New plastids, old proteins: repeated endosymbiotic acquisitions in kareniacean dinoflagellates
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
ANR-21-CE02-0014
Agence Nationale de la Recherche (ANR)
ANR-20-CE13-0007
Agence Nationale de la Recherche (ANR)
ANR-19-CE20-0020
Agence Nationale de la Recherche (ANR)
101039760
EC | European Research Council (ERC)
835067
EC | European Research Council (ERC)
Momentum Fellowship 2019-2021
Centre National de la Recherche Scientifique (CNRS)
835067
EC | ERC | HORIZON EUROPE European Research Council (ERC)
ANR-10-LABX-54
Agence Nationale de la Recherche (ANR)
ANR-1253 11-IDEX-0001-02
Université de Recherche Paris Sciences et Lettres (PSL)
90254
e-INFRA CZ
PubMed
38499810
PubMed Central
PMC11014865
DOI
10.1038/s44319-024-00103-y
PII: 10.1038/s44319-024-00103-y
Knihovny.cz E-zdroje
- Klíčová slova
- Automated Tree Sorting, Myzozoa, Post-Endosymbiotic Organelle Evolution, Protists, Shopping Bag Model,
- MeSH
- Dinoflagellata * genetika metabolismus MeSH
- fylogeneze MeSH
- plastidy genetika MeSH
- proteom genetika metabolismus MeSH
- symbióza genetika MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- proteom MeSH
Dinoflagellates are a diverse group of ecologically significant micro-eukaryotes that can serve as a model system for plastid symbiogenesis due to their susceptibility to plastid loss and replacement via serial endosymbiosis. Kareniaceae harbor fucoxanthin-pigmented plastids instead of the ancestral peridinin-pigmented ones and support them with a diverse range of nucleus-encoded plastid-targeted proteins originating from the haptophyte endosymbiont, dinoflagellate host, and/or lateral gene transfers (LGT). Here, we present predicted plastid proteomes from seven distantly related kareniaceans in three genera (Karenia, Karlodinium, and Takayama) and analyze their evolutionary patterns using automated tree building and sorting. We project a relatively limited ( ~ 10%) haptophyte signal pointing towards a shared origin in the family Chrysochromulinaceae. Our data establish significant variations in the functional distributions of these signals, emphasizing the importance of micro-evolutionary processes in shaping the chimeric proteomes. Analysis of plastid genome sequences recontextualizes these results by a striking finding the extant kareniacean plastids are in fact not all of the same origin, as two of the studied species (Karlodinium armiger, Takayama helix) possess plastids from different haptophyte orders than the rest.
Centre de Recherches Interdisciplinaires Paris France
Faculty of Mathematics and Physics Charles University Prague Czechia
Faculty of Science Charles University BIOCEV Vestec Czechia
Zobrazit více v PubMed
Almagro Armenteros JJ, Tsirigos KD, Sønderby CK, Petersen TN, Winther O, Brunak S, von Heijne G, Nielsen H. SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat Biotechnol. 2019;37:420–423. doi: 10.1038/s41587-019-0036-z. PubMed DOI
Ardyna, M, D’Ovidio, F, Speich, S, Leconte, J, Chaffron, S, Audic, S, Garczarek, L, Pesant, S, Tara Oceans Consortium, C., & Tara Oceans Expedition, P. (2017). Environmental context of all samples from the Tara Oceans Expedition (2009-2013), about mesoscale features at the sampling location. In: Tara Oceans Consortium, Coordinators; Tara Oceans Expedition, Participants (2017): Registry of all samples from the Tara Oceans Expedition (2009-2013).
Bannerman BP, Kramer S, Dorrell RG, Carrington M. Multispecies reconstructions uncover widespread conservation, and lineage-specific elaborations in eukaryotic mRNA metabolism. PLoS ONE. 2018;13:e0192633. doi: 10.1371/journal.pone.0192633. PubMed DOI PMC
Beauchemin M, Morse D. A proteomic portrait of dinoflagellate chromatin reveals abundant RNA-binding proteins. Chromosoma. 2018;127:29–43. doi: 10.1007/s00412-017-0643-8. PubMed DOI
Bentlage B, Rogers TS, Bachvaroff TR, Delwiche CF. Complex ancestries of isoprenoid synthesis in dinoflagellates. J Eukaryot Microbiol. 2016;63:123–137. doi: 10.1111/jeu.12261. PubMed DOI PMC
Berge T, Hansen PJ. Role of the chloroplasts in the predatory dinoflagellate Karlodinium armiger. Mar Ecol Prog Ser. 2016;549:41–54. doi: 10.3354/meps11682. DOI
