The Impact of Carotenoid Energy Levels on the Exciton Dynamics and Singlet-Triplet Annihilation in Isolated Bacterial Light-Harvesting 2 Complexes

. 2025 Dec 11 ; 129 (49) : 12642-12660. [epub] 20251124

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41283761

The light-harvesting 2 (LH2) complex of purple phototrophic bacteria plays a critical role in absorbing solar energy and distributing the excitation energy. Exciton dynamics within LH2 complexes are controlled by the structural arrangement and energy levels of the bacteriochlorophyll (BChl) and carotenoid (Car) pigments. However, there is still debate over the competing light-harvesting versus energy-dissipation pathways. In this work, we compared five variants of the LH2 complex from genetically modified strains of Rhodobacter sphaeroides, all containing the same BChls but different Cars with increasing conjugation: zeta-carotene (N = 7; LH2Zeta), neurosporene (N = 9; LH2Neu), spheroidene (N = 10; LH2Spher), lycopene (N = 11; LH2Lyco), and spirilloxanthin (N = 13; LH2Spir). Absorption measurements confirmed that the Car excited-state energy decreased with increasing conjugation. Similarly, fluorescence spectra showed that the B850 BChl emission peak had an increasing red shift from LH2Zeta→(LH2Neu/LH2Spher)→LH2Lyco→LH2Spir. In contrast, time-resolved fluorescence and ultrafast transient absorption (fs-TA) revealed similar excited-state lifetimes (∼1 ns) for all complexes except LH2Spir (∼0.7 ns). From fs-TA analysis, an additional ∼7 ps nonradiative dissipation step from B850 BChl was observed for LH2Zeta. Further, singlet-singlet and singlet-triplet annihilation studies showed a ∼50% average fluorescence lifetime reduction in LH2Zeta at high laser power and high repetition rate, compared to ∼10-15% reductions in LH2Neu/LH2Spher/LH2Lyco and minimal lifetime change in LH2Spir. In LH2Zeta, the fastest decay component (<50 ps) became prominent at high repetition rates, consistent with strong singlet-triplet annihilation. Nanosecond TA measurements revealed long-lived (>40 μs) BChl triplet states in LH2Zeta and signs of damage caused by singlet oxygen, whereas other LH2s showed faster triplet quenching (∼18 ns) by Cars. These findings highlight a key design principle of LH2 complexes: the Car triplet energy must be significantly lower than the BChl triplet energy to efficiently quench BChl triplets that otherwise act as potent "trap states," causing exciton annihilation in laser-based experiments or photodamage in native membranes.

Zobrazit více v PubMed

Mothersole, D. J. ; Farmer, D. A. ; Hitchcock, A. ; Hunter, C. N. . Photosynthetic Apparatus in Purple Bacteria. In Light Harvesting In Photosynthesis; CRC Press, 2018, pp 95–120.

Swainsbury D. K., Qian P., Hitchcock A., Hunter C. N.. The Structure and Assembly of Reaction Centre-Light-Harvesting 1 Complexes in Photosynthetic Bacteria. Biosci. Rep. 2023;43:BSR20220089. doi: 10.1042/BSR20220089. PubMed DOI PMC

Dahlberg P. D., Ting P.-C., Massey S. C., Allodi M. A., Martin E. C., Hunter C. N., Engel G. S.. Mapping the Ultrafast Flow of Harvested Solar Energy in Living Photosynthetic Cells. Nat. Commun. 2017;8:988. doi: 10.1038/s41467-017-01124-z. PubMed DOI PMC

Koepke J., Hu X., Muenke C., Schulten K., Michel H.. The Crystal Structure of the Light-Harvesting Complex II (B800–850). from Rhodospirillum molischianum . Structure. 1996;4:581–597. doi: 10.1016/S0969-2126(96)00063-9. PubMed DOI

McDermott G., Prince S. M., Freer A. A., Hawthornthwaite-Lawless A. M., Papiz M. Z., Cogdell R. J., Isaacs N. W.. Crystal Structure of an Integral Membrane Light-Harvesting Complex from Photosynthetic Bacteria. Nature. 1995;374:517–521. doi: 10.1038/374517a0. DOI

