Two solutions for efficient light-harvesting in phototrophic Gemmatimonadota
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
Photomachines CZ.02.01.01/00/22_008/0004624
Czech Ministry of Education, Youth and Sports, OP JAK
RVO: 60077344
Czech Academy of Sciences, Institutional Support
PubMed
41342568
PubMed Central
PMC12817894
DOI
10.1128/msystems.01094-25
Knihovny.cz E-zdroje
- Klíčová slova
- energy transfer, light-harvesting, microbiology, phototrophy, structural biology,
- MeSH
- bakteriální proteiny * metabolismus chemie MeSH
- bakteriochlorofyly metabolismus chemie MeSH
- elektronová kryomikroskopie MeSH
- fotosyntéza MeSH
- molekulární modely MeSH
- světlo MeSH
- světlosběrné proteinové komplexy * metabolismus chemie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- bakteriální proteiny * MeSH
- bakteriochlorofyly MeSH
- světlosběrné proteinové komplexy * MeSH
Phototrophic Gemmatimonadota represent a unique group of phototrophic bacteria that acquired a complete set of photosynthetic genes via horizontal gene transfer and later evolved independently. Gemmatimonas (Gem.) phototrophica contains photosynthetic complexes with two concentric light-harvesting antenna rings that absorb at 816 and 868 nm, allowing it to better exploit the light conditions found deeper in the water column. The closely related species Gem. groenlandica, with highly similar photosynthetic genes, harvests infrared light using a single 860 nm absorption band. The cryo-electron microscopy structure of the Gem. groenlandica photosynthetic complex reveals that the outer antenna lacks monomeric bacteriochlorophylls, resulting in a smaller optical antenna cross-section. The Gem. groenlandica spectrum is red-shifted relative to Gem. phototrophica due to the formation of a H-bond enabled by a different rotamer conformation of αTrp31 in the outer ring. This H-bond forms with a neighboring bacteriochlorophyll and increases the intra-dimer exciton coupling, affecting the exciton localization probability within the rings and increasing exciton cooperativity between the complexes. The functional consequences of the spectral shift, caused solely by a subtle conformational change of a single residue, represent a novel mechanism in which phototrophic organisms adjust their antennae for particular light conditions and enable Gem. groenlandica to grow higher in the water column where more photons are available.IMPORTANCEThe photoheterotrophic species of the phylum Gemmatimonadota employ unique photosynthetic complexes with two concentric antenna rings around a central reaction center. In contrast to other phototrophic species, these organisms have not evolved any regulatory systems to control the expression of their photosynthetic apparatus under different light conditions. Despite the overall similarity, the complexes present in Gemmatimonas phototrophica and Gemmatimonas groenlandica have different absorption properties in the near-infrared region of the spectrum that make them more suitable for low or medium light, respectively. The main difference in absorption depends on the conformation of a single tryptophan residue that can form an H-bond with a neighboring bacteriochlorophyll. The presence or absence of this H-bond affects how the protein scaffold interacts with the bacteriochlorophylls, which in turn determines how light energy is transferred within and between the photosynthetic complexes.
