Updating algal evolutionary relationships through plastid genome sequencing: did alveolate plastids emerge through endosymbiosis of an ochrophyte?
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.
PubMed
26017773
PubMed Central
PMC4603697
DOI
10.1038/srep10134
PII: srep10134
Knihovny.cz E-zdroje
- MeSH
- DNA chemie izolace a purifikace MeSH
- fylogeneze MeSH
- genom plastidový * MeSH
- Heterokontophyta klasifikace genetika MeSH
- molekulární evoluce MeSH
- plastidy genetika MeSH
- Rhodophyta genetika MeSH
- sekvenční analýza DNA MeSH
- symbióza MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Názvy látek
- DNA MeSH
Algae with secondary plastids of a red algal origin, such as ochrophytes (photosynthetic stramenopiles), are diverse and ecologically important, yet their evolutionary history remains controversial. We sequenced plastid genomes of two ochrophytes, Ochromonas sp. CCMP1393 (Chrysophyceae) and Trachydiscus minutus (Eustigmatophyceae). A shared split of the clpC gene as well as phylogenomic analyses of concatenated protein sequences demonstrated that chrysophytes and eustigmatophytes form a clade, the Limnista, exhibiting an unexpectedly elevated rate of plastid gene evolution. Our analyses also indicate that the root of the ochrophyte phylogeny falls between the recently redefined Khakista and Phaeista assemblages. Taking advantage of the expanded sampling of plastid genome sequences, we revisited the phylogenetic position of the plastid of Vitrella brassicaformis, a member of Alveolata with the least derived plastid genome known for the whole group. The results varied depending on the dataset and phylogenetic method employed, but suggested that the Vitrella plastids emerged from a deep ochrophyte lineage rather than being derived vertically from a hypothetical plastid-bearing common ancestor of alveolates and stramenopiles. Thus, we hypothesize that the plastid in Vitrella, and potentially in other alveolates, may have been acquired by an endosymbiosis of an early ochrophyte.
HudsonAlpha Institute for Biotechnology 601 Genome Way NW Huntsville Alabama 35806 USA
Monterey Bay Aquarium Research Institute Moss Landing CA 95039 USA
US Department of Energy Joint Genome Institute Walnut Creek California 94598 USA
Zobrazit více v PubMed
Green B. R. Chloroplast genomes of photosynthetic eukaryotes. Plant J. 66, 34–44 (2011). PubMed
Keeling P. J. The number, speed, and impact of plastid endosymbioses in eukaryotic evolution. Annu. Rev. Plant Biol. 64, 583–607 (2013). PubMed
Andersen R. A. Biology and systematics of heterokont and haptophyte algae. Am. J. Bot. 91, 1508–1522 (2004). PubMed
Yoon H. S., Andersen R. A., Boo S. M. & Bhattacharya D. Stramenopiles. In Eukaryotic Microbes (ed. Schaechter M. ) 373–384 Academic Press2012).
Kai A., Yoshii Y., Nakayama T. & Inouye I. Aurearenophyceae classis nova, a new class of Heterokontophyta based on a new marine unicellular alga Aurearena cruciata gen. et sp. nov. inhabiting sandy beaches. Protist 159, 435–457 (2008). PubMed
Brown J. W. & Sorhannus U. A molecular genetic timescale for the diversification of autotrophic Stramenopiles (Ochrophyta): substantive underestimation of putative fossil ages. PLoS ONE 5, e12759 (2010). PubMed PMC
Yang E. C. et al. Supermatrix data highlight the phylogenetic relationships of photosynthetic stramenopiles. Protist 163, 217–231 (2012). PubMed
Cavalier-Smith T. & Scoble J. M. Phylogeny of Heterokonta: Incisomonas marina, a uniciliate gliding opalozoan related to Solenicola (Nanomonadea), and evidence that Actinophryida evolved from raphidophytes. Eur. J. Protistol. 49, 328–353 (2013). PubMed
Not F. et al. Diversity and ecology of eukaryotic marine phytoplankton. In Genomic Insights Gained into the Diversity, Biology and Evolution of Microbial Photosynthetic Eukaryotes. (ed. Piganeau S. ) 1–53 Elsevier2012).
