Updating algal evolutionary relationships through plastid genome sequencing: did alveolate plastids emerge through endosymbiosis of an ochrophyte?
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.
PubMed
26017773
PubMed Central
PMC4603697
DOI
10.1038/srep10134
PII: srep10134
Knihovny.cz E-zdroje
- MeSH
- DNA chemie izolace a purifikace MeSH
- fylogeneze MeSH
- genom plastidový * MeSH
- Heterokontophyta klasifikace genetika MeSH
- molekulární evoluce MeSH
- plastidy genetika MeSH
- Rhodophyta genetika MeSH
- sekvenční analýza DNA MeSH
- symbióza MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Názvy látek
- DNA MeSH
Algae with secondary plastids of a red algal origin, such as ochrophytes (photosynthetic stramenopiles), are diverse and ecologically important, yet their evolutionary history remains controversial. We sequenced plastid genomes of two ochrophytes, Ochromonas sp. CCMP1393 (Chrysophyceae) and Trachydiscus minutus (Eustigmatophyceae). A shared split of the clpC gene as well as phylogenomic analyses of concatenated protein sequences demonstrated that chrysophytes and eustigmatophytes form a clade, the Limnista, exhibiting an unexpectedly elevated rate of plastid gene evolution. Our analyses also indicate that the root of the ochrophyte phylogeny falls between the recently redefined Khakista and Phaeista assemblages. Taking advantage of the expanded sampling of plastid genome sequences, we revisited the phylogenetic position of the plastid of Vitrella brassicaformis, a member of Alveolata with the least derived plastid genome known for the whole group. The results varied depending on the dataset and phylogenetic method employed, but suggested that the Vitrella plastids emerged from a deep ochrophyte lineage rather than being derived vertically from a hypothetical plastid-bearing common ancestor of alveolates and stramenopiles. Thus, we hypothesize that the plastid in Vitrella, and potentially in other alveolates, may have been acquired by an endosymbiosis of an early ochrophyte.
HudsonAlpha Institute for Biotechnology 601 Genome Way NW Huntsville Alabama 35806 USA
Monterey Bay Aquarium Research Institute Moss Landing CA 95039 USA
US Department of Energy Joint Genome Institute Walnut Creek California 94598 USA
Zobrazit více v PubMed
Green B. R. Chloroplast genomes of photosynthetic eukaryotes. Plant J. 66, 34–44 (2011). PubMed
Keeling P. J. The number, speed, and impact of plastid endosymbioses in eukaryotic evolution. Annu. Rev. Plant Biol. 64, 583–607 (2013). PubMed
Andersen R. A. Biology and systematics of heterokont and haptophyte algae. Am. J. Bot. 91, 1508–1522 (2004). PubMed
Yoon H. S., Andersen R. A., Boo S. M. & Bhattacharya D. Stramenopiles. In Eukaryotic Microbes (ed. Schaechter M. ) 373–384 Academic Press2012).
Kai A., Yoshii Y., Nakayama T. & Inouye I. Aurearenophyceae classis nova, a new class of Heterokontophyta based on a new marine unicellular alga PubMed
Brown J. W. & Sorhannus U. A molecular genetic timescale for the diversification of autotrophic Stramenopiles (Ochrophyta): substantive underestimation of putative fossil ages. PLoS ONE 5, e12759 (2010). PubMed PMC
Yang E. C. PubMed
Cavalier-Smith T. & Scoble J. M. Phylogeny of Heterokonta: PubMed
Not F.
Riisberg I. PubMed
Cavalier-Smith T. & Chao E. E. Y. Phylogeny and megasystematics of phagotrophic Heterokonts (Kingdom Chromista). J. Mol. Evol. 62, 388–420 (2006). PubMed
Janouškovec J., Horák A., Oborník M., Lukeš J. & Keeling P. J. A common red algal origin of the apicomplexan, dinoflagellate, and heterokont plastids. Proc. Natl. Acad. Sci. U.S.A. 107, 10949–10954 (2010). PubMed PMC
Ruhfel B. R., Gitzendanner M. A., Soltis P. S., Soltis D. E. & Burleigh J. G. From algae to angiosperms-inferring the phylogeny of green plants (Viridiplantae) from 360 plastid genomes. BMC Evol. Biol. 14, 23 (2014). PubMed PMC
Worden A. Z. PubMed
Cavalier-Smith T. Principles of protein and lipid targeting in secondary symbiogenesis: euglenoid, dinoflagellate, and sporozoan plastid origins and the eukaryote family tree. J. Euk. Microbiol. 46, 347–366 (1999). PubMed
Cavalier-Smith T. Deep phylogeny, ancestral groups and the four ages of life. Philos. Trans. R. Soc. London B. 365, 111–132 (2010). PubMed PMC
Burki F., Okamoto N., Pombert J.-F. & Keeling P. J. The evolutionary history of haptophytes and cryptophytes: phylogenomic evidence for separate origins. Proc. R. Soc. B 279, 2246–2254 (2012). PubMed PMC
Sanchez-Puerta M. V., Bachvaroff T. R. & Delwiche C. F. Sorting wheat from chaff in multi-gene analyses of chlorophyll c-containing plastids. Mol. Phylogenet. Evol. 44, 885–897 (2007). PubMed
Bodył A., Stiller J. W. & Mackiewicz P. Chromalveolate plastids: direct descent or multiple endosymbioses? Trends Ecol. Evolut. 24, 119–121 (2009). PubMed
Baurain D. PubMed
Stiller J. W. Toward an empirical framework for interpreting plastid evolution. J. Phycol. 50, 462–471 (2014). PubMed
Gagat P., Bodył A., Mackiewicz P. & Stiller J. W. Tertiary plastid enosymbioses in dinoflagellates. In Endosymbiosis (ed. Löffelhardt W. ) 233–290 Springer-Verlag2014).
