Comparative plastid genomics of Synurophyceae: inverted repeat dynamics and gene content variation
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu srovnávací studie, časopisecké články, práce podpořená grantem
PubMed
30634905
PubMed Central
PMC6330437
DOI
10.1186/s12862-018-1316-9
PII: 10.1186/s12862-018-1316-9
Knihovny.cz E-zdroje
- Klíčová slova
- Algae, Lateral gene transfer, Plastid genomes, Stramenopiles, Synurophyceae,
- MeSH
- fylogeneze MeSH
- genetická variace * MeSH
- genom plastidový * MeSH
- genomika * MeSH
- genová dávka MeSH
- Heterokontophyta genetika MeSH
- konformace nukleové kyseliny MeSH
- kruhová DNA genetika MeSH
- molekulární evoluce MeSH
- obrácené repetice genetika MeSH
- RNA transferová chemie genetika MeSH
- sekvence nukleotidů MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
- Názvy látek
- kruhová DNA MeSH
- RNA transferová MeSH
BACKGROUND: The Synurophyceae is one of most important photosynthetic stramenopile algal lineages in freshwater ecosystems. They are characterized by siliceous scales covering the cell or colony surface and possess plastids of red-algal secondary or tertiary endosymbiotic origin. Despite their ecological and evolutionary significance, the relationships amongst extant Synurophyceae are unclear, as is their relationship to most other stramenopiles. RESULTS: Here we report a comparative analysis of plastid genomes sequenced from five representative synurophycean algae. Most of these plastid genomes are highly conserved with respect to genome structure and coding capacity, with the exception of gene re-arrangements and partial duplications at the boundary of the inverted repeat and single-copy regions. Several lineage-specific gene loss/gain events and intron insertions were detected (e.g., cemA, dnaB, syfB, and trnL). CONCLUSIONS: Unexpectedly, the cemA gene of Synurophyceae shows a strong relationship with sequences from members of the green-algal lineage, suggesting the occurrence of a lateral gene transfer event. Using a molecular clock approach based on silica fossil record data, we infer the timing of genome re-arrangement and gene gain/loss events in the plastid genomes of Synurophyceae.
Department of Biological Sciences Sungkyunkwan University Suwon 16419 South Korea
Department of Biology Chungnam National University Daejeon 34134 South Korea
Department of General Education Hongik University Seoul 04066 South Korea
Zobrazit více v PubMed
Andersen RA. Synurophyceae classis Nov., a new class of algae. Am J Bot. 1987;74:337–353. doi: 10.1002/j.1537-2197.1987.tb08616.x. DOI
Siver PA. The biology of Mallomonas: morphology, taxonomy and ecology. Dordrecht: Kluwer Academic Publishers; 1991.
Bhattacharya D, Medlin L. The phylogeny of plastids: a review based on comparisons of small-subunit ribosomal RNA coding regions. J Phycol. 1995;31:489–498. doi: 10.1111/j.1529-8817.1995.tb02542.x. DOI
Delwiche CF, Palmer JD. Rampant horizontal transfer and duplication of rubisco genes in eubacteria and plastids. Mol Biol Evol. 1996;13:873–882. doi: 10.1093/oxfordjournals.molbev.a025647. PubMed DOI
Ševčíková T, Horák A, Klimeš V, Zbránková V, Demir-Hilton E, et al. Updating algal evolutionary relationships through plastid genome sequencing: did alveolate plastids emerge through endosymbiosis of an ochrophyte? Sci Rep. 2015;5:10134. doi: 10.1038/srep10134. PubMed DOI PMC
Schnepf E, Deichgräber G, Koch W. Über das Vorkommen und den Bau gestielter “Hüllen” bei Ochromonas malhamensis Pringsheim und Ochromonas sociabilis nom. prov. Pringsheim. Arch Mikrobiol. 1968;63:15–25. doi: 10.1007/BF00407060. PubMed DOI
Kristiansen K, Škaloud P. Handbook of the Protists. 2017. Chrysophyta; pp. 331–366.
