Red-light phenotype in a marine diatom involves a specialized oligomeric red-shifted antenna and altered cell morphology
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
28931902
PubMed Central
PMC5607283
DOI
10.1038/s41598-017-12247-0
PII: 10.1038/s41598-017-12247-0
Knihovny.cz E-zdroje
- MeSH
- fenotyp * MeSH
- fyziologická adaptace MeSH
- multimerizace proteinu MeSH
- rozsivky fyziologie účinky záření MeSH
- spektrální analýza MeSH
- světlosběrné proteinové komplexy metabolismus MeSH
- vodní organismy fyziologie účinky záření MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- světlosběrné proteinové komplexy MeSH
Diatoms greatly contribute to carbon fixation and thus strongly influence the global biogeochemical balance. Capable of chromatic acclimation (CA) to unfavourable light conditions, diatoms often dominate benthic ecosystems in addition to their planktonic lifestyle. Although CA has been studied at the molecular level, our understanding of this phenomenon remains incomplete. Here we provide new data to better explain the acclimation-associated changes under red-enhanced ambient light (RL) in diatom Phaeodactylum tricornutum, known to express a red-shifted antenna complex (F710). The complex was found to be an oligomer of a single polypeptide, Lhcf15. The steady-state spectroscopic properties of the oligomer were also studied. The oligomeric assembly of the Lhcf15 subunits is required for the complex to exhibit a red-shifted absorption. The presence of the red antenna in RL culture coincides with the development of a rounded phenotype of the diatom cell. A model summarizing the modulation of the photosynthetic apparatus during the acclimation response to light of different spectral quality is proposed. Our study suggests that toggling between alternative organizations of photosynthetic apparatus and distinct cell morphologies underlies the remarkable acclimation capacity of diatoms.
Zobrazit více v PubMed
Falkowski PG, Barber RT, Smetacek VV. Biogeochemical controls and feedbacks on ocean primary production. Science. 1998;281:200–207. doi: 10.1126/science.281.5374.200. PubMed DOI
Field CB, Behrenfeld MJ, Randerson JT, Falkowski PG. Primary production of the biosphere: integrating terrestrial and oceanic components. Science. 1998;281:237–240. doi: 10.1126/science.281.5374.237. PubMed DOI
Nelson DM, Tréguer P, Brzezinski MA, Leynaert A, Queguiner B. Production and dissolution of biogenic silica in the oceans: revisited global estimates, comparison with regional data and relationship to biogenic sedimentation. Glob. Biogeochem. Cycles. 1995;9:359–372. doi: 10.1029/95GB01070. DOI
Falkowski PG, et al. The evolution of modern eukaryotic phytoplankton. Science. 2004;305:354–360. doi: 10.1126/science.1095964. PubMed DOI
De Martino A, Meichenin A, Shi J, Pan K, Bowler C. Genetic and phenotypic characterization of Phaeodactylum tricornutum (Bacillariophyceae) accessions. J. Phycol. 2007;43:992–1009. doi: 10.1111/j.1529-8817.2007.00384.x. DOI
Wachnicka A, Gaiser E, Boyer J. Ecology and distribution of diatoms in Biscayne Bay, Florida (USA): Implications for bioassessment and paleoenvironmental studies. Ecol. Indic. 2011;11:622–632. doi: 10.1016/j.ecolind.2010.08.008. DOI
Dring MJ. Chromatic adaptation of photosynthesis in benthic marine algae: An examination of its ecological significance using a theoretical model. Limnol. Oceanogr. 1981;26:271–284. doi: 10.4319/lo.1981.26.2.0271. DOI
Depauw FA, Rogato A, d’Alcala MR, Falciatore A. Exploring the molecular basis of responses to light in marine diatoms. J. Exp. Bot. 2012;63:1575–1591. doi: 10.1093/jxb/ers005. PubMed DOI
Valle KC, et al. System Responses to Equal Doses of Photosynthetically Usable Radiation of Blue, Green, and Red Light in the Marine Diatom Phaeodactylum tricornutum. PLos One. 2014;9:e114211. doi: 10.1371/journal.pone.0114211. PubMed DOI PMC
Fortunato AE, et al. Diatom phytochromes reveal the existence of far-red-light-based sensing in the oceans. Plant Cell. 2016;28:616–628. doi: 10.1105/tpc.15.00928. PubMed DOI PMC
Lavaud J, Strzepek RF, Kroth PG. Photoprotection capacity differs among diatoms: Possible consequences on the spatial distribution of diatoms related to fluctuations in the underwater light climate. Limnol. Oceanogr. 2007;52:1188–1194. doi: 10.4319/lo.2007.52.3.1188. DOI
Barnett A, et al. Growth form defines physiological photoprotective capacity in intertidal benthic diatoms. ISME J. 2014;9:32–45. doi: 10.1038/ismej.2014.105. PubMed DOI PMC
Engelmann TW. Farbe und Assimilation. I. Assimilation findet nur in den farbstoffhaltigen Plasmatheilchen statt. II. Näherer Zusammenhang zwischen Lichtabsorbtion und Assimilation. III. Weitere folgerungen Bot. 1883;41:1–29.
