A comparative look at structural variation among RC-LH1 'Core' complexes present in anoxygenic phototrophic bacteria
Language English Country Netherlands Media print-electronic
Document type Comparative Study, Journal Article, Review
Grant support
DE-SC0001035
Photosynthetic Antenna Research Center
PubMed
32430765
PubMed Central
PMC7423801
DOI
10.1007/s11120-020-00758-3
PII: 10.1007/s11120-020-00758-3
Knihovny.cz E-resources
- Keywords
- Anoxygenic phototrophs, Light harvesting, Purple photosynthetic bacteria, RC–LH1, Reaction centres, Structures,
- MeSH
- Bacterial Proteins chemistry genetics metabolism MeSH
- Benzoquinones metabolism MeSH
- Chromatiaceae genetics metabolism MeSH
- Photosynthetic Reaction Center Complex Proteins chemistry genetics metabolism MeSH
- Photosynthesis * MeSH
- Genetic Variation MeSH
- Protein Conformation MeSH
- Models, Molecular MeSH
- Energy Transfer MeSH
- Rhodobacter sphaeroides genetics metabolism MeSH
- Rhodopseudomonas genetics metabolism MeSH
- Light-Harvesting Protein Complexes chemistry genetics metabolism MeSH
- Structure-Activity Relationship MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
- Comparative Study MeSH
- Names of Substances
- Bacterial Proteins MeSH
- Benzoquinones MeSH
- Photosynthetic Reaction Center Complex Proteins MeSH
- quinone MeSH Browser
- Light-Harvesting Protein Complexes MeSH
All purple photosynthetic bacteria contain RC-LH1 'Core' complexes. The structure of this complex from Rhodobacter sphaeroides, Rhodopseudomonas palustris and Thermochromatium tepidum has been solved using X-ray crystallography. Recently, the application of single particle cryo-EM has revolutionised structural biology and the structure of the RC-LH1 'Core' complex from Blastochloris viridis has been solved using this technique, as well as the complex from the non-purple Chloroflexi species, Roseiflexus castenholzii. It is apparent that these structures are variations on a theme, although with a greater degree of structural diversity within them than previously thought. Furthermore, it has recently been discovered that the only phototrophic representative from the phylum Gemmatimonadetes, Gemmatimonas phototrophica, also contains a RC-LH1 'Core' complex. At present only a low-resolution EM-projection map exists but this shows that the Gemmatimonas phototrophica complex contains a double LH1 ring. This short review compares these different structures and looks at the functional significance of these variations from two main standpoints: energy transfer and quinone exchange.
See more in PubMed
Aagaard J, Sistrom WR. Control of synthesis of reaction center bacteriochlorophyll in photosynthetic bacteria. Photochem Photobiol. 1972;15:209. doi: 10.1111/j.1751-1097.1972.tb06240.x. PubMed DOI
Barz WP, Francia F, Venturoli G, Melandri BA, Vermeglio A, Oesterhelt D. Role of PufX protein in photosynthetic growth of Rhodobacter sphaeroides 1 PufX is required for efficient light-driven electron transfer and photophosphorylation under anaerobic conditions. Biochemistry. 1995;34:15235–15247. doi: 10.1021/bi00046a032. PubMed DOI
