Updating algal evolutionary relationships through plastid genome sequencing: did alveolate plastids emerge through endosymbiosis of an ochrophyte?

. 2015 May 28 ; 5 () : 10134. [epub] 20150528

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.

Perzistentní odkaz   https://www.medvik.cz/link/pmid26017773

Algae with secondary plastids of a red algal origin, such as ochrophytes (photosynthetic stramenopiles), are diverse and ecologically important, yet their evolutionary history remains controversial. We sequenced plastid genomes of two ochrophytes, Ochromonas sp. CCMP1393 (Chrysophyceae) and Trachydiscus minutus (Eustigmatophyceae). A shared split of the clpC gene as well as phylogenomic analyses of concatenated protein sequences demonstrated that chrysophytes and eustigmatophytes form a clade, the Limnista, exhibiting an unexpectedly elevated rate of plastid gene evolution. Our analyses also indicate that the root of the ochrophyte phylogeny falls between the recently redefined Khakista and Phaeista assemblages. Taking advantage of the expanded sampling of plastid genome sequences, we revisited the phylogenetic position of the plastid of Vitrella brassicaformis, a member of Alveolata with the least derived plastid genome known for the whole group. The results varied depending on the dataset and phylogenetic method employed, but suggested that the Vitrella plastids emerged from a deep ochrophyte lineage rather than being derived vertically from a hypothetical plastid-bearing common ancestor of alveolates and stramenopiles. Thus, we hypothesize that the plastid in Vitrella, and potentially in other alveolates, may have been acquired by an endosymbiosis of an early ochrophyte.

Zobrazit více v PubMed

Green B. R. Chloroplast genomes of photosynthetic eukaryotes. Plant J. 66, 34–44 (2011). PubMed

Keeling P. J. The number, speed, and impact of plastid endosymbioses in eukaryotic evolution. Annu. Rev. Plant Biol. 64, 583–607 (2013). PubMed

Andersen R. A. Biology and systematics of heterokont and haptophyte algae. Am. J. Bot. 91, 1508–1522 (2004). PubMed

Yoon H. S., Andersen R. A., Boo S. M. & Bhattacharya D. Stramenopiles. In Eukaryotic Microbes (ed. Schaechter M. ) 373–384 Academic Press2012).

Kai A., Yoshii Y., Nakayama T. & Inouye I. Aurearenophyceae classis nova, a new class of Heterokontophyta based on a new marine unicellular alga Aurearena cruciata gen. et sp. nov. inhabiting sandy beaches. Protist 159, 435–457 (2008). PubMed

Brown J. W. & Sorhannus U. A molecular genetic timescale for the diversification of autotrophic Stramenopiles (Ochrophyta): substantive underestimation of putative fossil ages. PLoS ONE 5, e12759 (2010). PubMed PMC

Yang E. C. et al. Supermatrix data highlight the phylogenetic relationships of photosynthetic stramenopiles. Protist 163, 217–231 (2012). PubMed

Cavalier-Smith T. & Scoble J. M. Phylogeny of Heterokonta: Incisomonas marina, a uniciliate gliding opalozoan related to Solenicola (Nanomonadea), and evidence that Actinophryida evolved from raphidophytes. Eur. J. Protistol. 49, 328–353 (2013). PubMed

Not F. et al. Diversity and ecology of eukaryotic marine phytoplankton. In Genomic Insights Gained into the Diversity, Biology and Evolution of Microbial Photosynthetic Eukaryotes. (ed. Piganeau S. ) 1–53 Elsevier2012).

Riisberg I. et al. Seven gene phylogeny of heterokonts. Protist 160, 191–204 (2009). PubMed

Cavalier-Smith T. & Chao E. E. Y. Phylogeny and megasystematics of phagotrophic Heterokonts (Kingdom Chromista). J. Mol. Evol. 62, 388–420 (2006). PubMed

Janouškovec J., Horák A., Oborník M., Lukeš J. & Keeling P. J. A common red algal origin of the apicomplexan, dinoflagellate, and heterokont plastids. Proc. Natl. Acad. Sci. U.S.A. 107, 10949–10954 (2010). PubMed PMC