Qian P., Nguyen-Phan C. T., Gardiner A. T., Croll T. I., Roszak A. W., Southall J., Jackson P. J., Vasilev C., Castro-Hartmann P., Sader K.. et al. Cryo-EM Structures of Light-Harvesting 2 Complexes from Rhodopseudomonas palustris Reveal the Molecular Origin of Absorption Tuning. Proc. Natl. Acad. Sci. U. S. A. 2022;119:e2210109119. doi: 10.1073/pnass.2210109119. PubMed DOI PMC

Gardiner A. T., Naydenova K., Castro-Hartmann P., Nguyen-Phan T. C., Russo C. J., Sader K., Hunter C. N., Cogdell R. J., Qian P.. The 2.4 Å Cryo-EM Structure of a Heptameric Light-Harvesting 2 Complex Reveals Two Carotenoid Energy Transfer Pathways. Sci. Adv. 2021;7:eabe4650. doi: 10.1126/sciadv.abe4650. PubMed DOI PMC

Burtseva A. D., Baymukhametov T. N., Bolshakov M. A., Makhneva Z. K., Mardanov A. V., Tsedilin A. M., Zhang H., Popov V. O., Ashikhmin A. A., Boyko K. M.. Near-Atomic Cryo-EM Structure of the Light-Harvesting Complex LH2 from the Sulfur Purple Bacterium Ectothiorhodospira haloalkaliphila . Structure. 2025;33:311–320. doi: 10.1016/j.str.2024.11.015. PubMed DOI

Qian P., Swainsbury D. J. K., Croll T. I., Castro-Hartmann P., Divitini G., Sader K., Hunter C. N.. Cryo-EM Structure of the Rhodobacter sphaeroides Light-Harvesting 2 Complex at 2.1 Å. Biochemistry. 2021;60:3302–3314. doi: 10.1021/acs.biochem.1c00576. PubMed DOI PMC

Chi S. C., Mothersole D. J., Dilbeck P., Niedzwiedzki D. M., Zhang H., Qian P., Vasilev C., Grayson K. J., Jackson P. J., Martin E. C.. et al. Assembly of Functional Photosystem Complexes in Rhodobacter sphaeroides Incorporating Carotenoids from the Spirilloxanthin Pathway. Biochim. Biophys. Acta, Bioenerg. 2015;1847:189–201. doi: 10.1016/j.bbabio.2014.10.004. PubMed DOI PMC

Canniffe, D. P. ; Hitchcock, A. . Carotenoids in Photosynthesis – Structure and Biosynthesis. In Encyclopedia of biological chemistry, Jez, J. Ed., 3rd ed.; Elsevier, 2021, pp 163–185.

Britton G.. Carotenoid Research: History and New Perspectives for Chemistry in Biological Systems. Biochim. Biophys. Acta, Mol. Cell Biol. Lipids. 2020;1865:158699. doi: 10.1016/j.bbalip.2020.158699. PubMed DOI

Britton, G. Chapter One - Getting to Know Carotenoids. In Methods in Enzymology; Academic Press, 2022. PubMed

Sandmann G.. Genes and Pathway Reactions Related to Carotenoid Biosynthesis in Purple Bacteria. Biology. 2023;12:1346. doi: 10.3390/biology12101346. PubMed DOI PMC

Ng I. W., Adams P. G., Mothersole D. J., Vasilev C., Martin E. C., Lang H. P., Tucker J. D., Hunter C. N.. Carotenoids are essential for normal levels of dimerisation of the RC–LH1–PufX core complex of Rhodobacter sphaeroides: Characterisation of R-26 as a crtB (phytoene synthase) mutant. Biochim. Biophys. Acta, Bioenerg. 2011;1807:1056–1063. doi: 10.1016/j.bbabio.2011.05.020. PubMed DOI

Gall A., Berera R., Alexandre M. T. A., Pascal A. A., Bordes L., Mendes-Pinto M. M., Andrianambinintsoa S., Stoitchkova K. V., Marin A., Valkunas L.. et al. Molecular Adaptation of Photoprotection: Triplet States in Light-Harvesting Proteins. Biophys. J. 2011;101:934–942. doi: 10.1016/j.bpj.2011.05.057. PubMed DOI PMC

Blankenship, R. E. Antenna Complexes and Energy Transfer Processes. Molecular Mechanisms Of Photosynthesis, 3rd ed.; Wiley-Blackwell, 2021, pp 61–90.

