Red-shifted light-harvesting system of freshwater eukaryotic alga Trachydiscus minutus (Eustigmatophyta, Stramenopila)
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
19-28323X
Grantová Agentura České Republiky
GA15-22000S
Grantová Agentura České Republiky
NPU I
Ministerstvo Školství, Mládeže a Tělovýchovy
LO1416
Ministerstvo Školství, Mládeže a Tělovýchovy
RVO:60077344
Akademie Věd České Republiky
PubMed
31375979
DOI
10.1007/s11120-019-00662-5
PII: 10.1007/s11120-019-00662-5
Knihovny.cz E-zdroje
- Klíčová slova
- Chromatic acclimation, Eustigmatophyta, Light-harvesting protein, Oligomeric LHC, Red-shifted LHC, Violaxanthin,
- MeSH
- biologické pigmenty metabolismus MeSH
- diuron MeSH
- fluorescenční spektrometrie MeSH
- Heterokontophyta metabolismus účinky záření MeSH
- membránové proteiny metabolismus MeSH
- sladká voda * MeSH
- světlo * MeSH
- světlosběrné proteinové komplexy metabolismus MeSH
- teplota MeSH
- tylakoidy metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- biologické pigmenty MeSH
- diuron MeSH
- membránové proteiny MeSH
- světlosběrné proteinové komplexy MeSH
Survival of phototrophic organisms depends on their ability to collect and convert enough light energy to support their metabolism. Phototrophs can extend their absorption cross section by using diverse pigments and by tuning the properties of these pigments via pigment-pigment and pigment-protein interaction. It is well known that some cyanobacteria can grow in heavily shaded habitats by utilizing far-red light harvested with far-red-absorbing chlorophylls d and f. We describe a red-shifted light-harvesting system based on chlorophyll a from a freshwater eustigmatophyte alga Trachydiscus minutus (Eustigmatophyceae, Goniochloridales). A comprehensive characterization of the photosynthetic apparatus of T. minutus is presented. We show that thylakoid membranes of T. minutus contain light-harvesting complexes of several sizes differing in the relative amount of far-red chlorophyll a forms absorbing around 700 nm. The pigment arrangement of the major red-shifted light-harvesting complex is similar to that of the red-shifted antenna of a marine alveolate alga Chromera velia. Evolutionary aspects of the algal far-red light-harvesting complexes are discussed. The presence of these antennas in eustigmatophyte algae opens up new ways to modify organisms of this promising group for effective use of far-red light in mass cultures.
Biology Centre The Czech Academy of Sciences Branišovská 31 370 05 České Budějovice Czech Republic
Institute of Microbiology The Czech Academy of Sciences Opatovický mlýn 379 81 Třeboň Czech Republic
Zobrazit více v PubMed
Protist. 2012 Mar;163(2):306-23 PubMed
Biochim Biophys Acta. 2016 Dec;1857(12):1917-1924 PubMed
Plant Cell. 2011 Jul;23(7):2659-79 PubMed
J Biol Chem. 2003 Dec 5;278(49):49223-9 PubMed
Photosynth Res. 2011 May;108(1):25-32 PubMed
Biochem J. 2011 Oct 15;439(2):207-14 PubMed
