Cryo-EM structures of light-harvesting 2 complexes from Rhodopseudomonas palustris reveal the molecular origin of absorption tuning
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
BB/N016734/1
UKRI | Biotechnology and Biological Sciences Research Council (BBSRC)
209407/Z/17/Z
Wellcome Trust - United Kingdom
PubMed
36251992
PubMed Central
PMC9618040
DOI
10.1073/pnas.2210109119
Knihovny.cz E-zdroje
- Klíčová slova
- Rhodopseudomonas palustris, absorption band turning, cryo-EM, light-harvesting complex, photosynthesis,
- MeSH
- bakteriální proteiny metabolismus MeSH
- bakteriochlorofyly * metabolismus MeSH
- elektronová kryomikroskopie MeSH
- peptidy metabolismus MeSH
- Rhodopseudomonas * genetika MeSH
- světlosběrné proteinové komplexy metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- bakteriální proteiny MeSH
- bakteriochlorofyly * MeSH
- peptidy MeSH
- světlosběrné proteinové komplexy MeSH
The genomes of some purple photosynthetic bacteria contain a multigene puc family encoding a series of α- and β-polypeptides that together form a heterogeneous antenna of light-harvesting 2 (LH2) complexes. To unravel this complexity, we generated four sets of puc deletion mutants in Rhodopseudomonas palustris, each encoding a single type of pucBA gene pair and enabling the purification of complexes designated as PucA-LH2, PucB-LH2, PucD-LH2, and PucE-LH2. The structures of all four purified LH2 complexes were determined by cryogenic electron microscopy (cryo-EM) at resolutions ranging from 2.7 to 3.6 Å. Uniquely, each of these complexes contains a hitherto unknown polypeptide, γ, that forms an extended undulating ribbon that lies in the plane of the membrane and that encloses six of the nine LH2 αβ-subunits. The γ-subunit, which is located near to the cytoplasmic side of the complex, breaks the C9 symmetry of the LH2 complex and binds six extra bacteriochlorophylls (BChls) that enhance the 800-nm absorption of each complex. The structures show that all four complexes have two complete rings of BChls, conferring absorption bands centered at 800 and 850 nm on the PucA-LH2, PucB-LH2, and PucE-LH2 complexes, but, unusually, the PucD-LH2 antenna has only a single strong near-infared (NIR) absorption peak at 803 nm. Comparison of the cryo-EM structures of these LH2 complexes reveals altered patterns of hydrogen bonds between LH2 αβ-side chains and the bacteriochlorin rings, further emphasizing the major role that H bonds play in spectral tuning of bacterial antenna complexes.
Cambridge Institute for Medical Research University of Cambridge Cambridge CB2 0XY United Kingdom
Materials and Structure Analysis Thermofisher Scientific Eindhoven 5651 GG The Netherlands
School of Biosciences The University of Sheffield Sheffield S10 2TN United Kingdom
School of Molecular Biosciences Glasgow University Glasgow G12 8QQ United Kingdom
Zobrazit více v PubMed
Cogdell R. J., Gall A., Köhler J., The architecture and function of the light-harvesting apparatus of purple bacteria: From single molecules to in vivo membranes. Q. Rev. Biophys. 39, 227–324 (2006). PubMed
Sundström V., Pullerits T., van Grondelle R., Photosynthetic light-harvesting: Reconciling dynamics and structure of purple bacterial LH2 reveals function of photosynthetic unit. J. Opt. Soc. Am. B 103, 2327–2346 (1999).
Sundström V., Grondelle R., “Dynamics of energy transfer and trapping in photosynthetic bacteria” in Dynamics and Mechanisms of Photoinduced Transfer and Related Phenomena, Mataga N., Okada T., Masuhara H., Eds. (North-Holland Delta Series, North-Holland, 1992), pp. 485–499.
Sundström V., van Grondelle R., Energy-transfer in photosynthetic light-harvesting antennas. J. Opt. Soc. Am. B 7, 1595–1603 (1990).
Sener M., Strumpfer J., Singharoy A., Hunter C. N., Schulten K., Overall energy conversion efficiency of a photosynthetic vesicle. eLife 5, e09541 (2016). PubMed PMC
Dahlberg P. D., et al. , Mapping the ultrafast flow of harvested solar energy in living photosynthetic cells. Nat. Commun. 8, 988 (2017). PubMed PMC
McLuskey K., Prince S. M., Cogdell R. J., Isaacs N. W., The crystallographic structure of the B800-820 LH3 light-harvesting complex from the purple bacteria PubMed
McDermott G., et al. , Crystal structure of an integral membrane light-harvesting complex from photosynthetic bacteria. Nature 374, 517–521 (1995).
