Eustigmatophyte model of red-shifted chlorophyll a absorption in light-harvesting complexes
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
P-DiSC#02BIRD2020-UNIPD
Università degli Studi di Padova (University of Padova)
PubMed
39472488
PubMed Central
PMC11522437
DOI
10.1038/s42003-024-07101-9
PII: 10.1038/s42003-024-07101-9
Knihovny.cz E-zdroje
- MeSH
- chlorofyl a * metabolismus chemie MeSH
- chlorofyl metabolismus MeSH
- elektronová paramagnetická rezonance MeSH
- fylogeneze MeSH
- světlo MeSH
- světlosběrné proteinové komplexy * metabolismus genetika chemie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- chlorofyl a * MeSH
- chlorofyl MeSH
- světlosběrné proteinové komplexy * MeSH
Photosynthetic organisms harvest light for energy. Some eukaryotic algae have specialized in harvesting far-red light by tuning chlorophyll a absorption through a mechanism still to be elucidated. Here, we combined optically detected magnetic resonance and pulsed electron paramagnetic resonance measurements on red-adapted light-harvesting complexes, rVCP, isolated from the freshwater eustigmatophyte alga Trachydiscus minutus to identify the location of the pigments responsible for this remarkable adaptation. The pigments have been found to belong to an excitonic cluster of chlorophylls a at the core of the complex, close to the central carotenoids in L1/L2 sites. A pair of structural features of the Chl a403/a603 binding site, namely the histidine-to-asparagine substitution in the magnesium-ligation residue and the small size of the amino acid at the i-4 position, resulting in a [A/G]xxxN motif, are proposed to be the origin of this trait. Phylogenetic analysis of various eukaryotic red antennae identified several potential LHCs that could share this tuning mechanism. This knowledge of the red light acclimation mechanism in algae is a step towards rational design of algal strains in order to enhance light capture and efficiency in large-scale biotechnology applications.
Zobrazit více v PubMed
Green, B. R. & Kühlbrandt, W. Sequence conservation of light-harvesting and stress-response proteins in relation to the three-dimensional molecular structure of LHCII. Photosynth. Res.44, 139–148 (1995). PubMed
Liu, Z. et al. Crystal structure of spinach major light-harvesting complex at 2.72 Å resolution. Nature428, 287–292 (2004). PubMed
Renger, T., Madjet, M. E., Knorr, A. & Müh, F. How the molecular structure determines the flow of excitation energy in plant light-harvesting complex II. J. Plant Physiol.168, 1497–1509 (2011). PubMed
Novoderezhkin, V., Marin, A. & van Grondelle, R. Intra- and inter-monomeric transfers in the light harvesting LHCII complex: the Redfield–Förster picture. Phys. Chem. Chem. Phys.13, 17093 (2011). PubMed
Carbonera, D. et al. Photoprotective sites in the violaxanthin–chlorophyll a binding Protein (VCP) from Nannochloropsis gaditana. Biochim. Biophys. Acta - Bioenerg.1837, 1235–1246 (2014). PubMed
Di Valentin, M., Biasibetti, F., Ceola, S. & Carbonera, D. Identification of the sites of chlorophyll triplet quenching in relation to the structure of LHC-II from higher plants. Evidence from EPR spectroscopy. J. Phys. Chem. B113, 13071–13078 (2009). PubMed
Lampoura, S. S., Barzda, V., Owen, G. M., Hoff, A. J. & Van Amerongen, H. Aggregation of LHCII leads to a redistribution of the triplets over the central xanthophylls in LHCII. Biochemistry41, 9139–9144 (2002). PubMed
Mozzo, M., Dall’Osto, L., Hienerwadel, R., Bassi, R. & Croce, R. Photoprotection in the antenna complexes of photosystem II: Role of individual xanthophylls in chlorophyll triplet quenching. J. Biol. Chem.283, 6184–6192 (2008). PubMed