Ruhfel B. R., Gitzendanner M. A., Soltis P. S., Soltis D. E. & Burleigh J. G. From algae to angiosperms-inferring the phylogeny of green plants (Viridiplantae) from 360 plastid genomes. BMC Evol. Biol. 14, 23 (2014). PubMed PMC

Worden A. Z. et al. Global distribution of a wild alga revealed by targeted metagenomics. Curr. Biol. 22, R675–677 (2012). PubMed

Cavalier-Smith T. Principles of protein and lipid targeting in secondary symbiogenesis: euglenoid, dinoflagellate, and sporozoan plastid origins and the eukaryote family tree. J. Euk. Microbiol. 46, 347–366 (1999). PubMed

Cavalier-Smith T. Deep phylogeny, ancestral groups and the four ages of life. Philos. Trans. R. Soc. London B. 365, 111–132 (2010). PubMed PMC

Burki F. et al. Large-scale phylogenomic analyses reveal that two enigmatic protist lineages, Telonemia and Centroheliozoa, are related to photosynthetic chromalveolates. Genome Biol. Evol. 1, 231–238 (2009). PubMed PMC

Burki F., Okamoto N., Pombert J.-F. & Keeling P. J. The evolutionary history of haptophytes and cryptophytes: phylogenomic evidence for separate origins. Proc. R. Soc. B 279, 2246–2254 (2012). PubMed PMC

Hampl V. et al. Phylogenomic analyses support the monophyly of Excavata and resolve relationships among eukaryotic “supergroups”. Proc. Natl. Acad. Sci. USA 106, 3859–3864 (2009). PubMed PMC

Yabuki A. et al. Palpitomonas bilix represents a basal cryptist lineage: insight into the character evolution in Cryptista. Sci. Rep. 4, 4641 (2014). PubMed PMC

Sanchez-Puerta M. V., Bachvaroff T. R. & Delwiche C. F. Sorting wheat from chaff in multi-gene analyses of chlorophyll c-containing plastids. Mol. Phylogenet. Evol. 44, 885–897 (2007). PubMed

Bodył A., Stiller J. W. & Mackiewicz P. Chromalveolate plastids: direct descent or multiple endosymbioses? Trends Ecol. Evolut. 24, 119–121 (2009). PubMed

Baurain D. et al. Phylogenomic evidence for separate acquisition of plastids in Cryptophytes, Haptophytes, and Stramenopiles. Mol. Biol. Evol. 27, 1698–1709 (2010). PubMed

Stiller J. W. Toward an empirical framework for interpreting plastid evolution. J. Phycol. 50, 462–471 (2014). PubMed

Stiller J. W. et al. The evolution of photosynthesis in chromist algae through serial endosymbioses. Nat. Commun. 5, 5764 (2014). PubMed PMC

Petersen J. et al. Chromera velia, endosymbioses and the rhodoplex hypothesis — plastid evolution in Cryptophytes, Alveolates, Stramenopiles, and Haptophytes (CASH lineages). Genome Biol. Evol. 6, 666–684 (2014). PubMed PMC

Gagat P., Bodył A., Mackiewicz P. & Stiller J. W. Tertiary plastid enosymbioses in dinoflagellates. In Endosymbiosis (ed. Löffelhardt W. ) 233–290 Springer-Verlag2014).

Přibyl P., Eliáš M., Cepák V., Lukavský J. & Kaštánek P. Zoosporogenesis, morphology, ultrastructure, pigment composition, and phylogenetic position of Trachydiscus minutus (Eustigmatophyceae, Heterokontophyta). J. Phycol. 48, 231–242 (2012). PubMed

Fawley K. P., Eliáš M. & Fawley M. W. The diversity and phylogeny of the commercially important algal class Eustigmatophyceae, including the new clade Goniochloridales. J. Appl. Phycol. 26, 1773–1782 (2014).

Lin Y. C. et al. Distribution patterns and phylogeny of marine stramenopiles in the north Pacific ocean. Appl. Environ. Microbiol. 78, 3387–3399 (2012). PubMed PMC

Kirkham A. R. et al. A global perspective on marine photosynthetic picoeukaryote community structure. ISME J. 7, 922–936 (2013). PubMed PMC

Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22, 2688–2690 (2006). PubMed

Lartillot N., Lepage T. & Blanquart S. PhyloBayes 3: a Bayesian software package for phylogenetic reconstruction and molecular dating. Bioinformatics 25, 2286–2288 (2009). PubMed

Lang B. F. & Nedelcu A. M. Plastid genomes of algae. In Genomics of Chloroplasts and Mitochondria. Advances in Photosynthesis and Respiration, Vol. 35 (eds Bock R. & Knoop, ) 59–87 Springer2012).