Berge T, Hansen PJ, Moestrup Ø. Feeding mechanism, prey specificity and growth in light and dark of the plastidic dinoflagellate Karlodinium armiger. Aquat Microb Ecol. 2008;50:279–288. doi: 10.3354/ame01165. DOI
Boldt L, Yellowlees D, Leggat W. Hyperdiversity of genes encoding integral light-harvesting proteins in the dinoflagellate symbiodinium sp. PLoS ONE. 2012;7:1–13. doi: 10.1371/journal.pone.0047456. PubMed DOI PMC
Burki F, Hirakawa Y, Keeling PJ. Intragenomic spread of plastid-targeting presequences in the coccolithophore Emiliania huxleyi. Mol Biol Evol. 2012;29(9):2109–2112. doi: 10.1093/molbev/mss103. PubMed DOI
Burki F, Imanian B, Hehenberger E, Hirakawa Y, Maruyama S, Keeling PJ. Endosymbiotic gene transfer in tertiary plastid-containing dinoflagellates. Eukaryot Cell. 2014;13:246–255. doi: 10.1128/EC.00299-13. PubMed DOI PMC
Butterfield ER, Howe CJ, Nisbet RER. An analysis of dinoflagellate metabolism using EST data. Protist. 2013;164:218–236. doi: 10.1016/j.protis.2012.09.001. PubMed DOI
Capella-Gutierrez S, Silla-Martinez JM, Gabaldon T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 2009;25:1972–1973. doi: 10.1093/bioinformatics/btp348. PubMed DOI PMC
Choi CJ, Bachy C, Jaeger GS, Poirier C, Sudek L, Sarma VVSS, Mahadevan A, Giovannoni SJ, Worden AZ. Newly discovered deep-branching marine plastid lineages are numerically rare but globally distributed. Curr Biol. 2017;27:R15–R16. doi: 10.1016/j.cub.2016.11.032. PubMed DOI
Cohen NR, McIlvin MR, Moran DM, Held NA, Saunders JK, Hawco NJ, Brosnahan M, DiTullio GR, Lamborg C, McCrow JP, et al. Dinoflagellates alter their carbon and nutrient metabolic strategies across environmental gradients in the central Pacific Ocean. Nat Microbiol. 2021;6:173–186. doi: 10.1038/s41564-020-00814-7. PubMed DOI
Cooney EC, Leander BS, Keeling PJ. Phylogenomics shows unique traits in Noctilucales are derived rather than ancestral. PNAS Nexus. 2022;1:1–11. doi: 10.1093/pnasnexus/pgac202. PubMed DOI PMC
Crooks GE, Hon G, Chandonia JM, Brenner SE. WebLogo: a sequence logo generator. Genome Res. 2004;14:1188–1190. doi: 10.1101/gr.849004. PubMed DOI PMC
Dammeyer T, Frankenberg-Dinkel N. Function and distribution of bilin biosynthesis enzymes in photosynthetic organisms. Photochem Photobiol Sci. 2008;7:1121–1130. doi: 10.1039/b807209b. PubMed DOI
de Salas MF, Laza-Martínez A, Hallegraeff GM. Novel unarmored dinoflagellates from the toxigenic family Kareniaceae (Gymnodiniales): five new species of Karlodinium and one new Takayama from the Australian sector of the Southern Ocean. J Phycol. 2008;44:241–257. doi: 10.1111/j.1529-8817.2007.00458.x. PubMed DOI
de Vargas C, Audic S, Henry N, Decelle J, Mahé F, Logares R, Lara E, Berney C, Le Bescot N, Probert I, et al. Eukaryotic plankton diversity in the sunlit ocean. Science. 2015;348:1261605–1/11. doi: 10.1126/science.1261605. PubMed DOI
Dorrell RG, Azuma T, Nomura M, de Kerdrel GA, Paoli L, Yang S, Bowler C, Ishii K, Miyashita H, Gile GH, et al. Principles of plastid reductive evolution illuminated by nonphotosynthetic chrysophytes. Proc Natl Acad Sci USA. 2019;116:6914–6923. doi: 10.1073/pnas.1819976116. PubMed DOI PMC
Dorrell RG, Gile G, McCallum G, Méheust R, Bapteste EP, Klinger CM, Brillet-Guéguen L, Freeman KD, Richter DJ, Bowler C. Chimeric origins of ochrophytes and haptophytes revealed through an ancient plastid proteome. Elife. 2017;6:e23717. doi: 10.7554/eLife.23717. PubMed DOI PMC
Dorrell RG, Hinksman GA, Howe CJ. Diversity of transcripts and transcript processing forms in plastids of the dinoflagellate alga Karenia mikimotoi. Plant Mol Biol. 2016;90:233–247. doi: 10.1007/s11103-015-0408-9. PubMed DOI PMC
Dorrell RG, Howe CJ. Functional remodeling of RNA processing in replacement chloroplasts by pathways retained from their predecessors. Proc Natl Acad Sci USA. 2012;109:18879–18884. doi: 10.1073/pnas.1212270109. PubMed DOI PMC
Dorrell RG, Howe CJ. Integration of plastids with their hosts: Lessons learned from dinoflagellates. Proc Natl Acad Sci USA. 2015;112:10247–10254. doi: 10.1073/pnas.1421380112. PubMed DOI PMC
Dorrell RG, Smith AG. Do red and green make brown?: perspectives on plastid acquisitions within chromalveolates. Eukaryot Cell. 2011;10:856–868. doi: 10.1128/EC.00326-10. PubMed DOI PMC