Polívka T., Frank H. A.. Molecular Factors Controlling Photosynthetic Light Harvesting by Carotenoids. Acc. Chem. Res. 2010;43:1125–1134. doi: 10.1021/ar100030m. PubMed DOI PMC

Kosumi D., Horibe T., Sugisaki M., Cogdell R. J., Hashimoto H.. Photoprotection Mechanism of Light-Harvesting Antenna Complex from Purple Bacteria. J. Phys. Chem. B. 2016;120:951–956. doi: 10.1021/acs.jpcb.6b00121. PubMed DOI

Pflock T. J., Oellerich S., Krapf L., Southall J., Cogdell R. J., Ullmann G. M., Köhler J.. The Electronically Excited States of LH2 Complexes from Rhodopseudomonas acidophila Strain 10050 Studied by Time-Resolved Spectroscopy and Dynamic Monte Carlo Simulations. II. Homo-Arrays of LH2 Complexes Reconstituted into Phospholipid Model Membranes. J. Phys. Chem. B. 2011;115:8821–8831. doi: 10.1021/jp2023583. PubMed DOI

Pflock T. J., Oellerich S., Southall J., Cogdell R. J., Ullmann G. M., Köhler J.. The Electronically Excited States of LH2 Complexes from Rhodopseudomonas acidophila Strain 10050 Studied by Time-Resolved Spectroscopy and Dynamic Monte Carlo Simulations. I. Isolated, Non-Interacting LH2 Complexes. J. Phys. Chem. B. 2011;115:8813–8820. doi: 10.1021/jp202353c. PubMed DOI

Barzda V., Gulbinas V., Kananavicius R., Cervinskas V., van Amerongen H., van Grondelle R., Valkunas L.. Singlet–Singlet Annihilation Kinetics in Aggregates and Trimers of LHCII. Biophys. J. 2001;80:2409–2421. doi: 10.1016/S0006-3495(01)76210-8. PubMed DOI PMC

Müller M. G., Lambrev P., Reus M., Wientjes E., Croce R., Holzwarth A. R.. Singlet Energy Dissipation in the Photosystem II Light-Harvesting Complex Does Not Involve Energy Transfer to Carotenoids. ChemPhysChem. 2010;11:1289–1296. doi: 10.1002/cphc.200900852. PubMed DOI

Valkunas L., Chmeliov J., Trinkunas G., Duffy C. D. P., van Grondelle R., Ruban A. V.. Excitation Migration Quenching, and Regulation of Photosynthetic Light Harvesting in Photosystem II. J. Phys. Chem. B. 2011;115:9252–9260. doi: 10.1021/jp2014385. PubMed DOI

de Rivoyre M., Ginet N., Bouyer P., Lavergne J.. Excitation Transfer Connectivity in Different Purple Bacteria: A Theoretical and Experimental Study. Biochim. Biophys. Acta, Bioenerg. 2010;1797:1780–1794. doi: 10.1016/j.bbabio.2010.07.011. PubMed DOI

van Oort B., Roy L. M., Xu P., Lu Y., Karcher D., Bock R., Croce R.. Revisiting the Role of Xanthophylls in Nonphotochemical Quenching. J. Phys. Chem. Lett. 2018;9:346–352. doi: 10.1021/acs.jpclett.7b03049. PubMed DOI

Malý P., Lüttig J., Rose P. A., Turkin A., Lambert C., Krich J. J., Brixner T.. Separating Single- from Multi-Particle Dynamics in Nonlinear Spectroscopy. Nature. 2023;616:280–287. doi: 10.1038/s41586-023-05846-7. PubMed DOI

Niedzwiedzki D. M., Blankenship R. E.. Singlet and Triplet Excited State Properties of Natural Chlorophylls and Bacteriochlorophylls. Photosynth. Res. 2010;106:227–238. doi: 10.1007/s11120-010-9598-9. PubMed DOI

Frank H. A., Cogdell R. J.. Carotenoids in Photosynthesis. Photochem. Photobiol. 1996;63:257–264. doi: 10.1111/j.1751-1097.1996.tb03022.x. PubMed DOI

