Novel structural aspect of the diatom thylakoid membrane: lateral segregation of photosystem I under red-enhanced illumination
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
27149693
PubMed Central
PMC4857733
DOI
10.1038/srep25583
PII: srep25583
Knihovny.cz E-zdroje
- MeSH
- chloroplasty metabolismus účinky záření ultrastruktura MeSH
- fotosystém I - proteinový komplex metabolismus MeSH
- fotosystém II - proteinový komplex metabolismus MeSH
- multiproteinové komplexy metabolismus ultrastruktura MeSH
- rozsivky metabolismus účinky záření ultrastruktura MeSH
- světlo MeSH
- světlosběrné proteinové komplexy metabolismus MeSH
- transmisní elektronová mikroskopie MeSH
- tylakoidy metabolismus účinky záření ultrastruktura MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- fotosystém I - proteinový komplex MeSH
- fotosystém II - proteinový komplex MeSH
- multiproteinové komplexy MeSH
- světlosběrné proteinové komplexy MeSH
Spatial segregation of photosystems in the thylakoid membrane (lateral heterogeneity) observed in plants and in the green algae is usually considered to be absent in photoautotrophs possessing secondary plastids, such as diatoms. Contrary to this assumption, here we show that thylakoid membranes in the chloroplast of a marine diatom, Phaeodactylum tricornutum, contain large areas occupied exclusively by a supercomplex of photosystem I (PSI) and its associated Lhcr antenna. These membrane areas, hundreds of nanometers in size, comprise hundreds of tightly packed PSI-antenna complexes while lacking other components of the photosynthetic electron transport chain. Analyses of the spatial distribution of the PSI-Lhcr complexes have indicated elliptical particles, each 14 × 17 nm in diameter. On larger scales, the red-enhanced illumination exerts a significant effect on the ultrastructure of chloroplasts, creating superstacks of tens of thylakoid membranes.
Zobrazit více v PubMed
Haferkamp S., Haase W., Pascal A. A., van Amerongen H. & Kirchhoff H. Efficient light harvesting by photosystem II requires an optimized protein packing density in grana thylakoids. J. Biol. Chem. 285, 17020–17028 (2010). PubMed PMC
Kirchhoff H. Molecular crowding and order in photosynthetic membranes. Trends Plant Sci. 13, 201–207 (2008). PubMed
Kirchhoff H. Diffusion of molecules and macromolecules in the thylakoid membranes. Biochim. Biophys. Acta 1837, 495–502 (2013). PubMed
Andersson B. & Anderson J. M. Lateral heterogeneity in the distribution of chlorophyll-protein complexes of the thylakoid membranes of spinach chloroplasts. Biochim. Biophys. Acta 593, 427–440 (1980). PubMed
Mullineaux C. W. Function and evolution of grana. Trends Plant Sci. 10, 521–525 (2005). PubMed
Dekker J. P. & Boekema E. J. Supramolecular organization of thylakoid membrane proteins in green plants. Biochim. Biophys. Acta 1706, 12–39 (2005). PubMed
Kirchhoff H. et al. Low-light induced array formation of photosystem II in higher plant chloroplasts. Biochemistry 46, 11169–11176 (2007). PubMed
Kouřil R., Wientjes E., Bultema J. B., Croce R. & Boekema E. J. High-light vs. lowlight: Effect of light acclimation on photosystem II composition and organization in Arabidopsis thaliana. Biochim. Biophys. Acta, 1827, 411–419 (2013). PubMed
Vallon O., Wolmann F. A. & Olive J. Distribution of intrinsic and extrinsic subunits of the PS II protein complex between appressed and non-appressed regions of the thylakoid membrane: an immunocytochemical study. FEBS Lett 183, 245–250 (1985).
Vallon O., Wolmann F. A. & Olive J. Lateral distribution of the main protein complexes of the photosynthetic apparatus in Chlamydomonas reinhardti and in spinach – an immunocytochemical study using intact thylakoid membranes and PS-II enriched membrane preparation. Photobiochem. Photobiophys. 12, 203–220 (1986).