Agostini, A. et al. Altering the exciton landscape by removal of specific chlorophylls in monomeric LHCII provides information on the sites of triplet formation and quenching by means of ODMR and EPR spectroscopies. Biochim. Biophys. Acta Bioenerg.1862, 148481 (2021). PubMed
Wang, W. et al. Structural basis for blue-green light harvesting and energy dissipation in diatoms. Science363, eaav0365 (2019). PubMed
Su, X. et al. Antenna arrangement and energy transfer pathways of a green algal photosystem-I–LHCI supercomplex. Nat. Plants5, 273–281 (2019). PubMed
Pi, X. et al. Unique organization of photosystem I–light-harvesting supercomplex revealed by cryo-EM from a red alga. Proc. Natl Acad. Sci.115, 4423–4428 (2018). PubMed PMC
Papagiannakis, E., H.M. van Stokkum, I., Fey, H., Büchel, C. & van Grondelle, R. Spectroscopic Characterization of the Excitation Energy Transfer in the Fucoxanthin–Chlorophyll Protein of Diatoms. Photosynth. Res.86, 241–250 (2005). PubMed
Gundlach, K., Werwie, M., Wiegand, S. & Paulsen, H. Filling the “green gap” of the major light-harvesting chlorophyll a/b complex by covalent attachment of Rhodamine Red. Biochim. Biophys. Acta Bioenerg.1787, 1499–1504 (2009). PubMed
Hancock, A. M. et al. Enhancing the spectral range of plant and bacterial light-harvesting pigment-protein complexes with various synthetic chromophores incorporated into lipid vesicles. J. Photochem. Photobiol. B Biol.237, 112585 (2022). PubMed
Miyashita, H. et al. Chlorophyll d as a major pigment. Nature383, 402–402 (1996).
Chen, M. et al. A Red-Shifted Chlorophyll. Science329, 1318–1319 (2010). PubMed
Elias, E., Liguori, N., Saga, Y., Schäfers, J. & Croce, R. Harvesting Far-Red Light with Plant Antenna Complexes Incorporating Chlorophyll d. Biomacromolecules22, 3313–3322 (2021). PubMed PMC
Ort, D. R. et al. Redesigning photosynthesis to sustainably meet global food and bioenergy demand. Proc. Natl Acad. Sci.112, 8529–8536 (2015). PubMed PMC
Walter, J. & Kromdijk, J. Here comes the sun: How optimization of photosynthetic light reactions can boost crop yields. J. Integr. Plant Biol.64, 564–591 (2022). PubMed PMC
Wolf, B. M. & Blankenship, R. E. Far-red light acclimation in diverse oxygenic photosynthetic organisms. Photosynth. Res.142, 349–359 (2019). PubMed
Kotabová, E. et al. Novel type of red-shifted chlorophyll a antenna complex from Chromera velia. I. Physiological relevance and functional connection to photosystems. Biochim. Biophys. Acta Bioenerg.1837, 734–743 (2014). PubMed
Bína, D. et al. Novel type of red-shifted chlorophyll a antenna complex from Chromera velia: II. Biochemistry and spectroscopy. Biochim. Biophys. Acta Bioenerg.1837, 802–810 (2014). PubMed
Litvín, R. et al. Red-shifted light-harvesting system of freshwater eukaryotic alga Trachydiscus minutus (Eustigmatophyta, Stramenopila). Photosynth. Res.142, 137–151 (2019). PubMed
Wolf, B. M. et al. Characterization of a newly isolated freshwater Eustigmatophyte alga capable of utilizing far-red light as its sole light source. Photosynth. Res.135, 177–189 (2018). PubMed
Niedzwiedzki, D. M., Wolf, B. M. & Blankenship, R. E. Excitation energy transfer in the far-red absorbing violaxanthin/vaucheriaxanthin chlorophyll a complex from the eustigmatophyte alga FP5. Photosynth. Res.140, 337–354 (2019). PubMed
Morosinotto, T., Breton, J., Bassi, R. & Croce, R. The Nature of a Chlorophyll Ligand in Lhca Proteins Determines the Far Red Fluorescence Emission Typical of Photosystem I. J. Biol. Chem.278, 49223–49229 (2003). PubMed
Romero, E. et al. The Origin of the Low-Energy Form of Photosystem I Light-Harvesting Complex Lhca4: Mixing of the Lowest Exciton with a Charge-Transfer State. Biophys. J.96, L35–L37 (2009). PubMed PMC