Riisberg I. et al. Seven gene phylogeny of heterokonts. Protist 160, 191–204 (2009). PubMed
Cavalier-Smith T. & Chao E. E. Y. Phylogeny and megasystematics of phagotrophic Heterokonts (Kingdom Chromista). J. Mol. Evol. 62, 388–420 (2006). PubMed
Janouškovec J., Horák A., Oborník M., Lukeš J. & Keeling P. J. A common red algal origin of the apicomplexan, dinoflagellate, and heterokont plastids. Proc. Natl. Acad. Sci. U.S.A. 107, 10949–10954 (2010). PubMed PMC
Ruhfel B. R., Gitzendanner M. A., Soltis P. S., Soltis D. E. & Burleigh J. G. From algae to angiosperms-inferring the phylogeny of green plants (Viridiplantae) from 360 plastid genomes. BMC Evol. Biol. 14, 23 (2014). PubMed PMC
Worden A. Z. et al. Global distribution of a wild alga revealed by targeted metagenomics. Curr. Biol. 22, R675–677 (2012). PubMed
Cavalier-Smith T. Principles of protein and lipid targeting in secondary symbiogenesis: euglenoid, dinoflagellate, and sporozoan plastid origins and the eukaryote family tree. J. Euk. Microbiol. 46, 347–366 (1999). PubMed
Cavalier-Smith T. Deep phylogeny, ancestral groups and the four ages of life. Philos. Trans. R. Soc. London B. 365, 111–132 (2010). PubMed PMC
Burki F. et al. Large-scale phylogenomic analyses reveal that two enigmatic protist lineages, Telonemia and Centroheliozoa, are related to photosynthetic chromalveolates. Genome Biol. Evol. 1, 231–238 (2009). PubMed PMC
Burki F., Okamoto N., Pombert J.-F. & Keeling P. J. The evolutionary history of haptophytes and cryptophytes: phylogenomic evidence for separate origins. Proc. R. Soc. B 279, 2246–2254 (2012). PubMed PMC
Hampl V. et al. Phylogenomic analyses support the monophyly of Excavata and resolve relationships among eukaryotic “supergroups”. Proc. Natl. Acad. Sci. USA 106, 3859–3864 (2009). PubMed PMC
Yabuki A. et al. Palpitomonas bilix represents a basal cryptist lineage: insight into the character evolution in Cryptista. Sci. Rep. 4, 4641 (2014). PubMed PMC
Sanchez-Puerta M. V., Bachvaroff T. R. & Delwiche C. F. Sorting wheat from chaff in multi-gene analyses of chlorophyll c-containing plastids. Mol. Phylogenet. Evol. 44, 885–897 (2007). PubMed
Bodył A., Stiller J. W. & Mackiewicz P. Chromalveolate plastids: direct descent or multiple endosymbioses? Trends Ecol. Evolut. 24, 119–121 (2009). PubMed
Baurain D. et al. Phylogenomic evidence for separate acquisition of plastids in Cryptophytes, Haptophytes, and Stramenopiles. Mol. Biol. Evol. 27, 1698–1709 (2010). PubMed
Stiller J. W. Toward an empirical framework for interpreting plastid evolution. J. Phycol. 50, 462–471 (2014). PubMed
Stiller J. W. et al. The evolution of photosynthesis in chromist algae through serial endosymbioses. Nat. Commun. 5, 5764 (2014). PubMed PMC
Petersen J. et al. Chromera velia, endosymbioses and the rhodoplex hypothesis — plastid evolution in Cryptophytes, Alveolates, Stramenopiles, and Haptophytes (CASH lineages). Genome Biol. Evol. 6, 666–684 (2014). PubMed PMC
Gagat P., Bodył A., Mackiewicz P. & Stiller J. W. Tertiary plastid enosymbioses in dinoflagellates. In Endosymbiosis (ed. Löffelhardt W. ) 233–290 Springer-Verlag2014).
Přibyl P., Eliáš M., Cepák V., Lukavský J. & Kaštánek P. Zoosporogenesis, morphology, ultrastructure, pigment composition, and phylogenetic position of Trachydiscus minutus (Eustigmatophyceae, Heterokontophyta). J. Phycol. 48, 231–242 (2012). PubMed
Fawley K. P., Eliáš M. & Fawley M. W. The diversity and phylogeny of the commercially important algal class Eustigmatophyceae, including the new clade Goniochloridales. J. Appl. Phycol. 26, 1773–1782 (2014).
Lin Y. C. et al. Distribution patterns and phylogeny of marine stramenopiles in the north Pacific ocean. Appl. Environ. Microbiol. 78, 3387–3399 (2012). PubMed PMC
Kirkham A. R. et al. A global perspective on marine photosynthetic picoeukaryote community structure. ISME J. 7, 922–936 (2013). PubMed PMC
Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22, 2688–2690 (2006). PubMed
Lartillot N., Lepage T. & Blanquart S. PhyloBayes 3: a Bayesian software package for phylogenetic reconstruction and molecular dating. Bioinformatics 25, 2286–2288 (2009). PubMed
Lang B. F. & Nedelcu A. M. Plastid genomes of algae. In Genomics of Chloroplasts and Mitochondria. Advances in Photosynthesis and Respiration, Vol. 35 (eds Bock R. & Knoop, ) 59–87 Springer2012).