Dorrell RG, Villain A, Perez-Lamarque B, Kerdrel GA, de, McCallum G, Watson AK, Ait-Mohamed O, Alberti A, Corre E, Frischkorn KR, et al. Phylogenomic fingerprinting of tempo and functions of horizontal gene transfer within ochrophytes. Proc Natl Acad Sci USA. 2021;118:e2009974118. doi: 10.1073/pnas.2009974118. PubMed DOI PMC
Ebenezer TE, Zoltner M, Burrell A, Nenarokova A, Novák Vanclová AMG, Prasad B, Soukal P, Santana-Molina C, O’Neill E, Nankissoor NN, et al. Transcriptome, proteome and draft genome of Euglena gracilis. BMC Biol. 2019;17:11. doi: 10.1186/s12915-019-0626-8. PubMed DOI PMC
Emanuelsson O, Nielsen H, von Heijne G. ChloroP, a neural network-based method for predicting chloroplast transit peptides and their cleavage sites. Protein Sci. 1999;8:978–984. doi: 10.1110/ps.8.5.978. PubMed DOI PMC
Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, Heger A, Hetherington K, Holm L, Mistry J, et al. Pfam: the protein families database. Nucleic Acids Res. 2014;42:D222–D230. doi: 10.1093/nar/gkt1223. PubMed DOI PMC
Füssy Z, Faitová T, Oborník M. Subcellular compartments interplay for carbon and nitrogen allocation in Chromera velia and Vitrella brassicaformis. Genome Biol Evol. 2019;11:1765–1779. doi: 10.1093/gbe/evz123. PubMed DOI PMC
Gabrielsen TM, Minge MA, Espelund M, Tooming-Klunderud A, Patil V, Nederbragt AJ, Otis C, Turmel M, Shalchian-Tabrizi K, Lemieux C, et al. Genome evolution of a tertiary dinoflagellate plastid. PLoS ONE. 2011;6:e19132. doi: 10.1371/journal.pone.0019132. PubMed DOI PMC
Gachon CMM, Heesch S, Kuepper FC, Achilles-Day UEM, Brennan D, Campbell CN, Clarke A, Dorrell RG, Field J, Gontarek S, Menendez CR, Saxon, A RJ, et al. The CCAP KnowledgeBase: linking protistan and cyanobacterial biological resources with taxonomic and molecular data. Syst Biodivers. 2013;11:407–413. doi: 10.1080/14772000.2013.859641. DOI
Galluzzi L, Bertozzini E, Penna A, Perini F, Garcés E, Magnani M. Analysis of rRNA gene content in the Mediterranean dinoflagellate Alexandrium catenella and Alexandrium taylori: implications for the quantitative real-time PCR-based monitoring methods. J Appl Phycol. 2010;22:1–9. doi: 10.1007/s10811-009-9411-3. DOI
Garcés E, Fernandez M, Penna A, Van Lenning K, Gutierrez A, Camp J, Zapata M. Characterization of nw Mediterranean Karlodinium spp. (Dinophyceae) strains using morphological, molecular, chemical, and physiological methodologies. J Phycol. 2006;42:1096–1112. doi: 10.1111/j.1529-8817.2006.00270.x. DOI
Gast RJ, Moran DM, Dennett MR, Caron DA. Kleptoplasty in an Antarctic dinoflagellate: caught in evolutionary transition? Environ Microbiol. 2007;9:39–45. doi: 10.1111/j.1462-2920.2006.01109.x. PubMed DOI
Gavelis GS, Hayakawa S, White RA, Gojobori T, Suttle CA, Keeling PJ, Leander BS. Eye-like ocelloids are built from different endosymbiotically acquired components. Nature. 2015;523:204–207. doi: 10.1038/nature14593. PubMed DOI
Gornik SG, Febrimarsa, Cassin AM, MacRae JI, Ramaprasad A, Rchiad Z, McConville MJ, Bacic A, McFadden GI, Pain A, et al. Endosymbiosis undone by stepwise elimination of the plastid in a parasitic dinoflagellate. Proc Natl Acad Sci USA. 2015;112:5767–5772. doi: 10.1073/pnas.1423400112. PubMed DOI PMC
Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol. 2011;29:644–652. doi: 10.1038/nbt.1883. PubMed DOI PMC
Gruber A, Rocap G, Kroth PG, Armbrust EV, Mock T. Plastid proteome prediction for diatoms and other algae with secondary plastids of the red lineage. Plant J. 2015;81:519–528. doi: 10.1111/tpj.12734. PubMed DOI PMC
Gschloessl B, Guermeur Y, Cock JM. HECTAR: a method to predict subcellular targeting in heterokonts. BMC Bioinform. 2008;9:1–13. doi: 10.1186/1471-2105-9-393. PubMed DOI PMC
Guidi, L, Morin, P, Coppola, L, Tremblay, J-É, Pesant, S, Tara Oceans Consortium, C., Tara Oceans Expedition, P. (2017a). Environmental context of all samples from the Tara Oceans Expedition (2009-2013), about nutrients in the targeted environmental feature. In: Tara Oceans Consortium, Coordinators; Tara Oceans Expedition, Participants (2017): Registry of all samples from the Tara Oceans Expedition (2009–2013). PANGAEA