Siver PA, Jo BY, Kim JI, Shin W, Lott AM, Wolfe AP. Assessing the evolutionary history of the class Synurophyceae (Heterokonta) using molecular, morphometric, and paleobiological approaches. Am J Bot. 2015;102:921–941. doi: 10.3732/ajb.1500004. PubMed DOI
Jo BY, Kim JI, Škaloud P, Siver PA, Shin W. Multigene phylogeny of Synura (Synurophyceae) and description of four new species based on morphological and DNA evidence. Eur J Phycol. 2016;51:413–430. doi: 10.1080/09670262.2016.1201700. DOI
Andersen RA, Graf L, Malakhov Y, Yoon HS. Rediscovery of the Ochromonas type species Ochromonas triangulata (Chrysophyceae) from its type locality (Lake Veysove, Donetst region, Ukraine) Phycologia. 2017;56:591–604. doi: 10.2216/17-15.1. DOI
Ruck EC, Nakov T, Jansen RK, Theriot EC, Alverson AJ. Serial gene losses and foreign DNA underlie size and sequence variation in the plastid genomes of diatoms. Genome Biol Evol. 2014;6:644–654. doi: 10.1093/gbe/evu039. PubMed DOI PMC
Janouškovec J, Liu SL, Martone PT, Carré W, Leblanc C, Collén J, Keeling PJ. Evolution of red algal plastid genomes: ancient architectures, introns, horizontal gene transfer, and taxonomic utility of plastid markers. PLoS One. 2013;8:e59001. doi: 10.1371/journal.pone.0059001. PubMed DOI PMC
Rice DW, Palmer JD. An exceptional horizontal gene transfer in plastids: gene replacement by a distant bacterial paralog and evidence that haptophyte and cryptophyte plastids are sisters. BMC Biol. 2006;4:31. doi: 10.1186/1741-7007-4-31. PubMed DOI PMC
Khan H, Parks N, Kozera C, Curtis BA, Parsons BJ, Bowman S, Archibald JM. Plastid genome sequence of the cryptophyte alga Rhodomonas salina CCMP1319: lateral transfer of putative DNA replication machinery and a test of chromist plastid phylogeny. Mol Biol Evol. 2007;24:1832–1842. doi: 10.1093/molbev/msm101. PubMed DOI
Khan H, Archibald JM. Lateral transfer of introns in the cryptophyte plastid genome. Nucleic Acids Res. 2008;36:3043–3053. doi: 10.1093/nar/gkn095. PubMed DOI PMC
Kim JI, Moore CE, Archibald JM, Bhattacharya D, Yi G, Yoon HS, Shin W. Evolutionary dynamics of cryptophyte plastid genomes. Genome Biol Evol. 2017;9:1859–1872. doi: 10.1093/gbe/evx123. PubMed DOI PMC
Yurchenko T, Sĕvčíková T, Strnad H, Butenko A, Eliáš M. The plastid genome of some eustigmatophyte algae harbours a bacteria-derived six-gene cluster for biosynthesis of a novel secondary metabolite. Open Biol. 2016;6:160249. doi: 10.1098/rsob.160249. PubMed DOI PMC
Straub SC, Cronn RC, Edwards C, Fishbein M, Liston A. Horizontal transfer of DNA from the mitochondrial to the plastid genome and its subsequent evolution in milkweeds (Apocynaceae) Genome Biol Evol. 2013;5:1872–1885. doi: 10.1093/gbe/evt140. PubMed DOI PMC
Ma PF, Zhang YX, Guo ZH, Li DZ. Evidence for horizontal transfer of mitochondrial DNA to the plastid genome in a bamboo genus. Sci Rep. 2015;5:11608. doi: 10.1038/srep11608. PubMed DOI PMC
Gandini CL, Sanchez-Puerta MV. Foreign plastid sequences in plant mitochondria are frequently acquired via mitochondrion-to-mitochondrion horizontal transfer. Sci Rep. 2017;7:43402. doi: 10.1038/srep43402. PubMed DOI PMC
Goulding S, Olmstead R, Morden C, Wolfe K. Ebb and flow of the chloroplast inverted repeat. Mol Gen Genet. 1996;252:195–206. doi: 10.1007/BF02173220. PubMed DOI
Wang RJ, Cheng CL, Chang CC, Wu CL, Su TM, Chaw SM. Dynamics and evolution of the inverted repeat-large single copy junctions in the chloroplast genomes of monocots. BMC Evol Biol. 2008;8:36. doi: 10.1186/1471-2148-8-36. PubMed DOI PMC
Jansen R, Ruhlman T. Plastid genomes of seed plants. In: Bock R, Knoop V, editors. Genomics of chloroplasts and mitochondria. Netherlands: Springer; 2012. pp. 103–126.