Barz WP, Oesterhelt D. Photosynthetic deficiency of a pufX deletion mutant of Rhodobacter sphaeroides is suppressed by point mutations in the light-harvesting complex genes pufB or pufA. Biochemistry. 1994;33:9741–9752. doi: 10.1021/bi00198a045. PubMed DOI
Barz WP, Vermeglio A, Francia F, Venturoli G, Melandri BA, Oesterhelt D. Role of the PufX protein in photosynthetic growth of Rhodobacter sphaeroides. 2. PufX is required for efficient ubiquinone/ubiquinol exchange between the reaction center QB site and the cytochrome bc1 complex. Biochemistry. 1995;34:15248–15258. doi: 10.1021/bi00046a033. PubMed DOI
Brunisholz RA, Jay F, Suter F, Zuber H. The light-harvesting polypeptides of Rhodopseudomonas viridis. The complete amino-acid sequences of B1015-alpha, B1015-beta and B1015-gamma. Biol Chem Hoppe-Seyler. 1985;366:87–98. doi: 10.1515/bchm3.1985.366.1.87. PubMed DOI
Clayton RK. Spectroscopic Analysis of Bacteriochlorophylls in vitro and in vivo. Photochem Photobiol. 1966;5:669–677. doi: 10.1111/j.1751-1097.1966.tb05813.x. DOI
Cogdell RJ, Gardiner AT, Roszak AW, Law CJ, Southall J, Isaacs NW. Rings, ellipses and horseshoes: how purple bacteria harvest solar energy. Photosynth Res. 2004;81:207–214. doi: 10.1023/B:PRES.0000036883.56959.a9. PubMed DOI
Cogdell RJ, Howard TD, Isaacs NW, McLuskey K, Gardiner AT. Structural factors which control the position of the Qy absorption band of bacteriochlorophyll a in purple bacterial antenna complexes. Photosynth Res. 2002;74:135–141. doi: 10.1023/A:1020995224156. PubMed DOI
Cogdell RJ, Roszak AW. The purple heart of photosynthesis. Nature. 2014;508:196–197. doi: 10.1038/nature13219. PubMed DOI
Collins AM, Kirmaier C, Holten D, Blankenship RE. Kinetics and energetics of electron transfer in reaction centers of the photosynthetic bacterium Roseiflexus castenholzii. Biochim Biophys Acta. 2011;1807:262–269. doi: 10.1016/j.bbabio.2010.11.011. PubMed DOI
Collins AM, Qian P, Tang Q, Bocian DF, Hunter CN, Blankenship RE. Light-harvesting antenna system from the phototrophic bacterium Roseiflexus castenholzii. Biochemistry. 2010;49:7524–7531. doi: 10.1021/bi101036t. PubMed DOI
Cupellini L, et al. An ab initio description of the excitonic properties of LH2 and their temperature dependence. J Phys Chem. 2016;120:11348–11359. doi: 10.1021/acs.jpcb.6b06585. PubMed DOI
Dachev M, et al. Unique double concentric ring organization of light harvesting complexes in Gemmatimonas phototrophica. PLoS Biol. 2017;15:e2003943. doi: 10.1371/journal.pbio.2003943. PubMed DOI PMC
Eimhjellen KE, Jensen A, Aasmundrud O. A new bacterial chlorophyll. Biochem Biophys Res Commun. 1963;10:232. doi: 10.1016/0006-291x(63)90422-4. DOI
Gabrielsen M, Gardiner AT, Cogdell RJ. Peripheral complexes of purple bacteria. In: Hunter CN, Daldal F, Thurnauer MC, Beatty JT, editors. The purple phototrophic bacteria. Advances in photosynthesis and respiration. Dordrecht: Springer; 2009. pp. 135–153.