Olive J. & Vallon O. Structural organization of the thylakoid membrane – freeze fracture and immunocytochemical analysis. J. Electron Microsc. Tech. 18, 360–374 (1991). PubMed
Gibbs S. P. The comparative ultrastructure of the algal chloroplast. Ann. N. Y. Acad. Sci. 175, 454–473 (1970).
Pyszniak A. M. & Gibbs S. P. Immunocytochemical localization of photosystem I and the fucoxanthin-chlorophyll a/c light-harvesting complex in the diatom Phaeodactylum tricornutum. Protoplasma 166, 208–217 (1992).
Lepetit B., Goss R., Jakob T. & Wilhelm C. Molecular dynamics of the diatom thylakoid membrane under different light conditions. Photosynth. Res. 111, 245–257 (2012). PubMed
Büchel C., Wilhelm C., Hauswirth N. & Wild A. Evidence for a lateral heterogeneity by patch-work like areas enriched in photosystem I complexes in the three thylakoid lamellae of Pleurochloris meiringensis (Xanthophyceae). J. Crypt. Bot. 2, 375–386 (1992).
Grouneva I., Rokka A. & Aro E.-M. The thylakoid membrane proteome of two marine diatoms outlines both diatom-specific and species-specific features of the photosynthetic machinery. J. Proteome Res. 10, 5338–5353 (2011). PubMed
Herbstová M. et al. Molecular basis of chromatic adaptation in pennate diatom Phaeodactylum tricornutum. Biochim. Biophys. Acta 1847, 534–543 (2015). PubMed
Veith T. & Büchel C. The monomeric photosystem I-complex of the diatom Phaeodactylum tricornutum binds specific fucoxanthin chlorophyll proteins (FCPs) as light-harvesting complexes. Biochim. Biophys. Acta 1767, 1428–1435 (2007). PubMed
Ikeda Y. et al. Two types of fucoxanthin-chlorophyll-binding proteins I tightly bound to the photosystem I core complex in marine centric diatoms. Biochim. Biophys. Acta 1827, 529–539 (2013). PubMed
Gardian Z. et al. Organisation of photosystem I and photosystem II in red alga Cyanidium caldarium: Encounter of cyanobacterial and higher plant concepts. Biochim. Biophys. Acta 1767, 725–731 (2007). PubMed
Drop B. et al. Photosystem I of Chlamydomonas reinhardtii contains nine light-harvesting complexes (Lhca) located on one side of the core. J. Biol. Chem. 286, 44878–44887 (2011). PubMed PMC
Thangaraj B. et al. Efficient light harvesting in a dark, hot, acidic environment: The structure and function of PSI-LHCI from Galdieria sulphuraria. Biophys. J. 100, 135–143 (2011). PubMed PMC
Tichý J. et al. Light harvesting complexes of Chromera velia, photosynthetic relative of apicomplexan parasites. Biochim. Biophys. Acta 1827, 723–729 (2013). PubMed
Behrenfeld M. J. & Falkowski P. G. Photosynthetic rates derived from satellite-based chlorophyll concentration. Limnol. Oceanogr. 42, 1–20 (1997).
Falkowski P. G. The role of phytoplankton photosynthesis in global biogeochemical cycles. Photosynth. Res. 39, 235–258 (1994). PubMed
Falkowski P. G., Barber R. T. & Smetacek V. Biogeochemical controls and feedbacks on ocean primary production. Science 281, 200–206 (1998). PubMed
Lichtlé C., Duval J. C., Hauswirth N. & Spilar A. Freeze fracture study of thylakoid organization of Cryptomonas rufescens (Cryptophyceae), according to illumination conditions. Photobiochem. Photobiophys. 11, 159–171 (1986).