Mouget J-L, Rosa P, Tremblin G. Acclimation of Haslea ostrearia to light of different spectral qualities – confirmation of ‘chromatic adaptation’ in diatoms. J. Photochem. Photobiol. B. 2004;75:1–11. doi: 10.1016/j.jphotobiol.2004.04.002. PubMed DOI
Armbrust EV, et al. The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism. Science. 2004;306:79–86. doi: 10.1126/science.1101156. PubMed DOI
Bowler C, et al. The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature. 2008;456:239–244. doi: 10.1038/nature07410. PubMed DOI
Costa BS, et al. Blue light is essential for high light acclimation and photoprotection in the diatom. J. Exp. Bot. 2013;64:483–493. doi: 10.1093/jxb/ers340. PubMed DOI PMC
Lepetit B, Goss R, Jakob T, Wilhelm C. Molecular dynamic of the diatom thylakoid membrane under different light conditions. Photosynth. Res. 2012;111:245–257. doi: 10.1007/s11120-011-9633-5. PubMed DOI
Nymark M, et al. An integrated analysis of molecular acclimation to high light in the marine diatom Phaeodactylum tricornutum. PLoS One. 2009;4:e7743. doi: 10.1371/journal.pone.0007743. PubMed DOI PMC
Nymark M, et al. Molecular and photosynthetic responses to prolonged darkness and subsequent acclimation to re-illumination in the diatom Phaeodactylum tricornutum. PLoS One. 2013;8:e58722. doi: 10.1371/journal.pone.0058722. PubMed DOI PMC
Lepetit B, et al. Evidence for the existence of one antenna-associated, lipid-dissolved and two protein-bound pools of diadinoxanthin cycle pigments in diatoms. Plant Physiol. 2010;154:1905–1920. doi: 10.1104/pp.110.166454. PubMed DOI PMC
Dong H-P, et al. High light stress triggers distinct proteomic responses in the marine diatom Thalassiosira pseudonana. BMC Genomics. 2016;17:994. doi: 10.1186/s12864-016-3335-5. PubMed DOI PMC
Dittami SM, et al. Chlorophyll-binding proteins revisited - a multigenic family of light-harvesting and stress proteins from a brown algal perspective. BMC Evol. Biol. 2010;10:365. doi: 10.1186/1471-2148-10-365. PubMed DOI PMC
Bína D, et al. Novel type of red-shifted chlorophyll a antenna complex from Chromera velia. II. Biochemistry and spectroscopy. Biochim. Biophys. Acta. 2014;1837:802–810. doi: 10.1016/j.bbabio.2014.01.011. PubMed DOI
Herbstová M, et al. Molecular basis of chromatic adaptation in pennate diatom Phaeodactylum tricornutum. Biochim. Biophys. Acta. 2015;1847:534–543. doi: 10.1016/j.bbabio.2015.02.016. PubMed DOI
Fujita Y, Ohki K. On the 710 nm fluorescence emitted by the diatom Phaeodactylum tricornutum at room temperature. Plant. Cell Physiol. 2004;45:392–397. doi: 10.1093/pcp/pch043. PubMed DOI
Bína D, Herbstová M, Gardian Z, Vácha F, Litvín R. Novel structural aspect of the diatom thylakoid membrane: lateral segregation of photosystem I under red-enhanced illumination. Sci. Rep. 2016;6:25583. doi: 10.1038/srep25583. PubMed DOI PMC
Grouneva I, Rokka A, Aro E-M. The thylakoid membrane proteome of two marine diatoms outlines both diatom-specific and species-specific features of the photosynthetic machinery. J. Prot. Res. 2011;10:5338–5353. doi: 10.1021/pr200600f. PubMed DOI
Nagao R, et al. Comparison of oligomeric states and polypeptide compositions of fucoxanthin chlorophyll a/c-binding protein complexes among various diatom species. Photosynth. Res. 2013;117:281–288. doi: 10.1007/s11120-013-9903-5. PubMed DOI
De Martino A, et al. Physiological and molecular evidence that environmental changes elicit morphological interconversion in the model diatom Phaeodactylum tricornutum. Protist. 2011;162:462–481. doi: 10.1016/j.protis.2011.02.002. PubMed DOI
Kotabová E, et al. Novel type of red-shifted chlorophyll a antenna complex from Chromera velia. I. Physiological relevance and functional connection to Photosystems. Biochim. Biophys. Acta. 2014;1837:734–743. doi: 10.1016/j.bbabio.2014.01.012. PubMed DOI
Joshi-Deo J, et al. Characterization of a trimeric light-harvesting complex in the diatom Phaeodactylum tricornutum built of FcpA and FcpE proteins. J. Exp. Bot. 2010;61:3079–3087. doi: 10.1093/jxb/erq136. PubMed DOI PMC
