Euglenid Extrachromosomal DNA: Assembly and Annotation
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články
- Klíčová slova
- Euglenida, Euglenozoa, Mitochondrial genome, Next-generation sequencing, Plastid genome, Ribosomal operon,
- MeSH
- anotace sekvence * metody MeSH
- Euglenozoa * genetika MeSH
- fylogeneze MeSH
- genom mitochondriální MeSH
- genom plastidový MeSH
- genomika metody MeSH
- mitochondriální DNA genetika MeSH
- ribozomální DNA genetika MeSH
- sekvenční analýza DNA metody MeSH
- výpočetní biologie * metody MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- mitochondriální DNA MeSH
- ribozomální DNA MeSH
Euglenids (Euglenozoa) contain several forms of extrachromosomal DNA (ecDNA) in their cells, including the ribosomal DNA operon (rDNA), the mitochondrial genome (mtDNA), and, in photosynthetic species, the plastid genome (ptDNA). These ecDNA elements can be easily and accurately assembled and annotated even from limited sequencing data, such as single-cell genomic or metagenomic datasets. They are an important source of information for phylogenomic analyses, metabarcoding and evolutionary studies. In this chapter, we present a robust and adaptable bioinformatics pipeline for the identification, assembly, and annotation of extrachromosomal DNA from whole-genome datasets. The pipeline was developed with euglenids in mind and takes into account their unique genomic features, but can also be adapted for other Euglenozoa (and protists). This approach enables the recovery of organellar and rDNA sequences with high confidence and supports both targeted studies and large-scale environmental analyses.
Institute of Parasitology Biology Centre Czech Academy of Sciences České Budějovice Czechia
University of Warsaw Faculty of Biology Institute of Evolutionary Biology Warsaw Poland
Zobrazit více v PubMed
Kostygov AY, Karnkowska A, Votýpka J et al (2021) Euglenozoa: taxonomy, diversity and ecology, symbioses and viruses. Open Biol 11(3):200407. https://doi.org/10.1098/rsob.200407 PubMed DOI PMC
Fields O, Hammond MJ, Xu X et al (2025) Advances in euglenoid genomics: unravelling the fascinating biology of a complex clade. Trends Genet 4:251–260. https://doi.org/10.1016/j.tig.2024.07.007 DOI
Záhonová K, Lax G, Sinha SD et al (2021) Single-cell genomics unveils a canonical origin of the diverse mitochondrial genomes of euglenozoans. BMC Biol 19:103. https://doi.org/10.1186/s12915-021-01035-y PubMed DOI PMC
Hollender M, Sałek M, Karlicki M et al (2024) Single-cell genomics revealed Candidatus Grellia alia sp. nov. as an endosymbiont of Eutreptiella sp. (Euglenophyceae). Protist 175(2):126018. https://doi.org/10.1016/j.protis.2024.126018 PubMed DOI
Ravel-Chapuis P, Nicolas P, Nigon V et al (1985) Extrachromosomal circular nuclear rDNA in Euglena gracilis. Nucleic Acids Res 13:7529–7537. https://doi.org/10.1093/nar/13.20.7529 PubMed DOI PMC
Kolisko M, Flegontova O, Karnkowska A et al (2020) EukRef-excavates: seven curated SSU ribosomal RNA gene databases. Database J Biol Databases Curation 2020:baaa080. https://doi.org/10.1093/database/baaa080 DOI
Lax G, Simpson AGB (2020) The molecular diversity of phagotrophic euglenids examined using single-cell methods. Protist 171:125757. https://doi.org/10.1016/j.protis.2020.125757 PubMed DOI
Rackevei AS, Karnkowska A, Wolf M (2023) 18S rDNA sequence–structure phylogeny of the Euglenophyceae (Euglenozoa, Euglenida). J Eukaryot Microbiol 70:e12959. https://doi.org/10.1111/jeu.12959 PubMed DOI
Fells A, Jiang X, Jankowska K et al (2023) Molecular and morphological delimitation of species in Strombomonas (Euglenaceae) including a protocol for DNA isolation utilising a chelating resin. Taxon 72:733–750. https://doi.org/10.1002/tax.12937 DOI
Łukomska-Kowalczyk M, Karnkowska A, Krupska M et al (2016) DNA barcoding in autotrophic euglenids: evaluation of COI and 18s rDNA. J Phycol 52:951–960. https://doi.org/10.1111/jpy.12439 PubMed DOI
Jankowska K, Łukomska-Kowalczyk M, Milanowski R (2024) Biodiversity of autotrophic euglenids based on the group specific DNA metabarcoding approach. Protist 175:126024. https://doi.org/10.1016/j.protis.2024.126024 PubMed DOI