Biochim Biophys Acta. 2014 Nov;1837(11):1904-1912 PubMed
Photosynth Res. 2014 Jul;121(1):79-86 PubMed
Biochim Biophys Acta. 2002 Oct 3;1556(1):29-40 PubMed
Sci Rep. 2017 Sep 20;7(1):11976 PubMed
Proc Natl Acad Sci U S A. 2015 Jul 14;112(28):8529-36 PubMed
Biochim Biophys Acta Bioenerg. 2019 Feb 1;1860(2):111-120 PubMed
Biochim Biophys Acta. 2014 Jan;1837(1):63-72 PubMed
J Phys Chem B. 2012 Aug 2;116(30):8880-9 PubMed
Anal Biochem. 1991 Dec;199(2):223-31 PubMed
FEBS Lett. 2012 Sep 21;586(19):3249-54 PubMed
FEBS Lett. 1997 Jun 30;410(2-3):433-6 PubMed
FEBS Lett. 2014 Oct 16;588(20):3770-7 PubMed
New Phytol. 2017 Jan;213(2):714-726 PubMed
Photosynth Res. 2018 Apr;136(1):49-61 PubMed
Biochim Biophys Acta. 2008 Apr;1777(4):351-61 PubMed
BMC Evol Biol. 2011 Apr 15;11:101 PubMed
Proc Natl Acad Sci U S A. 2010 Jun 15;107(24):10949-54 PubMed
Biochim Biophys Acta. 2014 Oct;1837(10):1748-55 PubMed
Phys Chem Chem Phys. 2012 Jan 14;14(2):759-66 PubMed
Photosynth Res. 2013 Nov;117(1-3):281-8 PubMed
Sci Rep. 2016 May 05;6:25583 PubMed
Biochim Biophys Acta. 2010 Aug;1797(8):1449-57 PubMed
Photosynth Res. 2017 Jan;131(1):65-77 PubMed
Biochim Biophys Acta. 2014 Jun;1837(6):734-43 PubMed
Photosynth Res. 2017 Oct;134(1):51-58 PubMed
Biochim Biophys Acta. 2010 Feb;1797(2):160-6 PubMed
J Phycol. 2000 Jun;36(3):563-570 PubMed
Photosynth Res. 1993 Mar;35(3):247-63 PubMed
Biophys J. 2009 Mar 4;96(5):L35-7 PubMed
J Phycol. 2012 Feb;48(1):231-42 PubMed
EMBO J. 2005 Mar 9;24(5):919-28 PubMed
Biochim Biophys Acta. 2013 Jun;1827(6):723-9 PubMed
Biochim Biophys Acta. 2014 Feb;1837(2):306-14 PubMed
Am J Bot. 2004 Oct;91(10):1508-22 PubMed
Biochim Biophys Acta. 2005 Feb 17;1706(3):267-75 PubMed
Plant Physiol. 2018 Feb;176(2):1433-1451 PubMed
Biochim Biophys Acta. 2015 Jun-Jul;1847(6-7):534-43 PubMed
Biochemistry. 2005 Mar 22;44(11):4572-81 PubMed
Photosynth Res. 2017 Mar;131(3):255-266 PubMed
FEBS Lett. 1999 Apr 23;449(2-3):211-4 PubMed
Photosynth Res. 2006 Mar;87(3):323-9 PubMed
Plant Physiol. 2012 Jan;158(1):476-86 PubMed
Photosynth Res. 2016 Dec;130(1-3):137-150 PubMed
Biochim Biophys Acta. 2010 Apr;1797(4):501-8 PubMed
Curr Opin Chem Biol. 2013 Jun;17(3):457-61 PubMed
Sci Rep. 2015 May 28;5:10134 PubMed
Ann Rev Mar Sci. 2010;2:333-65 PubMed
FEBS Lett. 2008 Oct 29;582(25-26):3625-31 PubMed
Plant Physiol. 1959 May;34(3):193-9 PubMed
Biochemistry. 2003 Nov 11;42(44):13027-34 PubMed
Environ Microbiol. 2015 Oct;17(10):3450-65 PubMed
Photosynth Res. 2019 Jun;140(3):337-354 PubMed
Photosynth Res. 2018 Mar;135(1-3):177-189 PubMed
BMC Evol Biol. 2010 Nov 26;10:365 PubMed
Biochim Biophys Acta. 1999 Jun 30;1412(2):94-107 PubMed
Biochim Biophys Acta. 2016 Apr;1857(4):370-9 PubMed
ISME J. 2015 Sep;9(9):2108-11 PubMed
Plant Cell Physiol. 2004 Apr;45(4):392-7 PubMed
Biochim Biophys Acta. 2014 Jun;1837(6):802-10 PubMed
PLoS Biol. 2011 Jan 18;9(1):e1000577 PubMed
Eustigmatophyte model of red-shifted chlorophyll a absorption in light-harvesting complexes