Simon D., Fewer D., Friedl T. & Bhattacharya D. Phylogeny and self-splicing ability of the plastid tRNA-Leu group I Intron. J. Mol. Evol. 57, 710–720 (2003). PubMed

Starkenburg S. R. et al. A pangenomic analysis of the Nannochloropsis organellar genomes reveals novel genetic variations in key metabolic genes. BMC Genomics 15, 212 (2014). PubMed PMC

Tajima N. et al. Analysis of the complete plastid genome of the unicellular red alga Porphyridium purpureum. J. Plant Res. 127, 389–397 (2014). PubMed

Philippe H., Zhou Y., Brinkmann H., Rodrigue N. & Delsuc F. Heterotachy and long-branch attraction in phylogenetics. BMC Evol. Biol. 5, 50 (2005). PubMed PMC

Lartillot N., Brinkmann H. & Philippe H. Suppression of long-branch attraction artefacts in the animal phylogeny using a site-heterogeneous model. BMC Evol. Biol. 7, 1–14 (2007). PubMed PMC

Kück P., Mayer C., Wägele J.-W. & Misof B. Long branch effects distort maximum likelihood phylogenies in simulations despite selection of the correct model. PLoS ONE 7, e36593 (2012). PubMed PMC

Patil V., Bråte J., Shalchian-Tabrizi K. & Jakobsen K. S. Revisiting the phylogenetic position of Synchroma grande. J. Euk. Microbiol. 56, 394–396 (2009). PubMed

Grant J., Tekle Y. I., Anderson O. R., Patterson D. J. & Katz L. A. Multigene evidence for the placement of a heterotrophic amoeboid lineage Leukarachnion sp. among photosynthetic Stramenopiles. Protist. 160, 376–385 (2009). PubMed

Gabrielsen T. M. et al. Genome evolution of a tertiary dinoflagellate plastid. PLoS ONE 6, e19132 (2011). PubMed PMC

Janouskovec J. et al. Factors mediating plastid dependency and the origins of parasitism in apicomplexans and their close relatives. Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1423790112 (2015). PubMed PMC

Fernandez Robledo J. A. et al. The search for the missing link: a relic plastid in Perkinsus? Int. J. Parasitol. 41, 1217–1229 (2011). PubMed PMC

Moore R. B. et al. A photosynthetic alveolate closely related to apicomplexan parasites. Nature 451, 959–963 (2008). PubMed

Oborník M. et al. Morphology, ultrastructure and life cycle of Vitrella brassicaformis n. sp., n. gen., a novel chromerid from the Great Barrier Reef. Protist 163, 306–323 (2012). PubMed

Berney C. & Pawlowski J. A molecular time-scale for eukaryote evolution recalibrated with the continuous microfossil record. Proc. R. Soc. B 273, 1867–1872 (2006). PubMed PMC

Parfrey L. W., Lahr D. J. G., Knoll A. H. & Katz L. A. Estimating the timing of early eukaryotic diversification with multigene molecular clocks. Proc. Natl. Acad. Sci. U.S.A. 108, 13624–13629 (2011). PubMed PMC

Janouškovec J. et al. Split photosystem protein, linear-mapping topology, and growth of structural complexity in the plastid genome of Chromera velia. Mol. Biol. Evol. 30, 2447–2462 (2013). PubMed

Stiller J. W., Huang J., Ding Q., Tian J. & Goodwillie C. Are algal genes in nonphotosynthetic protists evidence of historical plastid endosymbioses? BMC Genomics 10, 484 (2009). PubMed PMC

Yoon H. S. et al. Tertiary endosymbiosis driven genome evolution in dinoflagellate algae. Mol. Biol. Evol. 22, 1299–1308 (2005). PubMed

Janouškovec J., Horák A., Barott K. L., Rohwer F. L. & Keeling P. J. Global analysis of plastid diversity reveals apicomplexan-related lineages in coral reefs. Curr. Biol. 22, R518–R519 (2012). PubMed