Passarini, F., Wientjes, E., van Amerongen, H. & Croce, R. Photosystem I light-harvesting complex Lhca4 adopts multiple conformations: Red forms and excited-state quenching are mutually exclusive. Biochim. Biophys. Acta Bioenerg.1797, 501–508 (2010). PubMed
Basso, S. et al. Characterization of the photosynthetic apparatus of the Eustigmatophycean Nannochloropsis gaditana: Evidence of convergent evolution in the supramolecular organization of photosystem I. Biochim. Biophys. Acta Bioenerg.1837, 306–314 (2014). PubMed
Keşan, G. et al. Efficient light-harvesting using non-carbonyl carotenoids: Energy transfer dynamics in the VCP complex from Nannochloropsis oceanica. Biochim. Biophys. Acta Bioenerg.1857, 370–379 (2016). PubMed
Sukenik, A., Livne, A., Apt, K. E. & Grossman, A. R. Characterization of a gene encoding the light-harvesting violaxanthin-chlorophyll protein of Nannochloropsis sp. (Eustigmatophyceae). J. Phycol.36, 563–570 (2000). PubMed
Litvín, R., Bína, D., Herbstová, M. & Gardian, Z. Architecture of the light-harvesting apparatus of the eustigmatophyte alga Nannochloropsis oceanica. Photosynth. Res.130, 137–150 (2016). PubMed
Přibyl, P., Eliáš, M., Cepák, V., Lukavský, J. & Kaštánek, P. Zoosporogenesis, morphology, ultrastructure, pigment composition, and phylogenetic position of Trachydiscus minutus (Eustigmatophyceae, Heterokontophyta). J. Phycol.48, 231–242 (2012). PubMed
Bína, D. et al. Energy transfer dynamics in a red-shifted violaxanthin-chlorophyll a light-harvesting complex. Biochim. Biophys. Acta Bioenerg.1860, 111–120 (2019). PubMed
Gundermann, K., Schmidt, M., Weisheit, W., Mittag, M. & Büchel, C. Identification of several sub-populations in the pool of light harvesting proteins in the pennate diatom Phaeodactylum tricornutum. Biochim. Biophys. Acta Bioenerg.1827, 303–310 (2013). PubMed
Lepetit, B. et al. Spectroscopic and Molecular Characterization of the Oligomeric Antenna of the Diatom Phaeodactylum tricornutum. Biochemistry46, 9813–9822 (2007). PubMed
Herbstová, M. et al. Molecular basis of chromatic adaptation in pennate diatom Phaeodactylum tricornutum. Biochim. Biophys. Acta Bioenerg.1847, 534–543 (2015). PubMed
Wang, L. et al. LHCF15 facilitates the absorption of longer wavelength light and promotes growth of Phaeodactylum tricornutum under red light. Algal Res.75, 103249 (2023).
Wientjes, E., Roest, G. & Croce, R. From red to blue to far-red in Lhca4: How does the protein modulate the spectral properties of the pigments? Biochim. Biophys. Acta Bioenerg.1817, 711–717 (2012). PubMed
Sláma, V. et al. Origin of Low-Lying Red States in the Lhca4 Light-Harvesting Complex of Photosystem I. J. Phys. Chem. Lett.14, 8345–8352 (2023). PubMed PMC
Agostini, A., Bína, D., Carbonera, D. & Litvín, R. Conservation of triplet-triplet energy transfer photoprotective pathways in fucoxanthin chlorophyll-binding proteins across algal lineages. Biochim. Biophys. Acta Bioenerg.1864, 148935 (2023). PubMed
Agostini, A., Büchel, C., Di Valentin, M. & Carbonera, D. A distinctive pathway for triplet-triplet energy transfer photoprotection in fucoxanthin chlorophyll-binding proteins from Cyclotella meneghiniana. Biochim. Biophys. Acta Bioenerg.1862, 148310 (2021). PubMed
Paulsen, H., Rümler, U. & Rüdiger, W. Reconstitution of pigment-containing complexes from light-harvesting chlorophyll a/b-binding protein overexpressed in Escherichia coli. Planta181, 204–211 (1990). PubMed
Carbonera, D., Giacometti, G. & Agostini, G. FDMR of Carotenoid and Chlorophyll triplets in light-harvesting complex LHCII of spinach. Appl. Magn. Reson.3, 859–872 (1992).