Guidi, L, Picheral, M, Pesant, S, Tara Oceans Consortium, C., Tara Oceans Expedition, P. (2017b). Environmental context of all samples from the Tara Oceans Expedition (2009-2013), about sensor data in the targeted environmental feature. In: Tara Oceans Consortium, Coordinators; Tara Oceans Expedition, Participants (2017): Registry of all samples from the Tara Oceans Expedition (2009–2013). PANGAEA
Gütle DD, Roret T, Müller SJ, Couturier J, Lemaire SD, Hecker A, Dhalleine T, Buchanan BB, Reski R, Einsle O, Jacquot JP. Chloroplast FBPase and SBPase are thioredoxin-linked enzymes with similar architecture but different evolutionary histories. Proc Natl Acad Sci USA. 2016;113:6779–6784. doi: 10.1073/pnas.1606241113. PubMed DOI PMC
Hackett JD, Anderson DM, Erdner DL, Bhattacharya D. Dinoflagellates: a remarkable evolutionary experiment. Am J Bot. 2004;91:1523–1534. doi: 10.3732/ajb.91.10.1523. PubMed DOI
Hadariová L, Vesteg M, Hampl V, Krajčovič J. Reductive evolution of chloroplasts in non-photosynthetic plants, algae and protists. Curr Genet. 2018;64:365–387. doi: 10.1007/s00294-017-0761-0. PubMed DOI
Hannaert V, Saavedra E, Duffieux F, Szikora J-P, Rigden DJ, Michels PAM, Opperdoes FR. Plant-like traits associated with metabolism of Trypanosoma parasites. Proc Natl Acad Sci USA. 2003;100:1067–1071. doi: 10.1073/pnas.0335769100. PubMed DOI PMC
Haxo FT, Kycia JH, Somers GF, Benneit A, Siegelman HW. Peridinin-chlorophyll a proteins of the dinoflagellate Amphidinium carterae (Plymouth 450) Plant Physiol. 1976;57:297–303. doi: 10.1104/pp.57.2.297. PubMed DOI PMC
Hehenberger E, Gast RJ, Keeling PJ (2019) A kleptoplastidic dinoflagellate and the tipping point between transient and fully integrated plastid endosymbiosis. Proc Natl Acad Sci USA 116:17934–17942 PubMed PMC
Hiller K, Grote A, Scheer M, Münch R, Jahn D. PrediSi: prediction of signal peptides and their cleavage positions. Nucleic Acids Res. 2004;32:375–379. doi: 10.1093/nar/gkh378. PubMed DOI PMC
Howe CJ, Barbrook AC, Nisbet RER, Lockhart PJ, Larkum AWD. The origin of plastids. Philos Trans R Soc Lond B Biol Sci. 2008;363:2675–2685. doi: 10.1098/rstb.2008.0050. PubMed DOI PMC
Huang J, Gogarten J. Did an ancient chlamydial endosymbiosis facilitate the establishment of primary plastids? Genome Biol. 2007;8:R99. doi: 10.1186/gb-2007-8-6-r99. PubMed DOI PMC
Ibarbalz FM, Henry N, Brandão MC, Martini S, Busseni G, Byrne H, Coelho LP, Endo H, Gasol JM, Gregory AC, et al. Global trends in marine plankton diversity across kingdoms of life. Cell. 2019;179:1084–1097. doi: 10.1016/j.cell.2019.10.008. PubMed DOI PMC
Imanian B, Keeling PJ. The dinoflagellates Durinskia baltica and Kryptoperidinium foliaceum retain functionally overlapping mitochondria from two evolutionarily distinct lineages. BMC Evol Biol. 2007;7:1–11. doi: 10.1186/1471-2148-7-172. PubMed DOI PMC
Ishida K-I, Green BR. Second-and third-hand chloroplasts in dinoflagellates: phylogeny of oxygen-evolving enhancer 1 (PsbO) protein reveals replacement of a nuclear-encoded plastid gene by that of a haptophyte tertiary endosymbiont. Proc Natl Acad Sci USA. 2002;99:9294–9299. doi: 10.1073/pnas.142091799. PubMed DOI PMC
Jackson CJ, Gornik SG, Waller RF. A tertiary plastid gains RNA editing in its new host. Mol Biol Evol. 2013;30:788–792. doi: 10.1093/molbev/mss270. PubMed DOI
Janouskovec J, Gavelis GS, Burki F, Dinh D, Bachvaroff TR, Gornik SG, Bright KJ, Imanian B, Strom SL, Delwiche CF, et al. Major transitions in dinoflagellate evolution unveiled by phylotranscriptomics. Proc Natl Acad Sci USA. 2017;114:E171–E180. doi: 10.1073/pnas.1614842114. PubMed DOI PMC
Janouškovec J, Horák A, Oborník M, Lukeš J, Keeling PJ. A common red algal origin of the apicomplexan, dinoflagellate, and heterokont plastids. Proc Natl Acad Sci USA. 2010;107:10949–10954. doi: 10.1073/pnas.1003335107. PubMed DOI PMC
Jeong HJ, Kang HC, Lim AS, Jang SH, Lee K, Lee SY, Ok JH, You JH, Kim JH, Lee KH, et al. Feeding diverse prey as an excellent strategy of mixotrophic dinoflagellates for global dominance. Sci Adv. 2021;7:eabe4214. doi: 10.1126/sciadv.abe4214. PubMed DOI PMC
Jeong HJ, Ok JH, Lim AS, Kwon JE, Kim SJ, Lee SY. Mixotrophy in the phototrophic dinoflagellate Takayama helix (family Kareniaceae): Predator of diverse toxic and harmful dinoflagellates. Harmful Algae. 2016;60:92–106. doi: 10.1016/j.hal.2016.10.008. PubMed DOI