Gardiner AT, Cogdell RJ, Takaichi S. The effect of growth conditions on the light-harvesting apparatus in Rhodopseudomonas acidophila. Photosynth Res. 1993;38:159–167. doi: 10.1007/BF00146415. PubMed DOI
Hu X, Damjanović A, Ritz T, Schulten K. Architecture and mechanism of the light-harvesting apparatus of purple bacteria. Proc Natl Acad Sci USA. 1998;95:5935–5941. doi: 10.1073/pnas.95.11.5935. PubMed DOI PMC
Jackson PJ, et al. Identification of protein W, the elusive sixth subunit of the Rhodopseudomonas palustris reaction center-light harvesting 1 core complex. Biochim Biophys Acta Bioenerg. 2018;1859:119–128. doi: 10.1016/j.bbabio.2017.11.001. PubMed DOI PMC
Jamieson SJ, Wang P, Qian P, Kirkland JY, Conroy MJ, Hunter CN, Bullough PA. Projection structure of the photosynthetic reaction centre–antenna complex of Rhodospirillum rubrum at 8.5 Å resolution. Embo J. 2002;21:3927–3935. doi: 10.1093/emboj/cdf410. PubMed DOI PMC
Karrasch S, Bullough PA, Ghosh R. The 8.5-angstrom projection map of the light-harvesting complex-I from rhodospirillum-rubrum reveals a ring composed of 16 subunits. Embo J. 1995;14:631–638. doi: 10.1002/j.1460-2075.1995.tb07041.x. PubMed DOI PMC
Kereïche S, et al. The peripheral light-harvesting complexes from purple sulfur bacteria have different ‘ring’ sizes. FEBS Lett. 2008;582:3650–3656. doi: 10.1016/j.febslet.2008.09.050. PubMed DOI
Kimura Y, et al. Biochemical and spectroscopic characterizations of a hybrid light harvesting reaction center core complex. Biochemistry. 2018 doi: 10.1021/acs.biochem.8b00644. PubMed DOI
Kimura Y, Hirano Y, Yu L-J, Suzuki H, Kobayashi M, Wang Z-Y. Calcium ions are involved in the unusual red-shift of the light-harvesting. 1. Qy transition of the core complex in thermophilic purple sulfur bacterium Thermochromatium tepidum. J Biol Chem. 2008;283:13867–13873. doi: 10.1074/jbc.M800256200. PubMed DOI
Kimura Y, Yu LJ, Hirano Y, Suzuki H, Wang ZY. Calcium ions are required for the enhanced thermal stability of the light-harvesting-reaction center core complex from thermophilic purple sulfur bacterium Thermochromatium tepidum. J Biol Chem. 2009;284:93–99. doi: 10.1074/jbc.M806840200. PubMed DOI
Koepke J, Hu X, Muenke C, Schulten K, Michel H. The crystal structure of the light-harvesting complex II (B800–850) from Rhodospirillum molischianum. Structure. 1996;4:581–597. doi: 10.1016/S0969-2126(96)00063-9. PubMed DOI
Kopejtka K, Tomasch J, Zeng Y, Tichý M, Sorokin DY, Koblížek M. Genomic analysis of the evolution of phototrophy among haloalkaliphilic rhodobacterales. Genome Biol Evol. 2017;9:1950–1962. doi: 10.1093/gbe/evx141. PubMed DOI PMC
Lang FS, Oesterhelt D. Microaerophilic growth and induction of the photosynthetic reaction center in Rhodopseudomonas viridis. J Bacteriol. 1989;171:2827–2834. doi: 10.1128/jb.171.5.2827-2834.1989. PubMed DOI PMC
Liang B, Tamm LK. NMR as a tool to investigate the structure, dynamics and function of membrane proteins. Nat Struct Mol Biol. 2016;23:468–474. doi: 10.1038/nsmb.3226. PubMed DOI PMC
Lilburn TG, Beatty JT. Suppressor mutants of the photosynthetically incompetent pufX deletion mutant Rhodobacter capsulatus ΔRC6(pTL2) FEMS Microbiol Lett. 1992;100:155–159. doi: 10.1111/j.1574-6968.1992.tb14034.x. DOI
Ma J, You X, Sun S, Wang X, Qin S, Sui S-F. Structural basis of energy transfer in Porphyridium purpureum phycobilisome. Nature. 2020 doi: 10.1038/s41586-020-2020-7. PubMed DOI
McDermott A. Structure and dynamics of membrane proteins by magic angle spinning solid-state NMR. Ann Rev Biophys. 2009;38:385–403. doi: 10.1146/annurev.biophys.050708.133719. PubMed DOI
McDermott G, Prince SM, Freer AA, Hawthornthwaite-Lawless AM, Papiz MZ, Cogdell RJ, Isaacs NW. Crystal structure of an integral membrane light-harvesting complex from photosynthetic bacteria. Nature. 1995;374:517–521. doi: 10.1038/374517a0. DOI