Hałakuc P, Karnkowska A, Milanowski R (2022) Typical structure of rRNA coding genes in diplonemids points to two independent origins of the bizarre rDNA structures of euglenozoans. BMC Ecol Evol 22:59. https://doi.org/10.1186/s12862-022-02014-9 PubMed DOI PMC
Dobáková E, Flegontov P, Skalický T et al (2015) Unexpectedly streamlined mitochondrial genome of the euglenozoan. Genome Biol Evol 7:3358–3367. https://doi.org/10.1093/gbe/evv229 PubMed DOI PMC
Hallick RB, Hong L, Drager RG et al (1993) Complete sequence of Euglena gracilis chloroplast DNA. Nucleic Acids Res 21:3537–3544. https://doi.org/10.1093/nar/21.15.3537 PubMed DOI PMC
Maciszewski K, Dabbagh N, Preisfeld A et al (2022) Maturyoshka: a maturase inside a maturase, and other peculiarities of the novel chloroplast genomes of marine euglenophytes. Mol Phylogenet Evol 170:107441. https://doi.org/10.1016/j.ympev.2022.107441 PubMed DOI
Maciszewski K, Fells A, Karnkowska A (2022) Challenging the importance of plastid genome structure conservation: new insights from euglenophytes. Mol Biol Evol 39:msac255. https://doi.org/10.1093/molbev/msac255 PubMed DOI PMC
Novák Vanclová AM, Nef C, Füssy Z et al (2024) New plastids, old proteins: repeated endosymbiotic acquisitions in kareniacean dinoflagellates. EMBO Rep 25:1859–1885. https://doi.org/10.1038/s44319-024-00103-y PubMed DOI PMC
Chen S, Zhou Y, Chen Y et al (2018) Fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34:i884–i890. https://doi.org/10.1093/bioinformatics/bty560 PubMed DOI PMC
Prjibelski A, Antipov D, Meleshko D et al (2020) Using SPAdes De Novo Assembler. Curr Protoc Bioinformatics 70:e102. https://doi.org/10.1002/cpbi.102
Nurk S, Meleshko D, Korobeynikov A et al (2017) metaSPAdes: a new versatile metagenomic assembler. Genome Res 27:824–834. https://doi.org/10.1101/gr.213959.116 PubMed DOI PMC
Camacho C, Coulouris G, Avagyan V et al (2009) BLAST+: architecture and applications. BMC Bioinformatics 10:421. https://doi.org/10.1186/1471-2105-10-421 PubMed DOI PMC
Laetsch DR, Blaxter ML (2017) BlobTools: interrogation of genome assemblies. F1000Res 6:1287. https://doi.org/10.12688/f1000research.12232.1 DOI
Karlicki M, Antonowicz S, Karnkowska A (2022) Tiara: deep learning-based classification system for eukaryotic sequences. Bioinformatics 38:344–350. https://doi.org/10.1093/bioinformatics/btab672 PubMed DOI
Wick RR, Schultz MB, Zobel J et al (2015) Bandage: interactive visualization of de novo genome assemblies. Bioinformatics 31:3350–3352. https://doi.org/10.1093/bioinformatics/btv383 PubMed DOI PMC
Seemann T (2013) barrnap: rapid ribosomal RNA prediction. https://github.com/tseemann/barrnap . Accessed 30 June 2025
Lagesen K, Hallin P, Rødland EA et al (2007) RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 35:3100–3108. https://doi.org/10.1093/nar/gkm160 PubMed DOI PMC
Gruber AR, Lorenz R, Bernhart SH et al (2008) The Vienna RNA websuite. Nucleic Acids Res 36:W70–W74. https://doi.org/10.1093/nar/gkn188 PubMed DOI PMC
Lang BF, Beck N, Prince S et al (2023) Mitochondrial genome annotation with MFannot: a critical analysis of gene identification and gene model prediction. Front Plant Sci 14:1222186. https://doi.org/10.3389/fpls.2023.1222186 PubMed DOI PMC
Dierckxsens N, Mardulyn P, Smits G (2016) NOVOPlasty: de novo assembly of organelle genomes from whole genome data. Nucleic Acids Res:gkw955. https://doi.org/10.1093/nar/gkw955
Wyman SK, Jansen RK, Boore JL (2004) Automatic annotation of organellar genomes with DOGMA. Bioinformatics 20:3252–3255. https://doi.org/10.1093/bioinformatics/bth352 PubMed DOI
Liu C, Shi L, Zhu Y et al (2012) CpGAVAS, an integrated web server for the annotation, visualization, analysis, and GenBank submission of completely sequenced chloroplast genome sequences. BMC Genomics 13:715. https://doi.org/10.1186/1471-2164-13-715 PubMed DOI PMC
Blum M, Andreeva A, Florentino LC et al (2025) InterPro: the protein sequence classification resource in 2025. Nucleic Acids Res 53:D444–D456. https://doi.org/10.1093/nar/gkae1082 PubMed DOI