Yakovlev A. G., Taisova A. S.. Quenching of Bacteriochlorophyll a Triplet State by Carotenoids in the Chlorosome Baseplate of Green Bacterium Chloroflexus aurantiacus . Phys. Chem. Chem. Phys. 2024;26:8815–8823. doi: 10.1039/D4CP00287C. PubMed DOI

Dilbeck P. L., Tang Q., Mothersole D. J., Martin E. C., Hunter C. N., Bocian D. F., Holten D., Niedzwiedzki D. M.. Quenching Capabilities of Long-Chain Carotenoids in Light-Harvesting-2 Complexes from Rhodobacter sphaeroides with an Engineered Carotenoid Synthesis Pathway. J. Phys. Chem. B. 2016;120:5429–5443. doi: 10.1021/acs.jpcb.6b03305. PubMed DOI PMC

Niedzwiedzki D. M., Dilbeck P. L., Tang Q., Martin E. C., Bocian D. F., Hunter C. N., Holten D.. New Insights into the Photochemistry of Carotenoid Spheroidenone in Light-Harvesting Complex 2 from the Purple Bacterium Rhodobacter sphaeroides . Photosynth. Res. 2017;131:291–304. doi: 10.1007/s11120-016-0322-2. PubMed DOI PMC

Angerhofer A., Bornhäuser F., Gall A., Cogdell R. J.. Optical and Optically Detected Magnetic Resonance Investigation on Purple Photosynthetic Bacterial Antenna Complexes. Chem. Phys. 1995;194:259–274. doi: 10.1016/0301-0104(95)00022-G. DOI

Bittl R., Schlodder E., Geisenheimer I., Lubitz W., Cogdell R. J.. Transient EPR and Absorption Studies of Carotenoid Triplet Formation in Purple Bacterial Antenna Complexes. J. Phys. Chem. B. 2001;105:5525–5535. doi: 10.1021/jp0033014. DOI

Herek J. L., Wendling M., He Z., Polívka T., Garcia-Asua G., Cogdell R. J., Hunter C. N., van Grondelle R., Sundström V., Pullerits T.. Ultrafast Carotenoid Band Shifts: Experiment and Theory. J. Phys. Chem. B. 2004;108:10398–10403. doi: 10.1021/jp040094p. DOI

Niedzwiedzki D. M., Swainsbury D. J. K., Canniffe D. P., Hunter C. N., Hitchcock A.. A Photosynthetic Antenna Complex Foregoes Unity Carotenoid-to-Bacteriochlorophyll Energy Transfer Efficiency to Ensure Photoprotection. Proc. Natl. Acad. Sci. U. S. A. 2020;117:6502–6508. doi: 10.1073/pnas.1920923117. PubMed DOI PMC

Polívka T., Sundström V.. Ultrafast Dynamics of Carotenoid Excited States–from Solution to Natural and Artificial Systems. Chem. Rev. 2004;104:2021–2072. doi: 10.1021/cr020674n. PubMed DOI

Cong H., Niedzwiedzki D. M., Gibson G. N., LaFountain A. M., Kelsh R. M., Gardiner A. T., Cogdell R. J., Frank H. A.. Ultrafast Time-Resolved Carotenoid to-Bacteriochlorophyll Energy Transfer in LH2 Complexes from Photosynthetic Bacteria. J. Phys. Chem. B. 2008;112:10689–10703. doi: 10.1021/jp711946w. PubMed DOI PMC

Hunter C. N., Turner G.. Transfer of Genes Coding for Apoproteins of Reaction Centre and Light-Harvesting LH1 Complexes to Rhodobacter sphaeroides . Microbiology. 1988;134:1471–1480. doi: 10.1099/00221287-134-6-1471. DOI

Huang X., Vasilev C., Swainsbury D.J., Hunter C.N.. Excitation Energy Transfer in Proteoliposomes Reconstituted with LH2 and RC-LH1 Complexes from Rhodobacter sphaeroides . Biosci. Rep. 2024;44:BSR20231302. doi: 10.1042/BSR20231302. PubMed DOI PMC

Lakowicz, J. R. Instrumentation for Fluorescence Spectroscopy. In Principles of Fluorescence Spectroscopy; Springer, 2006. pp 27–61.