Přibyl P., Eliáš M., Cepák V., Lukavský J. & Kaštánek P. Zoosporogenesis, morphology, ultrastructure, pigment composition, and phylogenetic position of PubMed
Fawley K. P., Eliáš M. & Fawley M. W. The diversity and phylogeny of the commercially important algal class Eustigmatophyceae, including the new clade Goniochloridales. J. Appl. Phycol. 26, 1773–1782 (2014).
Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22, 2688–2690 (2006). PubMed
Lartillot N., Lepage T. & Blanquart S. PhyloBayes 3: a Bayesian software package for phylogenetic reconstruction and molecular dating. Bioinformatics 25, 2286–2288 (2009). PubMed
Lang B. F. & Nedelcu A. M. Plastid genomes of algae. In Genomics of Chloroplasts and Mitochondria. Advances in Photosynthesis and Respiration, Vol. 35 (eds Bock R. & Knoop, ) 59–87 Springer2012).
Simon D., Fewer D., Friedl T. & Bhattacharya D. Phylogeny and self-splicing ability of the plastid tRNA-Leu group I Intron. J. Mol. Evol. 57, 710–720 (2003). PubMed
Tajima N. PubMed
Philippe H., Zhou Y., Brinkmann H., Rodrigue N. & Delsuc F. Heterotachy and long-branch attraction in phylogenetics. BMC Evol. Biol. 5, 50 (2005). PubMed PMC
Lartillot N., Brinkmann H. & Philippe H. Suppression of long-branch attraction artefacts in the animal phylogeny using a site-heterogeneous model. BMC Evol. Biol. 7, 1–14 (2007). PubMed PMC
Kück P., Mayer C., Wägele J.-W. & Misof B. Long branch effects distort maximum likelihood phylogenies in simulations despite selection of the correct model. PLoS ONE 7, e36593 (2012). PubMed PMC
Patil V., Bråte J., Shalchian-Tabrizi K. & Jakobsen K. S. Revisiting the phylogenetic position of PubMed
Grant J., Tekle Y. I., Anderson O. R., Patterson D. J. & Katz L. A. Multigene evidence for the placement of a heterotrophic amoeboid lineage PubMed
Fernandez Robledo J. A. PubMed PMC
Moore R. B. PubMed
Oborník M. PubMed
Berney C. & Pawlowski J. A molecular time-scale for eukaryote evolution recalibrated with the continuous microfossil record. Proc. R. Soc. B 273, 1867–1872 (2006). PubMed PMC
Parfrey L. W., Lahr D. J. G., Knoll A. H. & Katz L. A. Estimating the timing of early eukaryotic diversification with multigene molecular clocks. Proc. Natl. Acad. Sci. U.S.A. 108, 13624–13629 (2011). PubMed PMC
Janouškovec J. PubMed
Stiller J. W., Huang J., Ding Q., Tian J. & Goodwillie C. Are algal genes in nonphotosynthetic protists evidence of historical plastid endosymbioses? BMC Genomics 10, 484 (2009). PubMed PMC
Yoon H. S. PubMed
Janouškovec J., Horák A., Barott K. L., Rohwer F. L. & Keeling P. J. Global analysis of plastid diversity reveals apicomplexan-related lineages in coral reefs. Curr. Biol. 22, R518–R519 (2012). PubMed
Janouškovec J. PubMed
Complex Endosymbioses I: From Primary to Complex Plastids, Serial Endosymbiotic Events
New plastids, old proteins: repeated endosymbiotic acquisitions in kareniacean dinoflagellates
Integrated overview of stramenopile ecology, taxonomy, and heterotrophic origin
Multiple parallel origins of parasitic Marine Alveolates
An Enigmatic Stramenopile Sheds Light on Early Evolution in Ochrophyta Plastid Organellogenesis
Fatty Acid Biosynthesis in Chromerids
Characterization of Aminoacyl-tRNA Synthetases in Chromerids
Endosymbiotic Evolution of Algae, Secondary Heterotrophy and Parasitism
Comparative plastid genomics of Synurophyceae: inverted repeat dynamics and gene content variation
Pigment configuration in the light-harvesting protein of the xanthophyte alga Xanthonema debile
Architecture of the light-harvesting apparatus of the eustigmatophyte alga Nannochloropsis oceanica