Khoroshyy, P. et al. Quenching of chlorophyll triplet states by carotenoids in algal light-harvesting complexes related to fucoxanthin-chlorophyll protein. Photosynth. Res.135, 213–225 (2018). PubMed
Di Valentin, M. et al. Triplet-triplet energy transfer in Peridinin-Chlorophyll a-protein reconstituted with Chl a and Chl d as revealed by optically detected magnetic resonance and pulse EPR: Comparison with the native PCP complex from Amphidinium carterae. Biochim. Biophys. Acta Bioenerg.1787, 168–175 (2009). PubMed
Di Valentin, M. et al. Triplet–triplet energy transfer in the major intrinsic light-harvesting complex of Amphidinium carterae as revealed by ODMR and EPR spectroscopies. Biochim. Biophys. Acta Bioenerg.1797, 1759–1767 (2010). PubMed
Migliore, A., Corni, S., Agostini, A. & Carbonera, D. Unraveling the electronic origin of a special feature in the triplet-minus-singlet spectra of carotenoids in natural photosystems. Phys. Chem. Chem. Phys.25, 28998–29016 (2023). PubMed
Carbonera, D., Agostini, G., Morosinotto, T. & Bassi, R. Quenching of chlorophyll triplet states by carotenoids in reconstituted Lhca4 subunit of peripheral light-harvesting complex of photosystem I. Biochemistry44, 8337–8346 (2005). PubMed
Di Valentin, M. et al. Triplet–triplet energy transfer in fucoxanthin-chlorophyll protein from diatom Cyclotella meneghiniana: Insights into the structure of the complex. Biochim. Biophys. Acta Bioenerg.1827, 1226–1234 (2013). PubMed
Di Valentin, M., Ceola, S., Salvadori, E., Agostini, G. & Carbonera, D. Identification by time-resolved EPR of the peridinins directly involved in chlorophyll triplet quenching in the peridinin–chlorophyll a–protein from Amphidinium carterae. Biochim. Biophys. Acta Bioenerg.1777, 186–195 (2008). PubMed
Carbonera, D. et al. Energy transfer and spin polarization of the carotenoid triplet state in synthetic carotenoporphyrin dyads and in natural antenna complexes. Appl. Magn. Reson.13, 487–504 (1997).
Bittl, R., Schlodder, E., Geisenheimer, I., Lubitz, W. & Cogdell, R. J. Transient EPR and Absorption Studies of Carotenoid Triplet Formation in Purple Bacterial Antenna Complexes. J. Phys. Chem. B105, 5525–5535 (2001).
Kay, C., Elger, G. & Mobius, K. The photoexcited triplet state of free-base porphycene: a time-resolved EPR and electron spin echo investigation. Phys. Chem. Chem. Phys.1, 3999–4002 (1999).
Tichy, J. et al. Light harvesting complexes of Chromera velia, photosynthetic relative of apicomplexan parasites. Biochim. Biophys. Acta Bioenerg.1827, 723–729 (2013). PubMed
Harpaz, Y., Gerstein, M. & Chothia, C. Volume changes on protein folding. Structure2, 641–649 (1994). PubMed
Remelli, R., Varotto, C., Sandonà, D., Croce, R. & Bassi, R. Chlorophyll binding to monomeric light-harvesting complex. A mutation analysis of chromophore-binding residues. J. Biol. Chem.274, 33510–33521 (1999). PubMed
Herbstová, M., Bína, D., Kaňa, R., Vácha, F. & Litvín, R. Red-light phenotype in a marine diatom involves a specialized oligomeric red-shifted antenna and altered cell morphology. Sci. Rep.7, 11976 (2017). PubMed PMC
Guillard, R. R. L. & Lorenzen, C. J. Yellow-green algae with chlorophyllide c. J. Phycol.8, 10–14 (1972).
