Substantial intraspecific genome size variation in golden-brown algae and its phenotypic consequences
Jazyk angličtina Země Velká Británie, Anglie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32686820
PubMed Central
PMC7596369
DOI
10.1093/aob/mcaa133
PII: 5873694
Knihovny.cz E-zdroje
- Klíčová slova
- Synura petersenii, GC content, ITS, Intraspecific DNA content variation, biovolume, environmental conditions, flow cytometry, genome size, golden-brown algae, growth rate,
- MeSH
- biologická evoluce MeSH
- Chrysophyceae * MeSH
- délka genomu MeSH
- genom rostlinný * genetika MeSH
- ploidie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BACKGROUND AND AIMS: While nuclear DNA content variation and its phenotypic consequences have been well described for animals, vascular plants and macroalgae, much less about this topic is known regarding unicellular algae and protists in general. The dearth of data is especially pronounced when it comes to intraspecific genome size variation. This study attempts to investigate the extent of intraspecific variability in genome size and its adaptive consequences in a microalgal species. METHODS: Propidium iodide flow cytometry was used to estimate the absolute genome size of 131 strains (isolates) of the golden-brown alga Synura petersenii (Chrysophyceae, Stramenopiles), identified by identical internal transcribed spacer (ITS) rDNA barcodes. Cell size, growth rate and genomic GC content were further assessed on a sub-set of strains. Geographic location of 67 sampling sites across the Northern hemisphere was used to extract climatic database data and to evaluate the ecogeographical distribution of genome size diversity. KEY RESULTS: Genome size ranged continuously from 0.97 to 2.02 pg of DNA across the investigated strains. The genome size was positively associated with cell size and negatively associated with growth rate. Bioclim variables were not correlated with genome size variation. No clear trends in the geographical distribution of strains of a particular genome size were detected, and strains of different genome size occasionally coexisted at the same locality. Genomic GC content was significantly associated only with genome size via a quadratic relationship. CONCLUSIONS: Genome size variability in S. petersenii was probably triggered by an evolutionary mechanism operating via gradual changes in genome size accompanied by changes in genomic GC content, such as, for example, proliferation of transposable elements. The variation was reflected in cell size and relative growth rate, possibly with adaptive consequences.
Zobrazit více v PubMed
Armbrust EV, Berges JA, Bowler C, et al. . 2004. The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism. Science 306: 79–86. PubMed
Baack EJ, Whitney KD, Rieseberg LH. 2005. Hybridization and genome size evolution: timing and magnitude of nuclear DNA content increases in Helianthus homoploid hybrid species. New Phytologist 167: 623–630. PubMed PMC
Baek SH, Shimode S, Kim H, Han M-S, Kikuchi T. 2009. Strong bottom-up effects on phytoplankton community caused by a rainfall during spring and summer in Sagami Bay, Japan. Journal of Marine Systems 75: 253–264.
Baetcke KP, Sparrow AH, Nauman CH, Schwemmer SS. 1967. The relationship of DNA content to nuclear and chromosome volumes and to radiosensitivity (LD50). Proceedings of the National Academy of Sciences, USA 58: 533–540. PubMed PMC
Beaulieu JM, Leitch IJ, Patel S, Pendharkar A, Knight CA. 2008. Genome size is a strong predictor of cell size and stomatal density in angiosperms. New Phytologist 179: 975–986. PubMed
Bennett MD. 1972. Nuclear DNA content and minimum generation time in herbaceous plants. Proceedings of the Royal Society B: Biological Sciences 181: 109–135. PubMed
Bennett MD, Leitch IJ. 2011. Nuclear DNA amounts in angiosperms: targets, trends and tomorrow. Annals of Botany 107: 467–590. PubMed PMC
Boo SM, Kim HS, Shin W, et al. . 2010. Complex phylogeographic patterns in the freshwater alga Synura provide new insights into ubiquity vs. endemism in microbial eukaryotes. Molecular Ecology 19: 4328–4338. PubMed
Cavalier-Smith T. 2005. Economy, speed and size matter: evolutionary forces driving nuclear genome miniaturization and expansion. Annals of Botany 95: 147–175. PubMed PMC
Cavalier-Smith T, Beaton MJ. 1999. The skeletal function of non-genic nuclear DNA: new evidence from ancient cell chimaeras. Genetica 106: 3–13. PubMed
Connell L. 2002. Rapid identification of marine algae (Raphidophyceae) using three-primer PCR amplification of nuclear internal transcribed spacer (ITS) regions from fresh and archived material. Phycologia 41: 15–21.