Janouškovec J. et al. Colponemids represent multiple ancient alveolate lineages. Curr. Biol. 23, 2546–2552 (2013). PubMed

Tikhonenkov D. V. et al. Description of Colponema vietnamica sp.n. and Acavomonas peruviana n. gen. n. sp., two new alveolate phyla (Colponemidia nom. nov. and Acavomonidia nom. nov.) and their contributions to reconstructing the ancestral state of Alveolates and Eukaryotes. PLoS ONE 9, e0095467 (2014). PubMed PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

A cryptic plastid and a novel mitochondrial plasmid in Leucomyxa plasmidifera gen. and sp. nov. (Ochrophyta) push the frontiers of organellar biology

. 2024 Oct ; 14 (10) : 240022. [epub] 20241030

Complex Endosymbioses I: From Primary to Complex Plastids, Serial Endosymbiotic Events

New plastids, old proteins: repeated endosymbiotic acquisitions in kareniacean dinoflagellates

. 2024 Apr ; 25 (4) : 1859-1885. [epub] 20240318

Integrated overview of stramenopile ecology, taxonomy, and heterotrophic origin

. 2024 Jan 08 ; 18 (1) : .

Multiple parallel origins of parasitic Marine Alveolates

. 2023 Nov 03 ; 14 (1) : 7049. [epub] 20231103

An Enigmatic Stramenopile Sheds Light on Early Evolution in Ochrophyta Plastid Organellogenesis

. 2022 Apr 11 ; 39 (4) : .

Fatty Acid Biosynthesis in Chromerids

. 2020 Jul 24 ; 10 (8) : . [epub] 20200724

Toward Modern Classification of Eustigmatophytes, Including the Description of Neomonodaceae Fam. Nov. and Three New Genera1

. 2020 Jun ; 56 (3) : 630-648. [epub] 20200427

Red-shifted light-harvesting system of freshwater eukaryotic alga Trachydiscus minutus (Eustigmatophyta, Stramenopila)

. 2019 Nov ; 142 (2) : 137-151. [epub] 20190802

There Is Treasure Everywhere: Reductive Plastid Evolution in Apicomplexa in Light of Their Close Relatives

. 2019 Aug 19 ; 9 (8) : . [epub] 20190819

Morphology, Ultrastructure, and Mitochondrial Genome of the Marine Non-Photosynthetic Bicosoecid Cafileria marina Gen. et sp. nov

. 2019 Aug 05 ; 7 (8) : . [epub] 20190805

Characterization of Aminoacyl-tRNA Synthetases in Chromerids

. 2019 Jul 31 ; 10 (8) : . [epub] 20190731

Endosymbiotic Evolution of Algae, Secondary Heterotrophy and Parasitism

. 2019 Jul 08 ; 9 (7) : . [epub] 20190708

Plastid Genomes and Proteins Illuminate the Evolution of Eustigmatophyte Algae and Their Bacterial Endosymbionts

. 2019 Feb 01 ; 11 (2) : 362-379. [epub] 20190201

Comparative plastid genomics of Synurophyceae: inverted repeat dynamics and gene content variation

. 2019 Jan 11 ; 19 (1) : 20. [epub] 20190111

Pigment configuration in the light-harvesting protein of the xanthophyte alga Xanthonema debile

. 2018 Nov ; 138 (2) : 139-148. [epub] 20180713

A gene transfer event suggests a long-term partnership between eustigmatophyte algae and a novel lineage of endosymbiotic bacteria

. 2018 Sep ; 12 (9) : 2163-2175. [epub] 20180607

Extensive gain and loss of photosystem I subunits in chromerid algae, photosynthetic relatives of apicomplexans

. 2017 Oct 16 ; 7 (1) : 13214. [epub] 20171016

Modular antenna of photosystem I in secondary plastids of red algal origin: a Nannochloropsis oceanica case study

. 2017 Mar ; 131 (3) : 255-266. [epub] 20161012

Architecture of the light-harvesting apparatus of the eustigmatophyte alga Nannochloropsis oceanica

. 2016 Dec ; 130 (1-3) : 137-150. [epub] 20160225

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...