Bischoff, H. W. & Bold, H. C. Phycological studies IV. Some soil algae from Enchanted Rock and related algal species. Univ. Tex. Publ.6318, 1–95 (1963).
Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics30, 2114–2120 (2014). PubMed PMC
Grabherr, M. G. et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol.29, 644–652 (2011). PubMed PMC
Haas, B. J. https://github.com/TransDecoder/TransDecoder.
Premvardhan, L., Robert, B., Beer, A. & Büchel, C. Pigment organization in fucoxanthin chlorophyll a/c2 proteins (FCP) based on resonance Raman spectroscopy and sequence analysis. Biochim. Biophys. Acta Bioenerg.1797, 1647–1656 (2010). PubMed
Bowler, C. et al. The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature456, 239–244 (2008). PubMed
Katoh, K. & Standley, D. M. MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Mol. Biol. Evol.30, 772–780 (2013). PubMed PMC
Eddy, S. R. Accelerated Profile HMM Searches. PLoS Comput. Biol.7, e1002195 (2011). PubMed PMC
Yurchenko, T. et al. A gene transfer event suggests a long-term partnership between eustigmatophyte algae and a novel lineage of endosymbiotic bacteria. ISME J.12, 2163–2175 (2018). PubMed PMC
Alboresi, A. et al. Conservation of core complex subunits shaped the structure and function of photosystem I in the secondary endosymbiont alga Nannochloropsis gaditana. N. Phytol.213, 714–726 (2017). PubMed PMC
Kumazawa, M. et al. Molecular phylogeny of fucoxanthin‐chlorophyll a/c proteins from Chaetoceros gracilis and Lhcq/Lhcf diversity. Physiol. Plant.174, e13598 (2022). PubMed
Huerta-Cepas, J., Serra, F. & Bork, P. ETE 3: Reconstruction, Analysis, and Visualization of Phylogenomic Data. Mol. Biol. Evol.33, 1635–1638 (2016). PubMed PMC
Capella-Gutiérrez, S., Silla-Martínez, J. M. & Gabaldón, T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics25, 1972–1973 (2009). PubMed PMC
Nguyen, L.-T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies. Mol. Biol. Evol.32, 268–274 (2015). PubMed PMC
Letunic, I. & Bork, P. Interactive Tree of Life (iTOL) v6: recent updates to the phylogenetic tree display and annotation tool. Nucleic Acids Res52, W78–W82 (2024). PubMed PMC
Agostini, A., Palm, D. M., Paulsen, H. & Carbonera, D. Optically Detected Magnetic Resonance of Chlorophyll Triplet States in Water-Soluble Chlorophyll Proteins from Lepidium virginicum: Evidence for Excitonic Interaction among the Four Pigments. J. Phys. Chem. B122, 6156–6163 (2018). PubMed
Stoll, S. & Schweiger, A. EasySpin, a comprehensive software package for spectral simulation and analysis in EPR. J. Magn. Reson.178, 42–55 (2006). PubMed
Vrieze, J. & Hoff, A. J. The orientation of the triplet axes with respect to the optical transition moments in (bacterio) chlorophylls. Chem. Phys. Lett.237, 493–501 (1995).
Madjet, M. E., Abdurahman, A. & Renger, T. Intermolecular coulomb couplings from ab initio electrostatic potentials: Application to optical transitions of strongly coupled pigments in photosynthetic antennae and reaction centers. J. Phys. Chem. B110, 17268–17281 (2006). PubMed
Wang, J. et al. Structure of plant photosystem I−light harvesting complex I supercomplex at 2.4 Å resolution. J. Integr. Plant Biol.63, 1367–1381 (2021). PubMed