Connolly JA, Oliver MJ, Beaulieu JM, Knight CA, Tomanek L, Moline MA. 2008. Correlated evolution of genome size and cell volume in diatoms (Bacillariophyceae). Journal of Phycology 44: 124–131. PubMed
von Dassow P, Petersen TW, Chepurnov VA, Armbrust EV. 2008. Inter- and intraspecific relationships between nuclear DNA content and cell size in selected members of the centric diatom genus Thalassiosira (Bacillariophyceae). Journal of Phycology 44: 335–349. PubMed
De Meester L, Gómez A, Okamura B, Schwenk K. 2002. The monopolization hypothesis and the dispersal–gene flow paradox in aquatic organisms. Acta Oecologica 23: 121–135.
Derelle E, Ferraz C, Rombauts S, et al. . 2006. Genome analysis of the smallest free-living eukaryote Ostreococcus tauri unveils many unique features. Proceedings of the National Academy of Sciences, USA 103: 11647–11652. PubMed PMC
Devos KM, Brown JK, Bennetzen JL. 2002. Genome size reduction through illegitimate recombination counteracts genome expansion in Arabidopsis. Genome Research 12: 1075–1079. PubMed PMC
Dionisio Pires LM, Jonker RR, Van Donk E, Laanbroek HJ. 2004. Selective grazing by adults and larvae of the zebra mussel (Dreissena polymorpha): application of flow cytometry to natural seston. Freshwater Biology 49: 116–126.
Doležel J. 2005. Plant DNA flow cytometry and estimation of nuclear genome size. Annals of Botany 95: 99–110. PubMed PMC
Doležel J, Greilhuber J, Suda J. 2007. Flow cytometry with plant cells. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA.
Fick SE, Hijmans RJ. 2017. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology 37: 4302–4315.
Figueroa RI, Garcés E, Bravo I. 2010. The use of flow cytometry for species identification and life-cycle studies in dinoflagellates. Deep-Sea Research Part II: Topical Studies in Oceanography 57: 301–307.
Finkel ZV, Platt T, Sathyendranath S, et al. . 2001. Light absorption and size scaling of light-limited metabolism in marine diatoms. Limnology and Oceanography 46: 86–94.
Foissner W. 2007. Protist diversity and distribution: some basic considerations. Dordrecht: Springer, 1–8.
Galbraith DW. 2012. Flow cytometry and fluorescence-activated cell sorting in plants: the past, present, and future. Biomédica 30: 65.
Garcia-Pichel F. 1994. A model for internal self-shading in planktonic organisms and its implications for the usefulness of ultraviolet sunscreens. Limnology and Oceanography 39: 1704–1717.
Goodsell DS, Dickerson RE. 1994. Bending and curvature calculations in B-DNA. Nucleic Acids Research 22: 5497–5503. PubMed PMC
Gregory TR. 2001a Coincidence, coevolution, or causation? DNA content, cell size, and the C-value enigma. Biological Reviews of the Cambridge Philosophical Society 76: 65–101. PubMed
Gregory TR. 2001b The bigger the C-value, the larger the cell: genome size and red blood cell size in vertebrates. Blood Cells, Molecules & Diseases 27: 830–843. PubMed
Gregory TR. 2005. Genome size evolution in animals. In: Gregory TR, ed. The evolution of the genome. Elsevier Academic Press, 3–87.
Greilhuber J. 2005. Intraspecific variation in genome size in angiosperms: identifying its existence. Annals of Botany 95: 91–98. PubMed PMC
Grover CE, Wendel JF. 2010. Recent insights into mechanisms of genome size change in plants. Journal of Botany 2010: 1–8.
Guillard RRL, Lorenzen CJ. 1972. Yellow-green algae with chlorophyllide C. Journal of Phycology 8: 10–14.
Helms G, Friedl T, Rambold G, Mayrhofer H. 2001. Identification of photobionts from the lichen family Physciaceae using algal-specific ITS rDNA sequencing. The Lichenologist 33: 73–86.
Hildebrand F, Meyer A, Eyre-Walker A. 2010. Evidence of selection upon genomic GC-content in bacteria. PLoS Genetics 6: e1001107. PubMed PMC
Irwin AJ, Finkel ZV, Schofield OME, Falkowski PG. 2006. Scaling-up from nutrient physiology to the size-structure of phytoplankton communities. Journal of Plankton Research 28: 459–471.