Martinson T. A., Ikeuchi M. & Plumley F. G. Oxygen-evolving diatom thylakoid membranes. Biochim. Biophys. Acta 1409, 72–86 (1998). PubMed
Wientjes E. & Croce R. PMS: Photosystem I electron donor or fluorescence quencher. Photosynth. Res. 111, 185–191 (2012). PubMed PMC
Jordan P. et al. Three-dimensional structure of cyanobacterial photosystem I at 2.5 Å resolution. Nature 411, 909–917 (2001). PubMed
Juhas M. & Büchel C. Properties of photosystem I antenna protein complexes of the diatom Cyclotella meneghiniana. J. Exp. Bot. 63, 3673–3681 (2012). PubMed PMC
Schubert W. D. et al. Photosystem I of Synechococcus elongatus at 4 angstrom resolution: Comprehensive structure analysis. J. Mol. Biol. 272, 741–769 (1997). PubMed
Kouřil R., Dekker J. P. & Boekema E. J. Supramolecular organization of photosystem II in green plants. Biochim. Biophys. Acta 1817, 2–12 (2012). PubMed
Kouřil R., van Oosterwijk N., Yakushevska A. E. & Boekema E. J. Photosystem I: a search for green plant trimers. Photochem. Photobiol. Sci. 4, 1091–1094 (2005). PubMed
Germano M. et al. Supramolecular organization of photosystem I and light-harvesting complex I in Chlamydomonas reinhardtii. FEBS Lett 525, 121–125 (2002). PubMed
Pšenčík J. et al. Structure of chlorosomes from the green filamentous bacterium Chloroflexus aurantiacus. J. Bacteriol. 191, 6701–6708 (2009). PubMed PMC
Lepetit B. et al. High light acclimation in the secondary plastids containing diatom Phaeodactylum tricornutum is triggered by the redox state of the plastoquinone pool. Plant Physiol. 161, 853–865 (2013). PubMed PMC
Kouřil. R. et al. Structural characterization of a plant photosystem I and NAD(P)H dehydrogenase supercomplex. Plant J. 77, 568–576 (2014). PubMed
Iwai M. et al. Isolation of the elusive supercomplex that drives cyclic electron flow in photosynthesis. Nature 464, 1210–1214 (2010). PubMed
Yan J., Mao D., Chen H., Kuang T. & Li L. Effects of membrane lipids on the electron transfer activity of cytochrome b6f complex from spinach. Acta Bot. Sin. 42, 1267–1270 (2000).
Hiyama T. & Ke B. Difference spectra and extinction coefficients of P700. Biochim. Biophys. Acta 267, 160–171 (1972). PubMed
Bína D., Litvín R., Vácha F. & Šiffel P. New multichannel kinetic spectrophotometer-fluorimeter with pulsed measuring beam for photosynthesis research. Photosynth. Res. 88, 351–356 (2006). PubMed
Bína D., Gardian Z., Litvín R. & Vácha F. Supramolecular organization of photosynthetic membrane proteins in the chlorosome-containing bacterium Chloroflexus aurantiacus. Photosynth. Res. 122, 13–21 (2014). PubMed
Schägger H., Cramer W. A. & von Jagow G. Analysis of molecular masses and oligomeric states of protein complexes by blue native electrophoresis and isolation of membrane protein complexes by two-dimensional native electrophoresis. Anal. Biochem. 217, 220–230 (1994). PubMed
Bumba L., Havelková-Doušová H., Hušák M. & Vácha F. Structural characterization of photosystem II complex from red alga Porphyridium cruentum retaining extrinsic subunits of the oxygen-evolving complex Eur. J. Biochem. 271, 2967–2975 (2004). PubMed
Abney J. R. & Scalettar B. A. Molecular crowding and protein organization in biological membranes, in Thermodynamics of membrane receptors and channels. (ed. Jackson M. B.) 184–226 (CRC Press, 1992).
Scheuring S. et al. Watching the photosynthetic apparatus in native membranes. Proc. Natl. Acad. Sci. USA 101, 11293–11297 (2004). PubMed PMC
Tremmel I. G., Kirchhoff H., Weis E. & Farquhar G. D. Dependence of plastoquinol diffusion on the shape, size, and density of integral thylakoid proteins. Biochim. Biophys. Acta 1607, 97–109 (2003). PubMed