Sabir JSM, Yu M, Ashworth MP, Baeshen NA, Baeshen MN, Bahieldin A, Theriot EC, Jansen RK. Conserved gene order and expanded inverted repeats characterize plastid genomes of Thalassiosirales. PLoS One. 2014;9:e107854. doi: 10.1371/journal.pone.0107854. PubMed DOI PMC
Turmel M, Otis C, Lemieux C. Dynamic evolution of the chloroplast genome in the green algal classes Pedinophyceae and Trebouxiophyceae. Genome Biol Evol. 2015;7:2062–2082. doi: 10.1093/gbe/evv130. PubMed DOI PMC
Turmel M, Otis C, Lemieux C. Divergent copies of the large inverted repeat in the chloroplast genomes of ulvophycean green algae. Sci Rep. 2017;7:994. doi: 10.1038/s41598-017-01144-1. PubMed DOI PMC
Douglas SE, Penny SL. The plastid genome of the cryptophyte alga, Guillardia theta: complete sequence and conserved synteny groups confirm its common ancestry with red algae. J Mol Evol. 1999;48:236–244. doi: 10.1007/PL00006462. PubMed DOI
Ohta N, Matsuxaki M, Misumi O, Miyagishima S, Nozaki H, et al. Complete sequence and analysis of the plastid genome of the unicellular red alga Cyanidioschyzon merolae. DNA Res. 2003;10:67–77. doi: 10.1093/dnares/10.2.67. PubMed DOI
Imanian B, Pombert J-F, Keeling PJ. The complete plastid genomes of the two ‘dinotoms’ Durinskia baltica and Kryptoperidinium foliaceum. PLoS One. 2010;5:e10711. doi: 10.1371/journal.pone.0010711. PubMed DOI PMC
Safro M, Moor N, Lavrik O. Madame Curie Bioscience Database [Internet] Austin (TX): Landes Bioscience; 2000. Phenylalanyl-tRNA synthetases.
Tajima N, Saitoh K, Sato S, Maruyama F, Ichinomiya M, et al. Sequencing and analysis of the complete organellar genomes of Parmales, a closely related group to Bacillariophyta (diatoms) Curr Genet. 2016;62:887–896. doi: 10.1007/s00294-016-0598-y. PubMed DOI
Lee JM, Cho CH, Park SI, Choi JW, et al. Parallel evolution of highly conserved plastid genome architecture in red seaweeds and seed plants. BMC Biol. 2016;14:75. doi: 10.1186/s12915-016-0299-5. PubMed DOI PMC
Sasaki Y, Sekiguchi K, Nagano Y, Matsuno R. Chloroplast envelope protein encoded by chloroplast genome. FEBS Lett. 1993;316:93–98. doi: 10.1016/0014-5793(93)81743-J. PubMed DOI
Ohyama K, Fukuzawa H, Kohchi T, Shirai H, Sano T, et al. Chloroplast gene organization deduced from complete sequence of liverwort Marchantia polymorpha chloroplast DNA. Nature. 1986;322:572–574. doi: 10.1038/322572a0. DOI
Grzebyk D, Schofield O. The Mesozoic radiation of eukaryotic algae: the portable plastid hypothesis. J Phycol. 2003;39:259–267. doi: 10.1046/j.1529-8817.2003.02082.x. DOI
Cremen MCM, Leliaert F, Marcelino VR, Verbruggen H. Large diversity of nonstandard genes and dynamic evolution of chloroplast genomes in siphonous green algae (Bryopsidales, Chlorophyta) Genome Biol Evol. 2018;10:1048–1061. doi: 10.1093/gbe/evy063. PubMed DOI PMC