Simon D., Fewer D., Friedl T. & Bhattacharya D. Phylogeny and self-splicing ability of the plastid tRNA-Leu group I Intron. J. Mol. Evol. 57, 710–720 (2003). PubMed
Starkenburg S. R. et al. A pangenomic analysis of the Nannochloropsis organellar genomes reveals novel genetic variations in key metabolic genes. BMC Genomics 15, 212 (2014). PubMed PMC
Tajima N. et al. Analysis of the complete plastid genome of the unicellular red alga Porphyridium purpureum. J. Plant Res. 127, 389–397 (2014). PubMed
Philippe H., Zhou Y., Brinkmann H., Rodrigue N. & Delsuc F. Heterotachy and long-branch attraction in phylogenetics. BMC Evol. Biol. 5, 50 (2005). PubMed PMC
Lartillot N., Brinkmann H. & Philippe H. Suppression of long-branch attraction artefacts in the animal phylogeny using a site-heterogeneous model. BMC Evol. Biol. 7, 1–14 (2007). PubMed PMC
Kück P., Mayer C., Wägele J.-W. & Misof B. Long branch effects distort maximum likelihood phylogenies in simulations despite selection of the correct model. PLoS ONE 7, e36593 (2012). PubMed PMC
Patil V., Bråte J., Shalchian-Tabrizi K. & Jakobsen K. S. Revisiting the phylogenetic position of Synchroma grande. J. Euk. Microbiol. 56, 394–396 (2009). PubMed
Grant J., Tekle Y. I., Anderson O. R., Patterson D. J. & Katz L. A. Multigene evidence for the placement of a heterotrophic amoeboid lineage Leukarachnion sp. among photosynthetic Stramenopiles. Protist. 160, 376–385 (2009). PubMed
Gabrielsen T. M. et al. Genome evolution of a tertiary dinoflagellate plastid. PLoS ONE 6, e19132 (2011). PubMed PMC
Janouskovec J. et al. Factors mediating plastid dependency and the origins of parasitism in apicomplexans and their close relatives. Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1423790112 (2015). PubMed PMC
Fernandez Robledo J. A. et al. The search for the missing link: a relic plastid in Perkinsus? Int. J. Parasitol. 41, 1217–1229 (2011). PubMed PMC
Moore R. B. et al. A photosynthetic alveolate closely related to apicomplexan parasites. Nature 451, 959–963 (2008). PubMed
Oborník M. et al. Morphology, ultrastructure and life cycle of Vitrella brassicaformis n. sp., n. gen., a novel chromerid from the Great Barrier Reef. Protist 163, 306–323 (2012). PubMed
Berney C. & Pawlowski J. A molecular time-scale for eukaryote evolution recalibrated with the continuous microfossil record. Proc. R. Soc. B 273, 1867–1872 (2006). PubMed PMC
Parfrey L. W., Lahr D. J. G., Knoll A. H. & Katz L. A. Estimating the timing of early eukaryotic diversification with multigene molecular clocks. Proc. Natl. Acad. Sci. U.S.A. 108, 13624–13629 (2011). PubMed PMC
Janouškovec J. et al. Split photosystem protein, linear-mapping topology, and growth of structural complexity in the plastid genome of Chromera velia. Mol. Biol. Evol. 30, 2447–2462 (2013). PubMed
Stiller J. W., Huang J., Ding Q., Tian J. & Goodwillie C. Are algal genes in nonphotosynthetic protists evidence of historical plastid endosymbioses? BMC Genomics 10, 484 (2009). PubMed PMC
Yoon H. S. et al. Tertiary endosymbiosis driven genome evolution in dinoflagellate algae. Mol. Biol. Evol. 22, 1299–1308 (2005). PubMed
Janouškovec J., Horák A., Barott K. L., Rohwer F. L. & Keeling P. J. Global analysis of plastid diversity reveals apicomplexan-related lineages in coral reefs. Curr. Biol. 22, R518–R519 (2012). PubMed
Janouškovec J. et al. Colponemids represent multiple ancient alveolate lineages. Curr. Biol. 23, 2546–2552 (2013). PubMed
Tikhonenkov D. V. et al. Description of Colponema vietnamica sp.n. and Acavomonas peruviana n. gen. n. sp., two new alveolate phyla (Colponemidia nom. nov. and Acavomonidia nom. nov.) and their contributions to reconstructing the ancestral state of Alveolates and Eukaryotes. PLoS ONE 9, e0095467 (2014). PubMed PMC
Complex Endosymbioses I: From Primary to Complex Plastids, Serial Endosymbiotic Events
New plastids, old proteins: repeated endosymbiotic acquisitions in kareniacean dinoflagellates
Integrated overview of stramenopile ecology, taxonomy, and heterotrophic origin
Multiple parallel origins of parasitic Marine Alveolates
An Enigmatic Stramenopile Sheds Light on Early Evolution in Ochrophyta Plastid Organellogenesis
Fatty Acid Biosynthesis in Chromerids
Characterization of Aminoacyl-tRNA Synthetases in Chromerids
Endosymbiotic Evolution of Algae, Secondary Heterotrophy and Parasitism
Comparative plastid genomics of Synurophyceae: inverted repeat dynamics and gene content variation
Pigment configuration in the light-harvesting protein of the xanthophyte alga Xanthonema debile
Architecture of the light-harvesting apparatus of the eustigmatophyte alga Nannochloropsis oceanica