McGlynn P, Hunter CN, Jones MR. The Rhodobacter sphaeroides PufX protein is not required for photosynthetic competence in the absence of a light harvesting system. FEBS Lett. 1994;349:349–353. doi: 10.1016/0014-5793(94)00701-2. PubMed DOI
Miller KR. Three-dimensional structure of a photosynthetic membrane. Nature. 1982;300:53–55. doi: 10.1038/300053a0. DOI
Moser CC, Page CC, Cogdell RJ, Barber J, Wraight CA, Dutton PL. Length, time, and energy scales of photosystems. Adv Protein Chem. 2003;63:71–109. doi: 10.1016/s0065-3233(03)63004-4. PubMed DOI
Niwa S, Yu L-J, Takeda K, Hirano Y, Kawakami T, Wang-Otomo Z-Y, Miki K. Structure of the LH1–RC complex from thermochromatium tepidum at 3.0 Å. Nature. 2014;508:228–232. doi: 10.1038/nature13197. PubMed DOI
Nogales E. Profile of Joachim Frank, Richard Henderson, and Jacques Dubochet, 2017 nobel laureates in chemistry. Proc Natl Acad Sci USA. 2018;115:441–444. doi: 10.1073/pnas.1718898114. PubMed DOI PMC
Nottoli M, Jurinovich S, Cupellini L, Gardiner AT, Cogdell R, Mennucci B. The role of charge-transfer states in the spectral tuning of antenna complexes of purple bacteria. Photosynth Res. 2018;137:215–226. doi: 10.1007/s11120-018-0492-1. PubMed DOI
Olsen JD, Martin EC, Hunter CN. The PufX quinone channel enables the light-harvesting 1 antenna to bind more carotenoids for light collection and photoprotection. FEBS Lett. 2017;591:573–580. doi: 10.1002/1873-3468.12575. PubMed DOI PMC
Papiz MZ, Prince SM, Howard T, Cogdell RJ, Isaacs NW. The structure and thermal motion of the B800–850 LH2 complex from Rhodopseudomonas.acidophila at 2.0 Å resolution and 100 K: new structural features and functionally relevant motions. J Mol Biol. 2003;326:1523–1538. doi: 10.1016/s0022-2836(03)00024-x. PubMed DOI
Parkes-Loach PS, Michalski TJ, Bass WJ, Smith U, Loach PA. Probing the bacteriochlorophyll binding site by reconstitution of the light-harvesting complex of Rhodospirillum rubrum with bacteriochlorophyll a analogs. Biochemistry. 1990;29:2951–2960. doi: 10.1021/bi00464a010. PubMed DOI
Pierson BK, Sands VM, Frederick JL. Spectral irradiance and distribution of pigments in a highly layered marine microbial mat. Appl Environ Microbiol. 1990;56:2327–2340. doi: 10.1128/AEM.56.8.2327-2340.1990. PubMed DOI PMC
Pugh RJ, McGlynn P, Jones MR, Hunter CN. The LH1-RC core complex of Rhodobacter sphaeroides: interaction between components, time-dependent assembly, and topology of the PufX protein. Biochim Biophys Acta. 1998;1366:301–316. doi: 10.1016/s0005-2728(98)00131-5. PubMed DOI
Qian P, Martin EC, Ng IW, Hunter CN. The C-terminus of PufX plays a key role in dimerisation and assembly of the reaction center light-harvesting 1 complex from Rhodobacter sphaeroides. Biochim Biophys Acta Bioenergy. 2017;1858:795–803. doi: 10.1016/j.bbabio.2017.06.001. PubMed DOI PMC
Qian P, et al. Three-dimensional structure of the Rhodobacter sphaeroides RC-LH1-PufX complex: dimerization and quinone channels promoted by PufX. Biochemistry. 2013;52:7575–7585. doi: 10.1021/bi4011946. PubMed DOI
Qian P, Siebert CA, Wang P, Canniffe DP, Hunter CN. Cryo-EM structure of the Blastochloris viridis LH1–RC complex at 2.9 Å. Nature. 2018;556:203–208. doi: 10.1038/s41586-018-0014-5. PubMed DOI
Richter MF, Baier J, Southall J, Cogdell RJ, Oellerich S, Köhler J. Refinement of the x-ray structure of the RC–LH1 core complex from Rhodopseudomonas palustris by single-molecule spectroscopy. Proc Natl Acad Sci USA. 2007;104:20280. doi: 10.1073/pnas.0704599105. PubMed DOI PMC
Robert B, Cogdell RJ, Van Grondelle R. The light- harvesting system of purple bacteria. In: Green BR, Parson WW, editors. Light-harvesting antennas in photosynthesis. Dordrecht: Kluwer Academic Publishers; 2003. pp. 169–194.