Koepke J., Hu X., Muenke C., Schulten K., Michel H., The crystal structure of the light-harvesting complex II (B800-850) from PubMed
Qian P., et al. , Cryo-EM structure of the PubMed PMC
Gardiner A. T., et al. , The 2.4 Å cryo-EM structure of a heptameric light-harvesting 2 complex reveals two carotenoid energy transfer pathways. Sci. Adv. 7, abe4650 (2021). PubMed PMC
Leiger K., et al. , Controlling photosynthetic excitons by selective pigment photooxidation. J. Phys. Chem. B 123, 29–38 (2019). PubMed
Aagaard J., Sistrom W. R., Control of synthesis of reaction center bacteriochlorophyll in photosynthetic bacteria. Photochem. Photobiol. 15, 209–225 (1972). PubMed
Scheuring S., Sturgis J. N., Chromatic adaptation of photosynthetic membranes. Science 309, 484–487 (2005). PubMed
Adams P. G., Hunter C. N., Adaptation of intracytoplasmic membranes to altered light intensity in PubMed
Bahatyrova S., et al. , The native architecture of a photosynthetic membrane. Nature 430, 1058–1062 (2004). PubMed
Sturgis J. N., Tucker J. D., Olsen J. D., Hunter C. N., Niederman R. A., Atomic force microscopy studies of native photosynthetic membranes. Biochemistry 48, 3679–3698 (2009). PubMed
Hayashi H., Nakano M., Morita S., Comparative studies of protein properties and bacteriochlorophyll contents of bacteriochlorophyll-protein complexes from spectrally different types of PubMed
Evans M. B., Hawthornthwaite A. M., Cogdell R. J., Isolation and characterization of the different b800-850 light- harvesting complexes from low-light and high-light grown cells of
Gardiner A. T., Cogdell R. J., Takaichi S., The effect of growth conditions on the light-harvesting apparatus in PubMed
Deinum G., et al. , Antenna organization of
Moulisová V., et al. , Low light adaptation: Energy transfer processes in different types of light harvesting complexes from PubMed PMC
Lüer L., et al. , Tracking energy transfer between light harvesting complex 2 and 1 in photosynthetic membranes grown under high and low illumination. Proc. Natl. Acad. Sci. U.S.A. 109, 1473–1478 (2012). PubMed PMC
Youvan D. C., Ismail S., Light-harvesting II (B800-B850 complex) structural genes from PubMed PMC
Kiley P. J., Kaplan S., Cloning, DNA sequence, and expression of the PubMed PMC
LeBlanc H. N., Beatty J. T., PubMed
Ashby M. K., Coomber S. A., Hunter C., Cloning, nucleotide sequence and transfer of genes for the B800-850 light harvesting complex of
Southall J., et al. , Characterisation of a pucBA deletion mutant from PubMed PMC
Cogdell R. J., Köhler J., Use of single-molecule spectroscopy to tackle fundamental problems in biochemistry: Using studies on purple bacterial antenna complexes as an example. Biochem. J. 422, 193–205 (2009). PubMed
Tadros M. H., Waterkamp K., Multiple copies of the coding regions for the light-harvesting B800-850 alpha- and beta-polypeptides are present in the PubMed PMC
Saga Y., et al. , In situ formation of photoactive B-ring reduced chlorophyll isomer in photosynthetic protein LH2. Sci. Rep. 10, 19383 (2020). PubMed PMC
Niedzwiedzki D. M., Hunter C. N., Blankenship R. E., Evaluating the nature of so-called S*-state feature in transient absorption of carotenoids in light-harvesting complex 2 (LH2) from purple photosynthetic bacteria. J. Phys. Chem. B 120, 11123–11131 (2016). PubMed PMC
Saer R. G., Blankenship R. E., Light harvesting in phototrophic bacteria: Structure and function. Biochem. J. 474, 2107–2131 (2017). PubMed
Jumper J., et al. , Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021). PubMed PMC
Fowler G. J., Hunter C. N., The synthesis and assembly of functional high and low light LH2 antenna complexes from PubMed
Zeng X., Choudhary M., Kaplan S., A second and unusual PubMed PMC
Lu Y., et al. , Top-down mass spectrometry analysis of membrane-bound light-harvesting complex 2 from PubMed PMC
Hartigan N., Tharia H. A., Sweeney F., Lawless A. M., Papiz M. Z., The 7.5-A electron density and spectroscopic properties of a novel low-light B800 LH2 from PubMed PMC
Brotosudarmo T. H. P., et al. , The light intensity under which cells are grown controls the type of peripheral light-harvesting complexes that are assembled in a purple photosynthetic bacterium. Biochem. J. 440, 51–61 (2011). PubMed
Qian P., Siebert C. A., Wang P., Canniffe D. P., Hunter C. N., Cryo-EM structure of the PubMed
Ma F., Yu L. J., Wang-Otomo Z. Y., van Grondelle R., The origin of the unusual Qy red shift in LH1-RC complexes from purple bacteria PubMed
Cogdell R. J., Howard T. D., Isaacs N. W., McLuskey K., Gardiner A. T., Structural factors which control the position of the Q(y) absorption band of bacteriochlorophyll PubMed
Fowler G. J. S., Visschers R. W., Grief G. G., van Grondelle R., Hunter C. N., Genetically modified photosynthetic antenna complexes with blueshifted absorbance bands. Nature 355, 848–850 (1992). PubMed
Duquesne K., Blanchard C., Sturgis J. N., Molecular origins and consequences of High-800 LH2 in PubMed
Fowler G. J. S., Sockalingum G. D., Robert B., Hunter C. N., Blue shifts in bacteriochlorophyll absorbance correlate with changed hydrogen bonding patterns in light-harvesting 2 mutants of PubMed PMC
Cardoso Ramos F., Nottoli M., Cupellini L., Mennucci B., The molecular mechanisms of light adaption in light-harvesting complexes of purple bacteria revealed by a multiscale modeling. Chem. Sci. (Camb.) 10, 9650–9662 (2019). PubMed PMC
Krawczy S., The effects of hydrogen bonding and coordination interaction in visible absorption and vibrational spectra of chlorophyll a. BBA-Bioenergetics 976, 140–149 (1989).