Kanehisa M, Goto S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28:27–30. doi: 10.1093/nar/28.1.27. PubMed DOI PMC
Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30:772–780. doi: 10.1093/molbev/mst010. PubMed DOI PMC
Kawachi M, Nakayama T, Kayama M, Nomura M, Miyashita H, Bojo O, Rhodes L, Sym S, Pienaar RN, Probert I, et al. Rappemonads are haptophyte phytoplankton. Curr Biol. 2021;31:2395–2403. doi: 10.1016/j.cub.2021.03.012. PubMed DOI
Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, et al. Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;28:1647–1649. doi: 10.1093/bioinformatics/bts199. PubMed DOI PMC
Keeling PJ, Burki F, Wilcox HM, Allam B, Allen EE, Amaral-Zettler LA, Armbrust EV, Archibald JM, Bharti AK, Bell CJ et al (2014) The Marine Microbial Eukaryote Transcriptome Sequencing Project (MMETSP): illuminating the functional diversity of eukaryotic life in the oceans through transcriptome sequencing. PLoS Biol 12:e1001889 PubMed PMC
Kiełbasa SM, Wan R, Sato K, Horton P, Frith MC. Adaptive seeds tame genomic sequence comparison. Genome Res. 2011;21:487–493. doi: 10.1101/gr.113985.110. PubMed DOI PMC
Kleffmann T, Russenberger D, von Zychlinski A, Christopher W, Sjölander K, Gruissem W, Baginsky S. The Arabidopsis thaliana chloroplast proteome reveals pathway abundance and novel protein functions. Curr Biol. 2004;14:354–362. doi: 10.1016/j.cub.2004.02.039. PubMed DOI
Klinger CM, Klute MJ, Dacks JB. Comparative genomic analysis of multi-subunit tethering complexes demonstrates an ancient pan-eukaryotic complement and sculpting in apicomplexa. PLoS ONE. 2013;8:e76278. doi: 10.1371/journal.pone.0076278. PubMed DOI PMC
Klinger CM, Paoli L, Newby RJ, Wang MYW, Carroll HD, Leblond JD, Howe CJ, Dacks JB, Bowler C, Cahoon AB, et al. Plastid transcript editing across dinoflagellate lineages shows lineage-specific application but conserved trends. Genome Biol Evol. 2018;10:1019–1038. doi: 10.1093/gbe/evy057. PubMed DOI PMC
Koike K, Sekiguchi H, Kobiyama A, Takishita K, Kawachi M, Koike K, Ogata T. A novel type of kleptoplastidy in Dinophysis (Dinophyceae): presence of haptophyte-type plastid in Dinophysis mitra. Protist. 2005;156:225–237. doi: 10.1016/j.protis.2005.04.002. PubMed DOI
Kroth PG, Chiovitti A, Gruber A, Martin-Jezequel V, Mock T, Parker MS, Stanley MS, Kaplan A, Caron L, Weber T, et al. A model for carbohydrate metabolism in the diatom Phaeodactylum tricornutum deduced from comparative whole genome analysis. PLoS ONE. 2008;3:e1426. doi: 10.1371/journal.pone.0001426. PubMed DOI PMC
Ku C, Nelson-Sathi S, Roettger M, Sousa FL, Lockhart PJ, Bryant D, Hazkani-Covo E, McInerney JO, Landan G, Martin WF. Endosymbiotic origin and differential loss of eukaryotic genes. Nature. 2015;524:427–432. doi: 10.1038/nature14963. PubMed DOI
Larkum AWD, Lockhart PJ, Howe CJ. Shopping for plastids. Trends Plant Sci. 2007;12:189–195. doi: 10.1016/j.tplants.2007.03.011. PubMed DOI
Leblond JD, Sabir K, Graeff JE. Galactolipid composition of Gertia stigmatica (Dinophyceae), an atypical member of the Kareniaceae with a peridinin-containing, non-haptophyte-derived plastid. Phycol Res. 2022;70:137–141. doi: 10.1111/pre.12488. DOI
Leebens-Mack JH, Barker MS, Carpenter EJ, Deyholos MK, Gitzendanner MA, Graham SW, Grosse I, Li Z, Melkonian M, Mirarab S. One thousand plant transcriptomes and the phylogenomics of green plants. Nature. 2019;574:679–685. doi: 10.1038/s41586-019-1693-2. PubMed DOI PMC
Lidie KB, Ryan JC, Barbier M, van Dolah FM. Gene expression in Florida red tide dinoflagellate Karenia brevis: analysis of an expressed sequence tag library and development of DNA microarray. Mar Biotechnol. 2005;7:481–493. doi: 10.1007/s10126-004-4110-6. PubMed DOI
Liew YJ, Li Y, Baumgarten S, Voolstra CR, Aranda M. Condition-specific RNA editing in the coral symbiont Symbiodinium microadriaticum. PLoS Genet. 2017;13:e1006619. doi: 10.1371/journal.pgen.1006619. PubMed DOI PMC
Lima-Mendez G, Faust K, Henry N, Decelle J, Colin S, Carcillo F, Chaffron S, Ignacio-Espinosa JC, Roux S, Vincent F, et al. Determinants of community structure in the global plankton interactome. Science. 2015;348:1262073. doi: 10.1126/science.1262073. PubMed DOI