Slavov C., Hartmann H., Wachtveitl J.. Implementation and Evaluation of Data Analysis Strategies for Time-Resolved Optical Spectroscopy. Anal. Chem. 2015;87:2328–2336. doi: 10.1021/ac504348h. PubMed DOI

Kvíčalová Z., Alster J., Hofmann E., Khoroshyy P., Litvín R., Bína D., Polívka T., Pšenčík J.. Triplet–Triplet Energy Transfer from Chlorophylls to Carotenoids in Two Antenna Complexes from Dinoflagellate Amphidinium carterae . Biochim. Biophys. Acta, Bioenerg. 2016;1857:341–349. doi: 10.1016/j.bbabio.2016.01.008. PubMed DOI

Sutherland G. A., Qian P., Hunter C. N., Swainsbury D. J. K., Hitchcock A.. Engineering Purple Bacterial Carotenoid Biosynthesis to Study the Roles of Carotenoids in Light-Harvesting Complexes. Methods Enzymol. 2022;674:137–184. doi: 10.1016/bs.mie.2022.04.001. PubMed DOI

Polívka T., Sundström V.. Dark Excited States of Carotenoids: Consensus and Controversy. Chem. Phys. Lett. 2009;477:1–11. doi: 10.1016/j.cplett.2009.06.011. DOI

Fleming G. R., van Grondelle R.. Femtosecond Spectroscopy of Photosynthetic Light-Harvesting Systems. Curr. Opin. Struct. Biol. 1997;7:738–748. doi: 10.1016/S0959-440X(97)80086-3. PubMed DOI

Englman R., Jortner J.. The Energy Gap Law for Non-Radiative Decay in Large Molecules. J. Lumin. 1970;1–2:134–142. doi: 10.1016/0022-2313(70)90029-3. DOI

Jang S. J.. A Simple Generalization of the Energy Gap Law for Nonradiative Processes. J. Chem. Phys. 2021;155:164106. doi: 10.1063/5.0068868. PubMed DOI

Herek J. L., Polívka T., Pullerits T., Fowler G. J. S., Hunter C. N., Sundström V.. Ultrafast Carotenoid Band Shifts Probe Structure and Dynamics in Photosynthetic Antenna Complexes. Biochemistry. 1998;37:7057–7061. doi: 10.1021/bi980118g. PubMed DOI

Gradinaru C. C., Kennis J. T. M., Papagiannakis E., van Stokkum I. H. M., Cogdell R. J., Fleming G. R., Niederman R. A., van Grondelle R.. An Unusual Pathway of Excitation Energy Deactivation in Carotenoids: Singlet-to-Triplet Conversion on an Ultrafast Timescale in a Photosynthetic Antenna. Proc. Natl. Acad. Sci. U. S. A. 2001;98:2364–2369. doi: 10.1073/pnas.051501298. PubMed DOI PMC

Papagiannakis E., Das S. K., Gall A., van Stokkum I. H. M., Robert B., van Grondelle R., Frank H. A., Kennis J. T. M.. Light Harvesting by Carotenoids Incorporated into the B850 Light-Harvesting Complex from Rhodobacter sphaeroides R-26.1: Excited-State Relaxation, Ultrafast Triplet Formation, and Energy Transfer to Bacteriochlorophyll. J. Phys. Chem. B. 2003;107:5642–5649. doi: 10.1021/jp027174i. DOI

Niedzwiedzki D. M., Hunter C. N., Blankenship R. E.. Evaluating the Nature of So-Called S*-State Feature in Transient Absorption of Carotenoids in Light-Harvesting Complex 2 (LH2) from Purple Photosynthetic Bacteria. J. Phys. Chem. B. 2016;120:11123–11131. doi: 10.1021/acs.jpcb.6b08639. PubMed DOI PMC

Razjivin A., Götze J., Lukashev E., Kozlovsky V., Ashikhmin A., Makhneva Z., Moskalenko A., Lokstein H., Paschenko V.. Lack of Excitation Energy Transfer from the Bacteriochlorophyll Soret Band to Carotenoids in Photosynthetic Complexes of Purple Bacteria. J. Phys. Chem. B. 2021;125:3538–3545. doi: 10.1021/acs.jpcb.1c00719. PubMed DOI