Gundermann K, Schmidt M, Weisheit W, Mittag M, Buechel C. Identification of several sub-populations in the pool of light harvesting proteins in the pennate diatom Phaeodactylum tricornutum. Biochim. Biophys. Acta. 2012;1827:303–310. doi: 10.1016/j.bbabio.2012.10.017. PubMed DOI
Lepetit B, et al. Spectroscopic and molecular characterization of the oligomeric antenna of the diatom Phaeodactylum tricornutum. Biochemistry. 2007;46:9813–9822. doi: 10.1021/bi7008344. PubMed DOI
Gardian Z, Litvín R, Bína D, Vácha F. Supramolecular organization of fucoxanthin–chlorophyll proteins in centric and pennate diatoms. Photosynth. Res. 2014;121:79–86. doi: 10.1007/s11120-014-9998-3. PubMed DOI
Kühl M, et al. A niche for cyanobacteria containing chlorophyll d. Nature. 2005;433:820. doi: 10.1038/433820a. PubMed DOI
Croce R, van Amerongen H. Natural strategies for photosynthetic light harvesting. Nature Chem. Biol. 2014;10:492–501. doi: 10.1038/nchembio.1555. PubMed DOI
Li Y, Chen M. Novel chlorophylls and new directions in photosynthesis research. Funct. Plant Biol. 2015;42:493–501. doi: 10.1071/FP14350. PubMed DOI
Fork DC, Larkum AWD. Light harvesting in the green alga Ostreobium sp., a coral symbiont adapted to extreme shade. Mar. Biol. 1989;103:381–385. doi: 10.1007/BF00397273. DOI
Koehne B, Elli G, Jenings RC, Wilhelm C, Trissl HW. Spectroscopic and molecular characterization of a long wavelength absorbing antenna of Ostreobium sp. Biochim. Biophys. Acta. 1999;1412:94–107. doi: 10.1016/S0005-2728(99)00061-4. PubMed DOI
Wilhelm C, Jakob T. Uphill energy transfer from long-wavelength absorbing chlorophylls to PSII in Ostreobium sp. is functional in carbon assimilation. Photosynth. Res. 2006;87:323–329. doi: 10.1007/s11120-005-9002-3. PubMed DOI
Sundarabalan B, Shanmugam P. Modelling of underwater light fields in turbid and eutrophic waters: application and validation with experimental data. Ocean Sci. 2015;11:33–52. doi: 10.5194/os-11-33-2015. DOI
ASTM G173-03(2012), Standard Tables for Reference Solar Spectral Irradiances: Direct Normal and Hemispherical on 37° Tilted Surface, ASTM International, West Conshohocken, PA, 2012, http://rredc.nrel.gov/solar/spectra/am1.5/.
Buiteveld, H., Hakvoort, J. H. M. & Donze, M. The optical properties of pure water, in: J.S. Jaffe (Ed.) Ocean Optics XII, Proceedings of the Society of Photo-optical Instrumentation Engineers (SPIE), 2258, SPIE - Int. Soc. Optical Engineering, Bellingham, USA, 174–183 (1994).
Varunan T, Shanmugam P. A model for estimating size-fractioned phytoplankton absorption coefficients in coastal and oceanic waters from satellite data. Remote Sensing of Environment. 2015;158:235–254. doi: 10.1016/j.rse.2014.11.008. DOI
Lavaud J, Lepetit B. An explanation for the inter-species variability of the photoprotective non-photochemical chlorophyll fluorescence quenching in diatoms. Biochim. Biophys. Acta. 2013;1827:294–302. doi: 10.1016/j.bbabio.2012.11.012. PubMed DOI
Flori S, et al. Plastid thylakoid architecture optimizes photosynthesis in diatoms. Nat. Commun. 2017;8:15885. doi: 10.1038/ncomms15885. PubMed DOI PMC
Schägger H, Cramer WA, von Jagow G. Analysis of molecular masses and oligomeric states of protein complexes by blue native electrophoresis and isolation of membrane protein complexes by two-dimensional native electrophoresis. Anal. Biochem. 1994;217:220–230. doi: 10.1006/abio.1994.1112. PubMed DOI
Premvardhan L, Bordes L, Beer A, Büchel C, Robert B. Carotenoid structures and environments in trimeric and oligomeric fucoxanthin chlorophyll a/c2 proteins from resonance Raman spectroscopy. J. Phys. Chem. B. 2009;113:12565–12574. doi: 10.1021/jp903029g. PubMed DOI
Tichý J, et al. Light harvesting complexes of Chromera velia, photosynthetic relative of apicomplexan parasites. Biochim. Biophys. Acta. 2013;1827:723–729. doi: 10.1016/j.bbabio.2013.02.002. PubMed DOI
Eustigmatophyte model of red-shifted chlorophyll a absorption in light-harvesting complexes
Light quality, oxygenic photosynthesis and more