Jeffery NW, Hultgren K, Chak STC, Gregory TR, Rubenstein DR. 2016. Patterns of genome size variation in snapping shrimp. Genome 59: 393–402. PubMed
Jo BY, Kim JI, Škaloud P, Siver PA, Shin W. 2016. Multigene phylogeny of Synura (Synurophyceae) and descriptions of four new species based on morphological and DNA evidence. European Journal of Phycology 51: 413–430.
Jones RN, Viegas W, Houben A. 2008. A century of B chromosomes in plants: so what? Annals of Botany 101: 767–775. PubMed PMC
Kapraun DF. 2007. Nuclear DNA content estimates in green algal lineages: chlorophyta and streptophyta. Annals of Botany 99: 677–701. PubMed PMC
Keeling PJ, Slamovits CH. 2005. Causes and effects of nuclear genome reduction. Current Opinion in Genetics & Development 15: 601–608. PubMed
Kidwell MG. 2002. Transposable elements and the evolution of genome size in eukaryotes. Genetica 115: 49–63. PubMed
Kim JI, Shin H, Škaloud P, et al. . 2019. Comparative plastid genomics of Synurophyceae: inverted repeat dynamics and gene content variation. BMC Evolutionary Biology 19: 20. PubMed PMC
Koester JA, Swalwell JE, von Dassow P, Armbrust EV. 2010. Genome size differentiates co-occurring populations of the planktonic diatom Ditylum brightwellii (Bacillariophyta). BMC Evolutionary Biology 10: 1. PubMed PMC
Kolář F, Čertner M, Suda J, Schönswetter P, Husband BC. 2017. Mixed-ploidy species: progress and opportunities in polyploid research. Trends in Plant Science 22: 1041–1055. PubMed
Kristiansen J, Preisig HR. 2007. Chrysophyte and haptophyte algae. In: Büdel B, Gärtner G, Krienitz L, Preisig HR, Schagerl M, eds. Süβwasserflora von Mitteleuropa. Freswater Flora of Central Europe. Berlin: Springer, 118.
Kron P, Suda J, Husband BC. 2007. Applications of flow cytometry to evolutionary and population biology. Annual Review of Ecology, Evolution, and Systematics 38: 847–876.
Kynčlová A, Škaloud P, Škaloudová M. 2010. Unveiling hidden diversity in the Synura petersenii species complex (Synurophyceae, Heterokontophyta). Nova Hedwigia 136: 283–298.
LaJeunesse TC, Lambert G, Andersen RA, Coffroth MA, Galbraith DW. 2005. Symbiodinium (Pyrrhophyta) genome sizes (DNA content) are smallest among dinoflagellates. Journal of Phycology 41: 880–886.
Leitch I, Chase MW, Bennett MD. 1998. Phylogenetic analysis of DNA C-values provides evidence for a small ancestral genome size in flowering plants. Annals of Botany 82: 85–94.
Lepš J, Šmilauer P. 2014. Multivariate analysis of ecological data using Canoco 5, 2nd edn Cambridge: Cambridge University Press.
Liedtke HC, Gower DJ, Wilkinson M, Gomez-Mestre I. 2018. Macroevolutionary shift in the size of amphibian genomes and the role of life history and climate. Nature Ecology & Evolution 2: 1792–1799. PubMed
Lynch M, Conery JS. 2003. The origins of genome complexity. Science 302: 1401–1404. PubMed
Mazalová P, Šarhanová P, Ondřej V, Poulíčková A. 2011. Quantification of DNA content in freshwater microalgae using flow cytometry: a modified protocol for selected green microalgae. Fottea 11: 317–328.
Medlin LK, Barker GLA, Campbell L, et al. . 1996. Genetic characterisation of Emiliania huxleyi (Haptophyta). Journal of Marine Systems 9: 13–31.
Mirsky AE, Ris H. 1951. The composition and structure of isolated chromosomes. Journal of General Physiology 34: 475–492. PubMed PMC
Mugal CF, Arndt PF, Holm L, Ellegren H. 2015. Evolutionary consequences of DNA methylation on the GC content in vertebrate genomes. G3 5: 441–447. PubMed PMC
Němcová Y, Neustupa J, Kviderová J, Řezáčová-Škaloudová M. 2010. Morphological plasticity of silica scales of Synura echinulata (Synurophyceae) in crossed gradients of light and temperature – a geometric morphometric approach. Nova Hedwigia 136: 21–32.