Burke M., Land E. J., McGarvey D. J., Truscott T. G.. Carotenoid Triplet State Lifetimes. J. Photochem. Photobiol., B. 2000;59:132–138. doi: 10.1016/S1011-1344(00)00150-0. PubMed DOI

Smith J. R. L., Calvin M.. Studies on the Chemical and Photochemical Oxidation of Bacteriochlorophyll1. J. Am. Chem. Soc. 1966;88:4500–4506. doi: 10.1021/ja00971a036. DOI

Saga Y., Kawano K., Otsuka Y., Imanishi M., Kimura Y., Matsui S., Asakawa H.. Selective Oxidation of B800 Bacteriochlorophyll a in Photosynthetic Light-Harvesting Protein LH2. Sci. Rep. 2019;9:3636. doi: 10.1038/s41598-019-40082-y. PubMed DOI PMC

Saga Y., Otsuka Y., Funakoshi D., Masaoka Y., Kihara Y., Hidaka T., Hatano H., Asakawa H., Nagasawa Y., Tamiaki H.. In Situ Formation of Photoactive B-Ring Reduced Chlorophyll Isomer in Photosynthetic Protein LH2. Sci. Rep. 2020;10:19383. doi: 10.1038/s41598-020-76540-1. PubMed DOI PMC

Migliore A., Corni S., Agostini A., Carbonera D.. Unraveling the Electronic Origin of a Special Feature in the Triplet-Minus-Singlet Spectra of Carotenoids in Natural Photosystems. Phys. Chem. Chem. Phys. 2023;25:28998–29016. doi: 10.1039/D3CP03836J. PubMed DOI

Taffet E. J., Lee B. G., Toa Z. S. D., Pace N., Rumbles G., Southall J., Cogdell R. J., Scholes G. D.. Carotenoid Nuclear Reorganization and Interplay of Bright and Dark Excited States. J. Phys. Chem. B. 2019;123:8628–8643. doi: 10.1021/acs.jpcb.9b04027. PubMed DOI

Paschenko V. Z., Gorokhov V. V., Korvatovskiy B. N., Bocharov E. A., Knox P. P., Sarkisov O. M., Theiss C., Eichler H. J., Renger G., Rubin A. B.. The Rate of Qx→Qy Relaxation in Bacteriochlorophylls of Reaction Centers from Rhodobacter sphaeroides Determined by Kinetics of the Ultrafast Carotenoid Bandshift. Biochim. Biophys. Acta, Bioenerg. 2012;1817:1399–1406. doi: 10.1016/j.bbabio.2012.02.006. PubMed DOI

Sirohiwal A., Pantazis D. A.. Electrostatic Profiling of Photosynthetic Pigments: Implications for Directed Spectral Tuning. Phys. Chem. Chem. Phys. 2021;23:24677–24684. doi: 10.1039/D1CP02580E. PubMed DOI

Elvers I., Nguyen-Phan T. C., Gardiner A. T., Hunter C. N., Cogdell R. J., Köhler J.. Phasor Analysis Reveals Multicomponent Fluorescence Kinetics in the LH2 Complex from Marichromatium purpuratum . J. Phys. Chem. B. 2022;126:10335–10346. doi: 10.1021/acs.jpcb.2c04983. PubMed DOI

Rondonuwu F. S., Taguchi T., Fujii R., Yokoyama K., Koyama Y., Watanabe Y.. The Energies and Kinetics of Triplet Carotenoids in the LH2 Antenna Complexes as Determined by Phosphorescence Spectroscopy. Chem. Phys. Lett. 2004;384:364–371. doi: 10.1016/j.cplett.2003.12.024. DOI

Sipka G., Maróti P.. Photoprotection in Intact Cells of Photosynthetic Bacteria: Quenching of Bacteriochlorophyll Fluorescence by Carotenoid Triplets. Photosynth. Res. 2018;136:17–30. doi: 10.1007/s11120-017-0434-3. PubMed DOI