Faculty of Science University of South Bohemia České Budějovice Czech Republic
Institute of Microbiology of the Czech Academy of Sciences Třeboň Czech Republic
Materials and Structure Analysis Thermofisher Scientific Eindhoven the Netherlands
School of Biosciences University of Sheffield Sheffield United Kingdom
Zobrazit více v PubMed
Sanfilippo JE, Garczarek L, Partensky F, Kehoe DM. 2019. Chromatic acclimation in cyanobacteria: a diverse and widespread process for optimizing photosynthesis. Annu Rev Microbiol 73:407–433. doi: 10.1146/annurev-micro-020518-115738 PubMed DOI
Gardiner AT, Nguyen-Phan TC, Cogdell RJ. 2020. A comparative look at structural variation among RC–LH1 “Core” complexes present in anoxygenic phototrophic bacteria. Photosynth Res 145:83–96. doi: 10.1007/s11120-020-00758-3 PubMed DOI PMC
Swainsbury DJK, Qian P, Hitchcock A, Hunter CN. 2023. The structure and assembly of reaction centre-light-harvesting 1 complexes in photosynthetic bacteria. Biosci Rep 43:BSR20220089. doi: 10.1042/BSR20220089 PubMed DOI PMC
Varga AR, Staehelin LA. 1983. Spatial differentiation in photosynthetic and non-photosynthetic membranes of Rhodopseudomonas palustris. J Bacteriol 154:1414–1430. doi: 10.1128/jb.154.3.1414-1430.1983 PubMed DOI PMC
Gardiner AT, Niedzwiedzki DM, Cogdell RJ. 2018. Adaptation of Rhodopseudomonas acidophila strain 7050 to growth at different light intensities: what are the benefits to changing the type of LH2? Faraday Discuss 207:471–489. doi: 10.1039/c7fd00191f PubMed DOI
Adams PG, Hunter CN. 2012. Adaptation of intracytoplasmic membranes to altered light intensity in Rhodobacter sphaeroides. Biochim Biophys Acta Bioenerget 1817:1616–1627. doi: 10.1016/j.bbabio.2012.05.013 PubMed DOI
Brotosudarmo THP, Collins AM, Gall A, Roszak AW, Gardiner AT, Blankenship RE, Cogdell RJ. 2011. The light intensity under which cells are grown controls the type of peripheral light-harvesting complexes that are assembled in a purple photosynthetic bacterium. Biochem J 440:51–61. doi: 10.1042/BJ20110575 PubMed DOI
Carey A-M, Hacking K, Picken N, Honkanen S, Kelly S, Niedzwiedzki DM, Blankenship RE, Shimizu Y, Wang-Otomo Z-Y, Cogdell RJ. 2014. Characterisation of the LH2 spectral variants produced by the photosynthetic purple sulphur bacterium Allochromatium vinosum. Biochim Biophys Acta 1837:1849–1860. doi: 10.1016/j.bbabio.2014.07.022 PubMed DOI
Deinum G, Otte SCM, Gardiner AT, Aartsma TJ, Cogdell RJ, Amesz J. 1991. Antenna organization of Rhodopseudomonas acidophila: a study of the excitation migration. Biochim Biophys Acta Bioenerget 1060:125–131. doi: 10.1016/S0005-2728(05)80127-6 DOI
Lüer L, Moulisová V, Henry S, Polli D, Brotosudarmo THP, Hoseinkhani S, Brida D, Lanzani G, Cerullo G, Cogdell RJ. 2013. Tracing of backward energy transfer from LH1 to LH2 in photosynthetic membranes grown under high and low irradiation. EPJ Web Conf 41:08011. doi: 10.1051/epjconf/20134108011 PubMed DOI PMC
Lüer L, Carey A-M, Henry S, Maiuri M, Hacking K, Polli D, Cerullo G, Cogdell RJ. 2015. Elementary energy transfer pathways in Allochromatium vinosum photosynthetic membranes. Biophys J 109:1885–1898. doi: 10.1016/j.bpj.2015.09.008 PubMed DOI PMC
Pandey R, Armitage JP, Wadhams GH. 2017. Use of transcriptomic data for extending a model of the AppA/PpsR system in Rhodobacter sphaeroides. BMC Syst Biol 11:146. doi: 10.1186/s12918-017-0489-y PubMed DOI PMC
Mujakić I, Piwosz K, Koblížek M. 2022. Phylum Gemmatimonadota and its role in the environment. Microorganisms 10:151. doi: 10.3390/microorganisms10010151 PubMed DOI PMC
Zeng Y, Feng F, Medová H, Dean J, Koblížek M. 2014. Functional type 2 photosynthetic reaction centers found in the rare bacterial phylum Gemmatimonadetes. Proc Natl Acad Sci USA 111:7795–7800. doi: 10.1073/pnas.1400295111 PubMed DOI PMC
