Quenching of chlorophyll triplet states by carotenoids in algal light-harvesting complexes related to fucoxanthin-chlorophyll protein
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články
PubMed
28669083
DOI
10.1007/s11120-017-0416-5
PII: 10.1007/s11120-017-0416-5
Knihovny.cz E-zdroje
- Klíčová slova
- Algae, Energy transfer, Light harvesting, Photoprotection, Photosynthesis, Transient spectroscopy,
- MeSH
- anaerobióza MeSH
- časové faktory MeSH
- chlorofyl metabolismus MeSH
- fluorescenční spektrometrie MeSH
- fotochemické procesy * MeSH
- Heterokontophyta metabolismus MeSH
- karotenoidy metabolismus MeSH
- kinetika MeSH
- proteiny vázající chlorofyl metabolismus MeSH
- světlosběrné proteinové komplexy metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- chlorofyl MeSH
- karotenoidy MeSH
- proteiny vázající chlorofyl MeSH
- světlosběrné proteinové komplexy MeSH
We have used time-resolved absorption and fluorescence spectroscopy with nanosecond resolution to study triplet energy transfer from chlorophylls to carotenoids in a protective process that prevents the formation of reactive singlet oxygen. The light-harvesting complexes studied were isolated from Chromera velia, belonging to a group Alveolata, and Xanthonema debile and Nannochloropsis oceanica, both from Stramenopiles. All three light-harvesting complexes are related to fucoxanthin-chlorophyll protein, but contain only chlorophyll a and no chlorophyll c. In addition, they differ in the carotenoid content. This composition of the complexes allowed us to study the quenching of chlorophyll a triplet states by different carotenoids in a comparable environment. The triplet states of chlorophylls bound to the light-harvesting complexes were quenched by carotenoids with an efficiency close to 100%. Carotenoid triplet states were observed to rise with a ~5 ns lifetime and were spectrally and kinetically homogeneous. The triplet states were formed predominantly on the red-most chlorophylls and were quenched by carotenoids which were further identified or at least spectrally characterized.
Biological Centre Czech Academy of Sciences 370 05 České Budějovice Czech Republic
Faculty of Science University of South Bohemia 370 05 České Budějovice Czech Republic
Zobrazit více v PubMed
Biophys J. 1998 Dec;75(6):3143-53 PubMed
Biochim Biophys Acta. 2009 Oct;1787(10):1189-97 PubMed
Photosynth Res. 2004;82(1):83-94 PubMed
Biochim Biophys Acta. 2013 Jun;1827(6):723-9 PubMed
Nature. 2005 Jul 7;436(7047):134-7 PubMed
Biochim Biophys Acta. 2015 Feb;1847(2):241-7 PubMed
Spectrochim Acta A Mol Biomol Spectrosc. 2000 Jan;56A(1):211-4 PubMed
Biochemistry. 2007 Mar 27;46(12):3846-55 PubMed
Biochim Biophys Acta. 2014 Aug;1837(8):1235-46 PubMed
Biochim Biophys Acta. 2004 Jul 9;1657(2-3):82-104 PubMed
Biochemistry. 2000 May 2;39(17):5184-95 PubMed
Biochim Biophys Acta. 2010 Oct;1797(10):1759-67 PubMed
J Biochem Biophys Methods. 1994 Jan;28(1):1-33 PubMed
Spectrochim Acta A Mol Biomol Spectrosc. 2000 Sep;56A(10):2001-10 PubMed
BMC Evol Biol. 2011 Apr 15;11:101 PubMed
Photosynth Res. 2011 May;108(1):25-32 PubMed
Biochim Biophys Acta. 2008 Mar;1777(3):295-307 PubMed
Biochim Biophys Acta. 2016 Apr;1857(4):341-9 PubMed
Biochim Biophys Acta. 2016 Dec;1857(12 ):1909-1916 PubMed
J Phys Chem B. 2015 Oct 1;119(39):12653-63 PubMed
Plant Physiol. 2007 Apr;143(4):1802-16 PubMed
Biochem Biophys Res Commun. 2012 Oct 26;427(3):637-41 PubMed
J Phys Chem B. 2013 Sep 26;117(38):11091-9 PubMed
J Biol Chem. 2008 Mar 7;283(10):6184-92 PubMed
Biochim Biophys Acta. 2013 Oct;1827(10):1226-34 PubMed
Biochim Biophys Acta. 2016 Nov;1857(11):1759-1765 PubMed
Photochem Photobiol. 1973 Jan;17(1):43-51 PubMed
Photochem Photobiol. 2000 Nov;72(5):669-75 PubMed
Methods Enzymol. 1992;210:117-29 PubMed
J Phys Chem B. 2012 Aug 2;116(30):8880-9 PubMed
Photosynth Res. 2010 Dec;106(3):227-38 PubMed
PLoS Genet. 2012;8(11):e1003064 PubMed
Biophys J. 1995 Dec;69(6):2670-8 PubMed
Biophys J. 2011 Aug 17;101(4):934-42 PubMed
Photosynth Res. 2014 May;120(1-2):125-39 PubMed
Biochim Biophys Acta. 2014 Feb;1837(2):306-14 PubMed
Biophys J. 2007 Sep 15;93(6):2118-28 PubMed
Biochim Biophys Acta. 2014 Jun;1837(6):802-10 PubMed
J Phys Chem B. 2009 Oct 1;113(39):13071-8 PubMed
Photosynth Res. 1994 Apr;40(1):1-10 PubMed
BMC Evol Biol. 2010 Nov 26;10:365 PubMed
Biochim Biophys Acta. 2016 Apr;1857(4):370-9 PubMed
J Biochem Biophys Methods. 1998 Jun 11;36(2-3):157-73 PubMed
Photosynth Res. 2016 Dec;130(1-3):137-150 PubMed
Biochim Biophys Acta. 2014 Oct;1837(10):1748-55 PubMed
Biochim Biophys Acta. 2010 Sep;1797(9):1647-56 PubMed
Nature. 2008 Feb 21;451(7181):959-63 PubMed
Eustigmatophyte model of red-shifted chlorophyll a absorption in light-harvesting complexes
Pigment configuration in the light-harvesting protein of the xanthophyte alga Xanthonema debile