Lin S. Genomic understanding of dinoflagellates. Res Microbiol. 2011;162:551–569. doi: 10.1016/j.resmic.2011.04.006. PubMed DOI
Lin S, Zhang H, Spencer DF, Norman JE, Gray MW. Widespread and extensive editing of mitochondrial mRNAS in dinoflagellates. J Mol Biol. 2002;320:727–739. doi: 10.1016/S0022-2836(02)00468-0. PubMed DOI
Matsumoto T, Shinozaki F, Chikuni T, Yabuki A, Takishita K, Kawachi M, Nakayama T, Inouye I, Hashimoto T, Inagaki Y. Green-colored plastids in the dinoflagellate genus Lepidodinium are of core chlorophyte origin. Protist. 2011;162:268–276. doi: 10.1016/j.protis.2010.07.001. PubMed DOI
Matsuo E, Inagaki Y. Patterns in evolutionary origins of heme, chlorophyll a and isopentenyl diphosphate biosynthetic pathways suggest non-photosynthetic periods prior to plastid replacements in dinoflagellates. PeerJ. 2018;6:e5345. doi: 10.7717/peerj.5345. PubMed DOI PMC
Matsuo E, Morita K, Nakayama T, Yazaki E, Sarai C, Takahashi K, Iwataki M, Inagaki Y. Comparative plastid genomics of green-colored dinoflagellates unveils parallel genome compaction and RNA editing. Front. Plant Sci. 2022;13:918543. doi: 10.3389/fpls.2022.918543. PubMed DOI PMC
Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, von Haeseler A, Lanfear R. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol. 2020;37:1530–1534. doi: 10.1093/molbev/msaa015. PubMed DOI PMC
Moog D, Maier UG. Cellular compartmentation follows rules: the Schnepf theorem, its consequences and exceptions. BioEssays. 2017;39:1700030. doi: 10.1002/bies.201700030. PubMed DOI
Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M. KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res. 2007;35:W182–W185. doi: 10.1093/nar/gkm321. PubMed DOI PMC
Morse D, Salois P, Markovic P, Hastings JW. A nuclear-encoded form II RuBisCO in dinoflagellates. Science. 1995;268:1622–1624. doi: 10.1126/science.7777861. PubMed DOI
Moustafa A, Reyes-Prieto A, Bhattacharya D. Chlamydiae has contributed at least 55 genes to plantae with predominantly plastid functions. PLoS ONE. 2008;3:e2205. doi: 10.1371/journal.pone.0002205. PubMed DOI PMC
Myung GP, Kim S, Hyung SK, Myung G, Yi GK, Yih W. First successful culture of the marine dinoflagellate Dinophysis acuminata. Aquat Microb Ecol. 2006;45:101–106. doi: 10.3354/ame045101. DOI
Nash EA, Barbrook AC, Edwards-Stuart RK, Bernhardt K, Howe CJ, Nisbet RER. Organization of the mitochondrial genome in the dinoflagellate Amphidinium carterae. Mol Biol Evol. 2007;24:1528–1536. doi: 10.1093/molbev/msm074. PubMed DOI
Nelson DR, Hazzouri KM, Lauersen KJ, Jaiswal A, Chaiboonchoe A, Mystikou A, Fu W, Daakour S, Dohai B, Alzahmi A, et al. Large-scale genome sequencing reveals the driving forces of viruses in microalgal evolution. Cell Host Microbe. 2021;29:250–266. doi: 10.1016/j.chom.2020.12.005. PubMed DOI
Nosenko T, Lidie KL, van Dolah FM, Lindquist E, Cheng JF, Bhattacharya D. Chimeric plastid proteome in the Florida “red tide” dinoflagellate Karenia brevis. Mol Biol Evol. 2006;23:2026–2038. doi: 10.1093/molbev/msl074. PubMed DOI
Novák Vanclová AMG, Zoltner M, Kelly S, Soukal P, Záhonová K, Füssy Z, Ebenezer TE, Lacová Dobáková E, Eliáš M, Lukeš J, et al. Metabolic quirks and the colourful history of the Euglena gracilis secondary plastid. New Phytol. 2020;225:1578–1592. doi: 10.1111/nph.16237. PubMed DOI
Ogata T, Kodama M, Nomura S, Kobayashi M, Nozawa T, Katoh T, Mimuro M. A novel peridinin—chlorophyll a protein (PCP) from the marine dinoflagellate Alexandrium cohorticula: a high pigment content and plural spectral forms of peridinin and chlorophyll a. FEBS Lett. 1994;356:367–371. doi: 10.1016/0014-5793(94)01314-4. PubMed DOI
Ok JH, Jeong HJ, Lee SY, Park SA, Noh JH. Shimiella gen. nov. and Shimiella gracilenta sp. nov. (Dinophyceae, Kareniaceae), a kleptoplastidic dinoflagellate from Korean waters and its survival under starvation. J Phycol. 2021;57:70–91. doi: 10.1111/jpy.13067. PubMed DOI
Patron NJ, Waller RF. Transit peptide diversity and divergence: a global analysis of plastid targeting signals. Bioessays. 2007;29:1048–1058. doi: 10.1002/bies.20638. PubMed DOI