Qian P, Gardiner AT, Šímová I, Naydenova K, Croll TI, Jackson PJ, Kloz M, Čubáková P, Kuzma M, et al. 2022. 2.4-Å structure of the double-ring Gemmatimonas phototrophica photosystem. Sci Adv 8:eabk3139. doi: 10.1126/sciadv.abk3139 PubMed DOI PMC
Dachev M, Bína D, Sobotka R, Moravcová L, Gardian Z, Kaftan D, Šlouf V, Fuciman M, Polívka T, Koblížek M. 2017. Unique double concentric ring organization of light harvesting complexes in Gemmatimonas phototrophica. PLoS Biol 15:e2003943. doi: 10.1371/journal.pbio.2003943 PubMed DOI PMC
Kopejtka K, Tomasch J, Shivaramu S, Saini MK, Kaftan D, Koblížek M. 2024. Minimal transcriptional regulation of horizontally transferred photosynthesis genes in phototrophic bacterium Gemmatimonas phototrophica mSystems 9:e00706-24. doi: 10.1128/msystems.00706-24 PubMed DOI PMC
Zeng Y, Wu N, Nupur N, Madsen AM, Chen X, Gardiner AT, Koblížek M. 2020. Gemmatimonas groenlandica sp. nov. Is an Aerobic Anoxygenic Phototroph in the Phylum Gemmatimonadetes. Front Microbiol 11:606612. doi: 10.3389/fmicb.2020.606612 PubMed DOI PMC
Gueymard CA. 2004. The sun’s total and spectral irradiance for solar energy applications and solar radiation models. Sol Energy 76:423–453. doi: 10.1016/j.solener.2003.08.039 DOI
Nupur N, Kuzma M, Hájek J, Hrouzek P, Gardiner AT, Lukeš M, Moos M, Šimek P, Koblížek M. 2021. Structure elucidation of the novel carotenoid gemmatoxanthin from the photosynthetic complex of Gemmatimonas phototrophica AP64. Sci Rep 11:15964. doi: 10.1038/s41598-021-95254-6 PubMed DOI PMC
Abramson J, Adler J, Dunger J, Evans R, Green T, Pritzel A, Ronneberger O, Willmore L, Ballard AJ, Bambrick J, et al. 2024. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 630:493–500. doi: 10.1038/s41586-024-07487-w PubMed DOI PMC
Papiz MZ, Prince SM, Howard T, Cogdell RJ, Isaacs NW. 2003. The structure and thermal motion of the B800-850 LH2 complex from Rps.acidophila at 2.0A resolution and 100K: new structural features and functionally relevant motions. J Mol Biol 326:1523–1538. doi: 10.1016/s0022-2836(03)00024-x PubMed DOI
Qi C-H, Wang G-L, Wang F-F, Xin Y, Zou M-J, Madigan MT, Wang-Otomo Z-Y, Ma F, Yu L-J. 2023. New insights on the photocomplex of Roseiflexus castenholzii revealed from comparisons of native and carotenoid-depleted complexes. J Biol Chem 299:105057. doi: 10.1016/j.jbc.2023.105057 PubMed DOI PMC
Qi C-H, Wang G-L, Wang F-F, Wang J, Wang X-P, Zou M-J, Ma F, Madigan MT, Kimura Y, Wang-Otomo Z-Y, Yu L-J. 2024. Structural insights into the unusual core photocomplex from a triply extremophilic purple bacterium, Halorhodospira halochloris. J Integr Plant Biol 66:2262–2272. doi: 10.1111/jipb.13628 PubMed DOI
Lavergne J, Trissl HW. 1995. Theory of fluorescence induction in photosystem II: derivation of analytical expressions in a model including exciton-radical-pair equilibrium and restricted energy transfer between photosynthetic units. Biophys J 68:2474–2492. doi: 10.1016/S0006-3495(95)80429-7 PubMed DOI PMC
Koblížek M, Dachev M, Bína D, Nupur N, Piwosz K, Kaftan D. 2020. Utilization of light energy in phototrophic Gemmatimonadetes. J Photochem Photobiol B 213:112085. doi: 10.1016/j.jphotobiol.2020.112085 PubMed DOI
Haufschild T, Kallscheuer N, Hammer J, Kohn T, Kabuu M, Jogler M, Wohlfarth N, Rohde M, van Teeseling MCF, Jogler C. 2024. An untargeted cultivation approach revealed Pseudogemmatithrix spongiicola gen. nov., sp. nov., and sheds light on the gemmatimonadotal mode of cell division: binary fission. Sci Rep 14:16764. doi: 10.1038/s41598-024-67408-9 PubMed DOI PMC
Nagashima KV, Matsuura K, Ohyama S, Shimada K. 1994. Primary structure and transcription of genes encoding B870 and photosynthetic reaction center apoproteins from Rubrivivax gelatinosus. J Biol Chem 269:2477–2484. doi: 10.1016/S0021-9258(17)41970-3 PubMed DOI