Olefeld JL, Majda S, Albach DC, Marks S, Boenigk J. 2018. Genome size of chrysophytes varies with cell size and nutritional mode. Organisms Diversity & Evolution 18: 163–173.
Otto F. 1990. DAPI staining of fixed cells for high-resolution flow cytometry of nuclear DNA. Methods in Cell Biology 33: 105–110. PubMed
Pellicer J, Leitch IJ. 2014. The application of flow cytometry for estimating genome size and ploidy level in plants. Methods in Molecular Biology 1115: 279–307. PubMed
Pellicer J, Leitch IJ. 2020. The plant DNA C-values database (release 7.1): an updated online repository of plant genome size data for comparative studies. New Phytologist 226: 301–305. PubMed
Pichrtová M, Němcová Y. 2011. Effect of temperature on size and shape of silica scales in Synura petersenii and Mallomonas tonsurata (Stramenopiles). Hydrobiologia 673: 1–11.
Poulíčková A, Mazalová P, Vašut RJ, Šarhanová P, Neustupa J, Škaloud P. 2014. DNA content variation and its significance in the evolution of the genus Micrasterias (desmidiales, streptophyta). PLoS One 9 e86247. PubMed PMC
R Development Core Team 2017. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.
Read BA, Kegel J, Klute MJ, et al. . 2013. Pan genome of the phytoplankton Emiliania underpins its global distribution. Nature 499: 209–213. PubMed
Řezáčová-Škaloudová M, Neustupa J, Němcová Y. 2010. Effect of temperature on the variability of silicate structures in Mallomonas kalinae and Synura curtispina (Synurophyceae). Nova Hedwigia 136: 55–69.
Ribeiro S, Berge T, Lundholm N, Ellegaard M. 2013. Hundred years of environmental change and phytoplankton ecophysiological variability archived in coastal sediments. PLoS One 8: e61184. PubMed PMC
Rocha EP, Danchin A. 2002. Base composition bias might result from competition for metabolic resources. Trends in Genetics 18: 291–294. PubMed
Roháček K, Barták M. 1999. Technique of the modulated chlorophyll fluorescence: basic concepts, useful parameters, and some applications. Photosynthetica 37: 339–363.
Roux N, Toloza A, Radecki Z, Zapata-Arias FJ, Dolezel J. 2003. Rapid detection of aneuploidy in Musa using flow cytometry. Plant Cell Reports 21: 483–490. PubMed
Ruiz-Ruano FJ, Ruiz-Estévez M, Rodríguez-Pérez J, López-Pino JL, Cabrero J, Camacho JP. 2011. DNA amount of X and B chromosomes in the grasshoppers Eyprepocnemis plorans and Locusta migratoria. Cytogenetic and Genome Research 134: 120–126. PubMed
Sandgren CD, Flanagin J. 1986. Heterothallic sexuality and density dependent encystment in the Chrysophycean alga Synura petersenii Korsh. Journal of Phycology 22: 206–216.
Shuter BJ, Thomas JE, Taylor WD, Zimmerman AM. 1983. Phenotypic correlates of genomic DNA content in unicellular eukaryotes and other cells. The American Naturalist 122: 26–44.
Škaloud P, Kynčlová A, Benada O, Kofroňová O, Škaloudová M. 2012. Toward a revision of the genus Synura, section Petersenianae (Synurophyceae, Heterokontophyta): morphological characterization of six pseudo-cryptic species. Phycologia 51: 303–329.
Škaloud P, Škaloudová M, Procházková A, Němcová Y. 2014. Morphological delineation and distribution patterns of four newly described species within the Synura petersenii species complex (Chrysophyceae, Stramenopiles). European Journal of Phycology 49: 213–229.
Šmarda P, Bureš P. 2010. Understanding intraspecific variation in genome size in plants. Preslia 82: 41–61.
Šmarda P, Bureš P. 2012. The variation of base composition in plant genomes. In: Wendel J, Greilhuber J, Dolezel J, Leitch I, eds. Plant genome diversity, Vol. 1. Vienna: Springer Vienna, 209–235.
Šmarda P, Bureš P, Horová L, Foggi B, Rossi G. 2008. Genome size and GC content evolution of Festuca: ancestral expansion and subsequent reduction. Annals of Botany 101: 421–433. PubMed PMC
Šmarda P, Bureš P, Horová L, et al. . 2014. Ecological and evolutionary significance of genomic GC content diversity in monocots. Proceedings of the National Academy of Sciences, USA 111: E4096–E4102. PubMed PMC
Smetacek V, Assmy P, Henjes J. 2004. The role of grazing in structuring Southern Ocean pelagic ecosystems and biogeochemical cycles. Antarctic Science 16: 541–558.