Meredith S. A., Kusunoki Y., Evans S. D., Morigaki K., Connell S. D., Adams P. G.. Evidence for a Transfer-to-Trap Mechanism of Fluorophore Concentration Quenching in Lipid Bilayers. Biophys. J. 2024;123:3242–3256. doi: 10.1016/j.bpj.2024.07.026. PubMed DOI PMC

Vinklárek I. S., Bornemann T. L. V., Lokstein H., Hofmann E., Alster J., Pšenčík J.. Temperature Dependence of Chlorophyll Triplet Quenching in Two Photosynthetic Light-Harvesting Complexes from Higher Plants and Dinoflagellates. J. Phys. Chem. B. 2018;122:8834–8845. doi: 10.1021/acs.jpcb.8b06751. PubMed DOI

Khoroshyy P., Bína D., Gardian Z., Litvín R., Alster J., Pšenčík J.. Quenching of Chlorophyll Triplet States by Carotenoids in Algal Light-Harvesting Complexes Related to Fucoxanthin-Chlorophyll Protein. Photosynth. Res. 2018;135:213–225. doi: 10.1007/s11120-017-0416-5. PubMed DOI

Li Y.-Q., Yan Y.-H., Gao R.-Y., Zou J.-W., Wu Y.-L., Yue X.-Y., Lu Y., Wang X.-P., Chen M.-Q., Li Q.-W.. et al. Triplet Excitation Dynamics of Photosynthetic Light-Harvesting Antennae: Mechanistic Insights into the Conjugation Regulated Carotenoid Functionality. Phys. Chem. Chem. Phys. 2025;27:12462–12473. doi: 10.1039/D5CP00769K. PubMed DOI

Muzziotti D., Adessi A., Faraloni C., Torzillo G., De Philippis R.. Acclimation Strategy of Rhodopseudomonas palustris to High Light Irradiance. Microbiol. Res. 2017;197:49–55. doi: 10.1016/j.micres.2017.01.007. PubMed DOI

Kondo M., Hancock A. M., Kuwabara H., Adams P. G., Dewa T.. Photocurrent Generation by Plant Light-Harvesting Complexes is Enhanced by Lipid-Linked Chromophores in a Self-Assembled Lipid Membrane. J. Phys. Chem. B. 2025;129:900–910. doi: 10.1021/acs.jpcb.4c07402. PubMed DOI PMC

Ravi S. K., Yu Z., Swainsbury D. J. K., Ouyang J., Jones M. R., Tan S. C.. Enhanced Output from Biohybrid Photoelectrochemical Transparent Tandem Cells Integrating Photosynthetic Proteins Genetically Modified for Expanded Solar Energy Harvesting. Adv. Energy Mater. 2017;7:1601821.

Hancock A. M., Swainsbury D. J. K., Meredith S. A., Morigaki K., Hunter C. N., Adams P. G.. Enhancing the Spectral Range of Plant and Bacterial Light-Harvesting Pigment-Protein Complexes with Various Synthetic Chromophores Incorporated into Lipid Vesicles. J. Photochem. Photobiol., B. 2022;237:112585. doi: 10.1016/j.jphotobiol.2022.112585. PubMed DOI

Roeder S., Hobe S., Paulsen H.. Silica Entrapment for Significantly Stabilized, Energy-Conducting Light-Harvesting Complex (LHCII) Langmuir. 2014;30:14234–14240. doi: 10.1021/la503858t. PubMed DOI

Friebe V. M., Barszcz A. J., Jones M. R., Frese R. N.. Sustaining Electron Transfer Pathways Extends Biohybrid Photoelectrode Stability to Years. Angew. Chem., Int. Ed. 2022;61:e202201148. doi: 10.1002/anie.202201148. PubMed DOI PMC

Satpathi, S. ; Asido, M. ; Proctor, M. S. ; Pšenčík, J. ; Schmidt, G. P. ; Wang, D. ; Martin, E. C. ; Schlau-Cohen, G. S. ; Hitchcock, A. ; Adams, P. G. . Dataset for the Study of the Impact of Carotenoid Energy Levels on the Exciton Dynamics and Singlet-Triplet Annihilation in Isolated Bacterial Light-Harvesting 2 Complex; University of Leeds: 2025; 10.5518/1740. PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...