Patron NJ, Waller RF, Keeling PJ. A tertiary plastid uses genes from two endosymbionts. J Mol Biol. 2006;357:1373–1382. doi: 10.1016/j.jmb.2006.01.084. PubMed DOI
Penot M, Dacks JB, Read B, Dorrell RG. Genomic and meta-genomic insights into the functions, diversity and global distribution of haptophyte algae. Appl Phycol. 2022;3:340–359. doi: 10.1080/26388081.2022.2103732. DOI
Pierella Karlusich JJ, Ibarbalz FM, Bowler C. Phytoplankton in the Tara Ocean. Ann Rev Mar Sci. 2019;12:233–265. doi: 10.1146/annurev-marine-010419-010706. PubMed DOI
Pierella Karlusch, JJ, Nef, C, Bowler, C, Dorrell, RG (2022) Biogeographical patterns and genomes of aquatic photoautotrophs. In: Maberly SC and Gontero B (eds) Blue planet, red and green photosynthesis: productivity and carbon cycling in aquatic ecosystems. Wiley-ISTE, p 43–80
Ponce-Toledo RI, López-García P, Moreira D. Horizontal and endosymbiotic gene transfer in early plastid evolution. New Phytol. 2019;224:618–624. doi: 10.1111/nph.15965. PubMed DOI PMC
Riccio G, de Luca D, Lauritano C. Monogalactosyldiacylglycerol and sulfolipid synthesis in microalgae. Mar Drugs. 2020;18:237. doi: 10.3390/md18050237. PubMed DOI PMC
Richardson E, Dorrell RG, Howe CJ. Genome-wide transcript profiling reveals the coevolution of plastid gene sequences and transcript processing pathways in the fucoxanthin dinoflagellate Karlodinium veneficum. Mol Biol Evol. 2014;31:2376–2386. doi: 10.1093/molbev/msu189. PubMed DOI PMC
Ryan DE, Pepper AE, Campbell L. De novo assembly and characterization of the transcriptome of the toxic dinoflagellate Karenia brevis. BMC Genomics. 2014;15:1–11. doi: 10.1186/1471-2164-15-888. PubMed DOI PMC
Ryan, DE, Pepper, AE, Campbell, L (2014). NCBI BioProject PRJNA214017 (https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA214017) [DATASET]
Saldarriaga JF, Taylor FJR, Keeling PJ, Cavalier-Smith T. Dinoflagellate nuclear SSU rRNA phylogeny suggests multiple plastid losses and replacements. J Mol Evol. 2001;53:204–213. doi: 10.1007/s002390010210. PubMed DOI
Sanchez-Puerta MV, Lippmeier JC, Apt KE, Delwiche CF. Plastid genes in a non-photosynthetic dinoflagellate. Protist. 2007;158:105–117. doi: 10.1016/j.protis.2006.09.004. PubMed DOI
Sarai C, Tanifuji G, Nakayama T, Kamikawa R, Takahashi K, Yazaki E, Matsuo E, Miyashita H, Ishida K-I, Iwataki M, et al. Dinoflagellates with relic endosymbiont nuclei as models for elucidating organellogenesis. Proc Natl Acad Sci USA. 2020;117:5364–5375. doi: 10.1073/pnas.1911884117. PubMed DOI PMC
Ševčíková T, Horák A, Klimeš V, Zbránková V, Demir-Hilton E, Sudek S, Jenkins J, Schmutz J, Přibyl P, Fousek J, et al. Updating algal evolutionary relationships through plastid genome sequencing: did alveolate plastids emerge through endosymbiosis of an ochrophyte? Sci Rep. 2015;5:10134. doi: 10.1038/srep10134. PubMed DOI PMC
Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. BUSCO: Assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics. 2015;31:3210–3212. doi: 10.1093/bioinformatics/btv351. PubMed DOI
Stern RF, Horak A, Andrew RL, Coffroth M-A, Andersen RA, Küpper FC, Jameson I, Hoppenrath M, Véron B, Kasai F, et al. Environmental barcoding reveals massive dinoflagellate diversity in marine environments. PLoS ONE. 2010;5:e13991. doi: 10.1371/journal.pone.0013991. PubMed DOI PMC
Strassert JFH, Irisarri I, Williams TA, Burki F. A molecular timescale for eukaryote evolution with implications for the origin of red algal-derived plastids. Nat Commun. 2021;12:1879. doi: 10.1038/s41467-021-22044-z. PubMed DOI PMC
Suzuki K, Miyagishima SY. Eukaryotic and eubacterial contributions to the establishment of plastid proteome estimated by large-scale phylogenetic analyses. Mol Biol Evol. 2010;27:581–590. doi: 10.1093/molbev/msp273. PubMed DOI
Takahashi K, Benico G, Lum WM, Iwataki M. Gertia stigmatica gen. et sp. nov. (Kareniaceae, Dinophyceae), a new marine unarmored dinoflagellate possessing the peridinin-type chloroplast with an eyespot. Protist. 2019;170:125680. doi: 10.1016/j.protis.2019.125680. PubMed DOI
Takishita K, Nakano K, Uchida A. Preliminary phylogenetic analysis of plastid-encoded genes from an anomalously pigmented dinoflagellate Gymnodinium mikimotoi (Gymnodiniales, Dinophyta) Phycol Res. 1999;47:257–262. doi: 10.1111/j.1440-1835.1999.tb00306.x. DOI