Soltis DE, Soltis PS. 1999. Polyploidy: recurrent formation and genome evolution. Trends in Ecology & Evolution 14: 348–352. PubMed
Sparrow AH, Evans HJ. 1961. Nuclear factors affecting radiosensitivity. I. The influence of nuclear size and structure, chromosome complement, and DNA content. Brookhaven Symposia in Biology 14: 76–100. PubMed
Sprouffske K, Wagner A. 2016. Growthcurver: an R package for obtaining interpretable metrics from microbial growth curves. BMC Bioinformatics 17: 172. PubMed PMC
Stelzer CP, Pichler M, Stadler P, Hatheuer A, Riss S. 2019. Within-population genome size variation is mediated by multiple genomic elements that segregate independently during meiosis. Genome Biology and Evolution 11: 3424–3435. PubMed PMC
Sun C, López Arriaza JR, Mueller RL. 2012. Slow DNA loss in the gigantic genomes of salamanders. Genome Biology and Evolution 4: 1340–1348. PubMed PMC
Suzuki T, Nishibayashi S, Kuroiwa T, Kanbe T, Tanaka K. 1982. Variance of ploidy in Candida albicans. Journal of Bacteriology 152: 893–896. PubMed PMC
Swift H. 1950. The constancy of desoxyribose nucleic acid in plant nuclei. Proceedings of the National Academy of Sciences, USA 36: 643–654. PubMed PMC
Temsch EM, Greilhuber J, Krisai R. 2010. Genome size in liverworts. Preslia 82: 63–80.
Thomas CA., Jr 1971. The genetic organization of chromosomes. Annual Review of Genetics 5: 237–256. PubMed
Trávníček P, Čertner M, Ponert J, Chumová Z, Jersáková J, Suda J. 2019. Diversity in genome size and GC content shows adaptive potential in orchids and is closely linked to partial endoreplication, plant life-history traits and climatic conditions. New Phytologist 224: 1642–1656. PubMed
Van’t Hof J, Sparrow AH. 1963. A relationship between DNA content, nuclear volume, and minimum mitotic cycle time. Proceedings of the National Academy of Sciences, USA 49: 897–902. PubMed PMC
Veldhuis MJW, Cucci TL, Sieracki ME. 1997. Cellular DNA content of marine phytoplankton using two new fluorochromes: taxonomic and ecological implications. Journal of Phycology 33: 527–541.
Veleba A, Šmarda P, Zedek F, Horová L, Šmerda J, Bureš P. 2017. Evolution of genome size and genomic GC content in carnivorous holokinetics (Droseraceae). Annals of Botany 119: 409–416. PubMed PMC
Venables WN, Ripley BD. 2002. Modern applied statistics with S. New York: Springer.
Veselý P, Bureš P, Šmarda P, Pavlíček T. 2012. Genome size and DNA base composition of geophytes: the mirror of phenology and ecology? Annals of Botany 109: 65–75. PubMed PMC
Wee JL, Fasone LD, Sattler A, Starks WW, Hurley DL. 2001. ITS/5.8S DNA sequence variation in 15 isolates of Synura petersenii Korshikov (Synurophyceae). Nova Hedwigia 122: 245–258.
White TJ. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics In: Innis MA, ed. PCR protocols: a guide to methods and applications. San Diego: Academic Press, 315–322.
Whittaker KA, Rignanese DR, Olson RJ, Rynearson TA. 2012. Molecular subdivision of the marine diatom Thalassiosira rotula in relation to geographic distribution, genome size, and physiology. BMC Evolutionary Biology 12: 209. PubMed PMC
Wichman HA, Van Den Bussche RA, Hamilton MJ, Baker RJ. 1993. Transposable elements and the evolution of genome organization in mammals. Dordrecht: Springer, 149–157. PubMed
Wilson EB. 1925. The karyoplasmic ratio. In: The cell in development and heredity. New York: The Macmillan Company, 727–733.
Wu Y, Sun Y, Sun S, et al. . 2018. Aneuploidization under segmental allotetraploidy in rice and its phenotypic manifestation. Theoretical and Applied Genetics 131: 1273–1285. PubMed PMC
Zubáčová Z, Cimbůrek Z, Tachezy J. 2008. Comparative analysis of trichomonad genome sizes and karyotypes. Molecular and Biochemical Parasitology 161: 49–54. PubMed