Khemaissa S, Sagan S, Walrant A. 2021. Tryptophan, an amino-acid endowed with unique properties and its many roles in membrane proteins. Crystals (Basel) 11:1032. doi: 10.3390/cryst11091032 DOI
Karadi K, Kapetanaki SM, Raics K, Pecsi I, Kapronczai R, Fekete Z, Iuliano JN, Collado JT, Gil AA, Orban J, Nyitrai M, Greetham GM, Vos MH, Tonge PJ, Meech SR, Lukacs A. 2020. Functional dynamics of a single tryptophan residue in a BLUF protein revealed by fluorescence spectroscopy. Sci Rep 10:2061. doi: 10.1038/s41598-020-59073-5 PubMed DOI PMC
Fowler GJS, Visschers RW, Grief GG, van Grondelle R, Hunter CN. 1992. Genetically modified photosynthetic antenna complexes with blueshifted absorbance bands. Nature 355:848–850. doi: 10.1038/355848a0 PubMed DOI
McLuskey K, Prince SM, Cogdell RJ, Isaacs NW. 2001. The crystallographic structure of the B800-820 LH3 light-harvesting complex from the purple bacteria Rhodopseudomonas acidophila strain 7050. Biochemistry 40:8783–8789. doi: 10.1021/bi010309a PubMed DOI
Qian P, Nguyen-Phan CT, Gardiner AT, Croll TI, Roszak AW, Southall J, Jackson PJ, Vasilev C, Castro-Hartmann P, Sader K, Hunter CN, Cogdell RJ. 2022. Cryo-EM structures of light-harvesting 2 complexes from Rhodopseudomonas palustris reveal the molecular origin of absorption tuning. Proc Natl Acad Sci USA 119:e2210109119. doi: 10.1073/pnas.2210109119 PubMed DOI PMC
Nottoli M, Jurinovich S, Cupellini L, Gardiner AT, Cogdell R, Mennucci B. 2018. The role of charge-transfer states in the spectral tuning of antenna complexes of purple bacteria. Photosynth Res 137:215–226. doi: 10.1007/s11120-018-0492-1 PubMed DOI
Zeng Y, Selyanin V, Lukeš M, Dean J, Kaftan D, Feng F, Koblížek M. 2015. Characterization of the microaerophilic, bacteriochlorophyll a-containing bacterium Gemmatimonas phototrophica sp. nov., and emended descriptions of the genus Gemmatimonas and Gemmatimonas aurantiaca. Int J Syst Evol Microbiol 65:2410–2419. doi: 10.1099/ijs.0.000272 PubMed DOI
Koblížek M, Dachev M, Bína D, Nupur N, Piwosz K, Kaftan D. 2020. Utilization of light energy in phototrophic Gemmatimonadetes. J Photochem Photobiol B Biol 213:112085. doi: 10.1016/j.jphotobiol.2020.112085 PubMed DOI
Georgakopoulou S, Frese RN, Johnson E, Koolhaas C, Cogdell RJ, van Grondelle R, van der Zwan G. 2002. Absorption and CD spectroscopy and modeling of various LH2 complexes from purple bacteria. Biophys J 82:2184–2197. doi: 10.1016/S0006-3495(02)75565-3 PubMed DOI PMC
Georgakopoulou S, van Grondelle R, van der Zwan G. 2006. Explaining the visible and near-infrared circular dichroism spectra of light-harvesting 1 complexes from purple bacteria: a modeling study. J Phys Chem B 110:3344–3353. doi: 10.1021/jp051794c PubMed DOI
Jamali K, Käll L, Zhang R, Brown A, Kimanius D, Scheres SHW. 2024. Automated model building and protein identification in cryo-EM maps. Nature 628:450–457. doi: 10.1038/s41586-024-07215-4 PubMed DOI PMC
Emsley P, Cowtan K. 2004. Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60:2126–2132. doi: 10.1107/S0907444904019158 PubMed DOI
Croll TI. 2018. ISOLDE: a physically realistic environment for model building into low-resolution electron-density maps. Acta Crystallogr D Struct Biol 74:519–530. doi: 10.1107/S2059798318002425 PubMed DOI PMC
Adams PD, Afonine PV, Bunkóczi G, Chen VB, Davis IW, Echols N, Headd JJ, Hung L-W, Kapral GJ, Grosse-Kunstleve RW, McCoy AJ, Moriarty NW, Oeffner R, Read RJ, Richardson DC, Richardson JS, Terwilliger TC, Zwart PH. 2010. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr 66:213–221. doi: 10.1107/S0907444909052925 PubMed DOI PMC
Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780. doi: 10.1093/molbev/mst010 PubMed DOI PMC