Tanaka A, Tanaka R. Chlorophyll metabolism. Curr Opin Plant Biol. 2006;9:248–255. doi: 10.1016/j.pbi.2006.03.011. PubMed DOI
Tengs T, Dahlberg OJ, Shalchian-Tabrizi K, Klaveness D, Rudi K, Delwiche CF, Jakobsen KS. Phylogenetic analyses indicate flint the 19’hexanoyloxy-fucoxanthin- containing dinoflagellates have tertiary plastids of haptophyte origin. Mol Biol Evol. 2000;17:718–729. doi: 10.1093/oxfordjournals.molbev.a026350. PubMed DOI
Thomsen MCF, Nielsen M. Seq2Logo: a method for construction and visualization of amino acid binding motifs and sequence profiles including sequence weighting, pseudo counts and two-sided representation of amino acid enrichment and depletion. Nucleic Acids Res. 2012;40:W281–W287. doi: 10.1093/nar/gks469. PubMed DOI PMC
Tice AK, Žihala D, Pánek T, Jones RE, Salomaki ED, Nenarokov S, Burki F, Eliáš M, Eme L, Roger AJ, et al. PhyloFisher: a phylogenomic package for resolving eukaryotic relationships. PLoS Biol. 2021;19:e3001365. doi: 10.1371/journal.pbio.3001365. PubMed DOI PMC
Uthanumallian K, Iha C, Repetti SI, Chan CX, Bhattacharya D, Duchene S, Verbruggen H. Tightly constrained genome reduction and relaxation of purifying selection during secondary plastid endosymbiosis. Mol Biol Evol. 2021;39:msab295. doi: 10.1093/molbev/msab295. PubMed DOI PMC
Vincent F, Bowler C. Diatoms are selective segregators in global ocean planktonic communities. mSystems. 2020;5:e00444–19. doi: 10.1128/mSystems.00444-19. PubMed DOI PMC
Waller RF, Slamovits CH, Keeling PJ. Lateral gene transfer of a multigene region from cyanobacteria to dinoflagellates resulting in a novel plastid-targeted fusion protein. Mol Biol Evol. 2006;23:1437–1443. doi: 10.1093/molbev/msl008. PubMed DOI
Wang D-Z. Neurotoxins from marine dinoflagellates: a brief review. Mar Drugs. 2008;6:349–371. doi: 10.3390/md6020349. PubMed DOI PMC
Wang HC, Minh BQ, Susko E, Roger AJ. Modeling site heterogeneity with posterior mean site frequency profiles accelerates accurate phylogenomic estimation. Syst Biol. 2018;67:216–235. doi: 10.1093/sysbio/syx068. PubMed DOI
Wang Y, Morse D. Rampant polyuridylylation of plastid gene transcripts in the dinoflagellate Lingulodinium. Nucleic Acids Res. 2006;34:613–619. doi: 10.1093/nar/gkj438. PubMed DOI PMC
Wei T, Simko V (2021). R package “corrplot”: visualization of a correlation matrix. Available at: https://github.com/taiyun/corrplot
Yokoyama A, Takahashi F, Kataoka H, Hara Y, Nozaki H. Evolutionary analyses of the nuclear-encoded photosynthetic gene psbo from tertiary plastid-containing algae in dinophyta. J Phycol. 2011;47:407–414. doi: 10.1111/j.1529-8817.2011.00961.x. PubMed DOI
Yoon HS, Hackett JD, Bhattacharya D. A single origin of the peridinin- and fucoxanthin-containing plastids in dinoflagellates through tertiary endosymbiosis. Proc Natl Acad Sci USA. 2002;99:11724–11729. doi: 10.1073/pnas.172234799. PubMed DOI PMC
Záhonová K, Füssy Z, Birčák E, Novák Vanclová AMG, Klimeš V, Vesteg M, Krajčovič J, Oborník M, Eliáš M. Peculiar features of the plastids of the colourless alga Euglena longa and photosynthetic euglenophytes unveiled by transcriptome analyses. Sci Rep. 2018;8:17012. doi: 10.1038/s41598-018-35389-1. PubMed DOI PMC
Zapata M, Fraga S, Rodríguez F, Garrido JL. Pigment-based chloroplast types in dinoflagellates. Mar Ecol Prog Ser. 2012;465:33–52. doi: 10.3354/meps09879. DOI
Zapata, M, Jeffrey, SW, Wright, SW, Rodríguez, F, Garrido, JL, Clementson, L (2004). Photosynthetic pigments in 37 species (65 strains) of Haptophyta: implications for oceanography and chemotaxonomy. Mar Ecol Prog Ser 270:83–102.
Zauner S, Greilinger D, Laatsch T, Kowallik KV, Maier U-G. Substitutional editing of transcripts from genes of cyanobacterial origin in the dinoflagellate Ceratium horridum. FEBS Lett. 2004;577:535–538. doi: 10.1016/j.febslet.2004.10.060. PubMed DOI
Zhang Z, Green BR, Cavalier-Smith T. Single gene circles in dinoflagellate chloroplast genomes. Nature. 1999;400:155–159. doi: 10.1038/22099. PubMed DOI
Zhou Q, Su X, Jing G, Chen S, Ning K. RNA-QC-chain: comprehensive and fast quality control for RNA-Seq data. BMC Genomics. 2018;19:144. doi: 10.1186/s12864-018-4503-6. PubMed DOI PMC