemids. Curr Biol. 25:R702–R704. PubMed
Lukeš J, Leander BS, Keeling PJ. 2009. Cascades of convergent evolution: the corresponding evolutionary histories of euglenozoans and dinoflagellates. Proc Natl Acad Sci U S A. 106:9963–9970. PubMed PMC
Maguire F, Richards TA. 2014. Organelle evolution: a mosaic of “mitochondrial” functions. Curr Biol. 24:R518–R520. PubMed
Marande W, Burger G. 2007. Mitochondrial DNA as a genomic jigsaw puzzle. Science 318:415. PubMed
Marande W, Lukeš J., Burger G. 2005. Unique mitochondrial genome structure in Diplonemids, the sister group of Kinetoplastids. Eukaryot Cell. 4:1137–1146. PubMed PMC
Maslov D, et al. 2006. Isolation and characterization of mitochondrial ribosomes and ribosomal subunits from Leishmania tarentolae. Mol Biochem Parasitol. 148:69–78. PubMed
Moreno-Sánchez R, et al. 2000. Oxidative phosphorylation supported by an alternative respiratory pathway in mitochondria from Euglena. Biochim Biophys Acta. 1457:200–210. PubMed
Müller M, et al. 2012. Biochemistry and evolution of anaerobic energy metabolism in eukaryotes. Microbiol Mol Biol Rev. 76:444–495. PubMed PMC
O’Neill EC, et al. 2015. The transcriptome of Euglena gracilis reveals unexpected metabolic capabilities for carbohydrate and natural product biochemistry. Mol BioSyst. 11:2808–2820. PubMed
Perez E, et al. 2014. The mitochondrial respiratory chain of the secondary green alga Euglena gracilis shares many additional subunits with parasitic Trypanosomatidae. Mitochondrion 19:338–349. PubMed
Povelones ML. 2014. Beyond replication: division and segregation of mitochondrial DNA in Kinetoplastids. Mol Biochem Parasitol. 196:53–60. PubMed
Roy J, Faktorová D, Lukeš J, Burger G. 2007. Unusual mitochondrial genome structures throughout the Euglenozoa. Protist 158:385–396. PubMed
Shao R, Zhu XQ, Barker SC, Herd K. 2012. Evolution of extensively fragmented mitochondrial genomes in the lice of humans. Genome Biol Evol. 4:1088–1101. PubMed PMC
Skippington E, Barkman TJ, Rice DW, Palmer JD. 2015. Miniaturized mitogenome of the parasitic plant Viscum scurruloideum is extremely divergent and dynamic and has lost all nad genes. Proc Natl Acad Sci U S A. 112:E3515–E3524. PubMed PMC
Sloan DB, et al. 2012. Rapid evolution of enormous, multichromosomal genomes in flowering plant mitochondria with exceptionally high mutation rates. PLoS Biol. 10:e1001241. PubMed PMC
Smith DR, et al. 2011. The GC-rich mitochondrial and plastid genomes of the green alga Coccomyxa give insight into the evolution of organelle DNA nucleotide landscape. PLoS One 6:e23624. PubMed PMC
Smith DR, Keeling PJ. 2015. Mitochondrial and plastid genome architecture: reoccurring themes, but significant differences at the extremes. Proc Natl Acad Sci U S A. 12:10177–10184. PubMed PMC
Smith DR. 2015. The past, present and future of mitochondrial genomics: have we sequenced enough mtDNAs? Brief Funct Genomics.. Advance Access published June 27, 2015; doi:10.1093/bfgp/elv027. PubMed PMC
Smith DR. 2009. Unparalleled GC content in the plastid DNA of Selaginella. Plant Mol Biol. 71:627–639. PubMed
Spencer DF, Gray MW. 2011. Ribosomal RNA genes in Euglena gracilis mitochondrial DNA: fragmented genes in a seemingly fragmented genome. Mol Genet Genomics. 285:19–31. PubMed
Stamatakis A. 2014. RAxML Version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313. PubMed PMC
Stuart KD, Schnaufer A, Ernst NL, Panigrahi AK. 2005. Complex management: RNA editing in trypanosomes. Trends Biochem Sci. 30:97–105. PubMed
Tessier LH, van der Speck H, Gualberto JM, Grienenberger JM. 1997. The cox1 gene from Euglena gracilis: a protist mitochondrial gene without introns and genetic code modifications. Curr Genet. 31:208–213. PubMed
Tzagoloff A, Myers AM. 1986. Genetics of mitochondrial biogenesis. Annu Rev Biochem. 55:249–285. PubMed
Valach M, Moreira S, Kiethega GN, Burger G. 2014. Trans-splicing and RNA editing of LSU rRNA in Diplonema mitochondria. Nucleic Acids Res. 42:2660–2672. PubMed PMC
Van Lis R, Mendoza-Hernández G, Groth G, Atteia A. 2007. New insights into the unique structure of the F0F1-ATP synthase from the chlamydomonad algae Polytomella sp. and Chlamydomonas reinhardtii. Plant Physiol. 144:1190–1199. PubMed PMC
Vázquez-Acevedo M, et al. 2006. The mitochondrial ATP synthase of chlorophycean algae contains eight subunits of unknown origin involved in the formation of an atypical stator-stalk and in the dimerization of the complex. J Bioenerg Biomembr. 38:271–282. PubMed
Verner Z, et al. 2015. Malleable mitochondrion of Trypanosoma brucei. Int Rev Cell Mol Biol. 315:73–151. PubMed
Vesteg M, et al. 2010. A possible role for short introns in the acquisition of stroma-targeting peptides in the flagellate Euglena gracilis. DNA Res. 17:223–231. PubMed PMC
Vlček C, Marande W, Teijeiro S, Lukeš J, Burger G. 2011. Systematically fragmented genes in a multipartite mitochondrial genome. Nucleic Acids Res. 39:979–988. PubMed PMC
Waller RF, Jackson CJ. 2009. Dinoflagellate mitochondrial genomes: stretching the rules of molecular biology. BioEssays 31:237–245. PubMed
Yasuhira S, Simpson L. 1997. Phylogenetic affinity of mitochondria of Euglena gracilis and kinetoplastids using cytochrome oxidase I and hsp60. J Mol Evol. 44:341–347. PubMed
Zíková A, et al. 2008. Trypanosoma brucei mitochondrial ribosomes: affinity purification and component identification by mass spectrometry. Mol Cell Proteomics. 7:1286–1296. PubMed PMC
Single-cell genomics unveils a canonical origin of the diverse mitochondrial genomes of euglenozoans
Euglenozoa: taxonomy, diversity and ecology, symbioses and viruses
A Uniquely Complex Mitochondrial Proteome from Euglena gracilis
Inventory and Evolution of Mitochondrion-localized Family A DNA Polymerases in Euglenozoa
Transcriptome, proteome and draft genome of Euglena gracilis
Massive mitochondrial DNA content in diplonemid and kinetoplastid protists
From simple to supercomplex: mitochondrial genomes of euglenozoan protists
BioProject
PRJNA294935