Red-shifted light-harvesting system of freshwater eukaryotic alga Trachydiscus minutus (Eustigmatophyta, Stramenopila)

. 2019 Nov ; 142 (2) : 137-151. [epub] 20190802

Jazyk angličtina Země Nizozemsko Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31375979

Grantová podpora
19-28323X Grantová Agentura České Republiky
GA15-22000S Grantová Agentura České Republiky
NPU I Ministerstvo Školství, Mládeže a Tělovýchovy
LO1416 Ministerstvo Školství, Mládeže a Tělovýchovy
RVO:60077344 Akademie Věd České Republiky

Odkazy

PubMed 31375979
DOI 10.1007/s11120-019-00662-5
PII: 10.1007/s11120-019-00662-5
Knihovny.cz E-zdroje

Survival of phototrophic organisms depends on their ability to collect and convert enough light energy to support their metabolism. Phototrophs can extend their absorption cross section by using diverse pigments and by tuning the properties of these pigments via pigment-pigment and pigment-protein interaction. It is well known that some cyanobacteria can grow in heavily shaded habitats by utilizing far-red light harvested with far-red-absorbing chlorophylls d and f. We describe a red-shifted light-harvesting system based on chlorophyll a from a freshwater eustigmatophyte alga Trachydiscus minutus (Eustigmatophyceae, Goniochloridales). A comprehensive characterization of the photosynthetic apparatus of T. minutus is presented. We show that thylakoid membranes of T. minutus contain light-harvesting complexes of several sizes differing in the relative amount of far-red chlorophyll a forms absorbing around 700 nm. The pigment arrangement of the major red-shifted light-harvesting complex is similar to that of the red-shifted antenna of a marine alveolate alga Chromera velia. Evolutionary aspects of the algal far-red light-harvesting complexes are discussed. The presence of these antennas in eustigmatophyte algae opens up new ways to modify organisms of this promising group for effective use of far-red light in mass cultures.

Zobrazit více v PubMed

Protist. 2012 Mar;163(2):306-23 PubMed

Biochim Biophys Acta. 2016 Dec;1857(12):1917-1924 PubMed

Plant Cell. 2011 Jul;23(7):2659-79 PubMed

J Biol Chem. 2003 Dec 5;278(49):49223-9 PubMed

Photosynth Res. 2011 May;108(1):25-32 PubMed

Biochem J. 2011 Oct 15;439(2):207-14 PubMed

Biochim Biophys Acta. 2014 Nov;1837(11):1904-1912 PubMed

Photosynth Res. 2014 Jul;121(1):79-86 PubMed

Biochim Biophys Acta. 2002 Oct 3;1556(1):29-40 PubMed

Sci Rep. 2017 Sep 20;7(1):11976 PubMed

Proc Natl Acad Sci U S A. 2015 Jul 14;112(28):8529-36 PubMed

Biochim Biophys Acta Bioenerg. 2019 Feb 1;1860(2):111-120 PubMed

Biochim Biophys Acta. 2014 Jan;1837(1):63-72 PubMed

J Phys Chem B. 2012 Aug 2;116(30):8880-9 PubMed

Anal Biochem. 1991 Dec;199(2):223-31 PubMed

FEBS Lett. 2012 Sep 21;586(19):3249-54 PubMed

FEBS Lett. 1997 Jun 30;410(2-3):433-6 PubMed

FEBS Lett. 2014 Oct 16;588(20):3770-7 PubMed

New Phytol. 2017 Jan;213(2):714-726 PubMed

Photosynth Res. 2018 Apr;136(1):49-61 PubMed

Biochim Biophys Acta. 2008 Apr;1777(4):351-61 PubMed

BMC Evol Biol. 2011 Apr 15;11:101 PubMed

Proc Natl Acad Sci U S A. 2010 Jun 15;107(24):10949-54 PubMed

Biochim Biophys Acta. 2014 Oct;1837(10):1748-55 PubMed

Phys Chem Chem Phys. 2012 Jan 14;14(2):759-66 PubMed

Photosynth Res. 2013 Nov;117(1-3):281-8 PubMed

Sci Rep. 2016 May 05;6:25583 PubMed

Biochim Biophys Acta. 2010 Aug;1797(8):1449-57 PubMed

Photosynth Res. 2017 Jan;131(1):65-77 PubMed

Biochim Biophys Acta. 2014 Jun;1837(6):734-43 PubMed

Photosynth Res. 2017 Oct;134(1):51-58 PubMed

Biochim Biophys Acta. 2010 Feb;1797(2):160-6 PubMed

J Phycol. 2000 Jun;36(3):563-570 PubMed

Photosynth Res. 1993 Mar;35(3):247-63 PubMed

Biophys J. 2009 Mar 4;96(5):L35-7 PubMed

J Phycol. 2012 Feb;48(1):231-42 PubMed

EMBO J. 2005 Mar 9;24(5):919-28 PubMed

Biochim Biophys Acta. 2013 Jun;1827(6):723-9 PubMed

Biochim Biophys Acta. 2014 Feb;1837(2):306-14 PubMed

Am J Bot. 2004 Oct;91(10):1508-22 PubMed

Biochim Biophys Acta. 2005 Feb 17;1706(3):267-75 PubMed

Plant Physiol. 2018 Feb;176(2):1433-1451 PubMed

Biochim Biophys Acta. 2015 Jun-Jul;1847(6-7):534-43 PubMed

Biochemistry. 2005 Mar 22;44(11):4572-81 PubMed

Photosynth Res. 2017 Mar;131(3):255-266 PubMed

FEBS Lett. 1999 Apr 23;449(2-3):211-4 PubMed

Photosynth Res. 2006 Mar;87(3):323-9 PubMed

Plant Physiol. 2012 Jan;158(1):476-86 PubMed

Photosynth Res. 2016 Dec;130(1-3):137-150 PubMed

Biochim Biophys Acta. 2010 Apr;1797(4):501-8 PubMed

Curr Opin Chem Biol. 2013 Jun;17(3):457-61 PubMed

Sci Rep. 2015 May 28;5:10134 PubMed

Ann Rev Mar Sci. 2010;2:333-65 PubMed

FEBS Lett. 2008 Oct 29;582(25-26):3625-31 PubMed

Plant Physiol. 1959 May;34(3):193-9 PubMed

Biochemistry. 2003 Nov 11;42(44):13027-34 PubMed

Environ Microbiol. 2015 Oct;17(10):3450-65 PubMed

Photosynth Res. 2019 Jun;140(3):337-354 PubMed

Photosynth Res. 2018 Mar;135(1-3):177-189 PubMed

BMC Evol Biol. 2010 Nov 26;10:365 PubMed

Biochim Biophys Acta. 1999 Jun 30;1412(2):94-107 PubMed

Biochim Biophys Acta. 2016 Apr;1857(4):370-9 PubMed

ISME J. 2015 Sep;9(9):2108-11 PubMed

Plant Cell Physiol. 2004 Apr;45(4):392-7 PubMed

Biochim Biophys Acta. 2014 Jun;1837(6):802-10 PubMed

PLoS Biol. 2011 Jan 18;9(1):e1000577 PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Eustigmatophyte model of red-shifted chlorophyll a absorption in light-harvesting complexes

. 2024 Oct 29 ; 7 (1) : 1406. [epub] 20241029

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...