Gudowska-Nowak E., Newton M. D., Fajer F., Conformational and environmental effects on bacteriochlorophyll optical spectra: Correlations of calculated spectra with structural results. J. Phys. Chem. 94, 5795–5801 (1990).
Scholes G. D., Gould I. R., Cogdell R. J., Fleming G. R.,
Montemayor D., Rivera E., Jang S. J., Computational modeling of exciton-bath hamiltonians for light harvesting 2 and light harvesting 3 complexes of purple photosynthetic bacteria at room temperature. J. Phys. Chem. B 122, 3815–3825 (2018). PubMed
Henry S. L., et al. , DNA-directed spatial assembly of photosynthetic light-harvesting proteins. Org. Biomol. Chem. 14, 1359–1362 (2016). PubMed
Gardiner A. T., Niedzwiedzki D. M., Cogdell R. J., Adaptation of PubMed
Flannery S. E., et al. , Developmental acclimation of the thylakoid proteome to light intensity in PubMed PMC
Sader K., Matadeen R., Castro Hartmann P., Halsan T., Schlichten C., Industrial cryo-EM facility setup and management. Acta Crystallogr. D Struct. Biol. 76, 313–325 (2020). PubMed PMC
Zivanov J., et al. , New tools for automated high-resolution cryo-EM structure determination in RELION-3. eLife 7, e42166 (2018). PubMed PMC
Rohou A., Grigorieff N., CTFFIND4: Fast and accurate defocus estimation from electron micrographs. J. Struct. Biol. 192, 216–221 (2015). PubMed PMC
Grant T., Rohou A., Grigorieff N., PubMed PMC
Pettersen E. F., et al. , UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004). PubMed
Emsley P., Cowtan K., Coot: Model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004). PubMed
Croll T., ISOLDE: A physically realistic environment formodel building into low-resolution electron-densitymaps. Acta Crystallogr. D Biol. Crystallogr. 74, 11 (2018). PubMed PMC
Liebschner D., et al. , Macromolecular structure determination using X-rays, neutrons and electrons: Recent developments in Phenix. Acta Crystallogr. D Struct. Biol. 75, 861–877 (2019). PubMed PMC
P. Qian et al., PucA-LH2 complex from Rps. palustris. wwPDB (World Wide Protein Data Bank). https://www.rcsb.org/structure/7ZCU, Deposited 12 October 2022.
P. Qian et al., PucB-LH2 complex from Rps. palustris, wwPDB (World Wide Protein Data Bank). https://www.rcsb.org/structure/7ZDI. Deposited 5 October 2022.
P. Qian et al., PucD-LH2 complex from Rps. palustris, wwPDB (World Wide Protein Data Bank). https://www.rcsb.org/structure/7ZE3. Deposited 5 October 2022.
P. Qian et al., PucE-LH2 complex from Rps. palustris, wwP DB (World Wide Protein Data Bank). https://www.rcsb.org/structure/7ZE8. Deposited 5 October 2022.
P. Qian et al., PucA-LH2 complex from Rps. palustris, EMDB (Electron microscopy Data Bank). https://www.ebi.ac.uk/emdb/EMD-14633. Deposited 12 October 2022.
P. Qian et al., PucB-LH2 complex from Rps. palustris, EMDB (Electron microscopy Data Bank). https://www.ebi.ac.uk/emdb/EMD-14650. Deposited 5 October 2022.
P. Qian et al., PucD-LH2 complex from Rps. palustris, EMDB (Electron microscopy Data Bank). https://www.ebi.ac.uk/emdb/EMD-14682. Deposited 5 October 2022.
P. Qian et al., PucE-LH2 complex from Rps. palustris, EMDB (Electron microscopy Data Bank). https://www.ebi.ac.uk/emdb/EMD-14685. Deposited 5 October 2022.
P. Qian et al., Data from “Cryo-EM structures of light-harvesting 2 complexes from Rhodopseudomonas palustris reveal the molecular origin of absorption tuning.” ProteomeXchange Consortium via the PRIDE partner repository. http://www.ebi.ac.uk/pride/archive/projects/PXD031538. Deposited 19 August 2022. PubMed PMC
Two solutions for efficient light-harvesting in phototrophic Gemmatimonadota