Besendahl A, Qiu YL, Lee J, Palmer JD, Bhattacharya D. The cyanobacterial origin and vertical transmission of the plastid tRNA(Leu) group-I intron. Curr Genet. 2000;37:12–23. doi: 10.1007/s002940050002. PubMed DOI
Simon D, Fewer D, Friedl T, Bhattacharya B. Phylogeny and self-splicing ability of the plastid tRNA-Leu group I intron. J Mol Evol. 2003;57:710–720. doi: 10.1007/s00239-003-2533-3. PubMed DOI
Le Corguillé G, Pearson G, Valente M, Viegas C, Gschloessl B, Corre E, et al. Plastid genomes of two brown algae, Ectocarpus siliculosus and Fucus vesiculosus: further insights on the evolution of red-algal derived plastids. BMC Evol Biol. 2009;9:253. doi: 10.1186/1471-2148-9-253. PubMed DOI PMC
Brown JW, Sorhannus U. A molecular genetic timescale for the diversification of autotrophic stramenopiles (Ochrophyta): substantive underestimation of putative fossil ages. PLoS One. 2010;5:e12759. doi: 10.1371/journal.pone.0012759. PubMed DOI PMC
Yang EC, Boo GH, Kim HJ, Cho SM, Boo SM, Andersen RA, Yoon HS. Supermatrix data highlight the phylogenetic relationships of photosynthetic stramenopiles. Protist. 2012;163:217–231. doi: 10.1016/j.protis.2011.08.001. PubMed DOI
Derelle R, López-García P, Timpano H, Moreira D. A phylogenomic framework to study the diversity and evolution of stramenopiles (=heterokonts) Mol Biol Evol. 2016;33:2890–2898. doi: 10.1093/molbev/msw168. PubMed DOI PMC
Füssy Z, Oborník M. Chromerids and their plastids. Adv Bot Res. 2017;84:187–218. doi: 10.1016/bs.abr.2017.07.001. DOI
Kristiansen, J. Golden algae: a Biology of chrysophytes. A.R.G. Gantner Verlag, Königstein; 2005. p. 167.
Nicholls KH, Gerrath JF. The taxonomy of Synura (Chrysophyceae) in Ontario with special reference to taste and odour in water supplies. Can J Bot. 1985;63:1482–1493. doi: 10.1139/b85-205. DOI
Andersen RA, Berges JA, Harrison PJ, Watanabe MM, Appendix A. Recipes for freshwater and seawater media. In: Andersen RA, editor. Algal culturing techniques. Burlington, Massachusetts: Elsevier Academic Press; 2005. pp. 429–538.
Jung J, Kim JI, Jeong Y-S, Yi G. A robust method for finding the automated best matched genes based on grouping similar fragments of large-scale references for genome assembly. Symmetry. 2017;9:192. doi: 10.3390/sym9090192. DOI
Jung J, Kim JI, Jeong Y-S, Yi G. AGORA: organellar genome annotation from the amino acid and nucleotide references. Bioinformatics. 2018;34:2661–2663. doi: 10.1093/bioinformatics/bty196. PubMed DOI
Smith SW, Overbeek R, Woese CR, Gilbert W, Gillevet PM. The genetic data environment: an expandable GUI for multiple sequence analysis. Comput Appl Biosci. 1994;10:671–675. PubMed
Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2015;32:268–274. doi: 10.1093/molbev/msu300. PubMed DOI PMC
Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–1313. doi: 10.1093/bioinformatics/btu033. PubMed DOI PMC
Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol. 2012;61:539–542. doi: 10.1093/sysbio/sys029. PubMed DOI PMC