Roszak AW, Howard TD, Southall J, Gardiner AT, Law CJ, Isaacs NW, Cogdell RJ. Crystal structure of the RC-LH1 core complex from Rhodopseudomonas palustris. Science. 2003;302:1969–1972. doi: 10.1126/science.1088892. PubMed DOI
Scheer H. Structure and occurrence of chlorophylls. In: Scheer H, editor. Chlorophylls. Boca Raton: CRC Press; 1991. pp. 3–30.
Scheuring S, Seguin J, Marco S, Lévy D, Robert B, Rigaud J-L. Nanodissection and high-resolution imaging of the Rhodopseudomonas viridis photosynthetic core complex in native membranes by AFM. Proc Natl Acad Sci USA. 2003;100:1690–1693. doi: 10.1073/pnas.0437992100. PubMed DOI PMC
Semchonok DA, Chauvin J-P, Frese RN, Jungas C, Boekema EJ. Structure of the dimeric RC-LH1-PufX complex from Rhodobaca bogoriensis investigated by electron microscopy. Philos Trans R Soc. 2012;367:3412–3419. doi: 10.1098/rstb.2012.0063. PubMed DOI PMC
Southall J, et al. Characterisation of a pucBA deletion mutant from Rhodopseudomonas palustris lacking all but the pucBAd genes. Photosynth Res. 2018;135:9–21. doi: 10.1007/s11120-017-0386-7. PubMed DOI PMC
Stark W, Kühlbrandt W, Wildhaber I, Wehrli E, Mühlethaler K. The structure of the photoreceptor unit of Rhodopseudomonas viridis. Embo J. 1984;3:777–783. doi: 10.1002/j.1460-2075.1984.tb01884.x. PubMed DOI PMC
Sundström V, van Grondelle R. Kinetics of excitation transfer and trapping in purple bacteria. In: Blankenship RE, Madigan MT, Bauer CE, editors. Anoxygenic photosynthetic bacteria. Advances in photosynthesis and respiration. Dordrecht: Springer; 1995. pp. 349–372.
Swainsbury DJK, et al. Engineering of B800 bacteriochlorophyll binding site specificity in the Rhodobacter sphaeroides LH2 antenna. Biochim Biophys Acta Bioenergy. 2019;1860:209–223. doi: 10.1016/j.bbabio.2018.11.008. PubMed DOI PMC
Swainsbury DJK, Martin EC, Vasilev C, Parkes-Loach PS, Loach PA, Hunter CN. Engineering of a calcium-ion binding site into the RC-LH1-PufX complex of Rhodobacter sphaeroides to enable ion-dependent spectral red-shifting. Biochim Biophys Acta Bioenergy. 2017;1858:927–938. doi: 10.1016/j.bbabio.2017.08.009. PubMed DOI PMC
Tunnicliffe RB, Ratcliffe EC, Hunter CN, Williamson MP. The solution structure of the PufX polypeptide from Rhodobacter sphaeroides. FEBS Lett. 2006;580:6967–6971. doi: 10.1016/j.febslet.2006.11.065. PubMed DOI
Xin Y, Pan J, Collins AM, Lin S, Blankenship RE. Excitation energy transfer and trapping dynamics in the core complex of the filamentous photosynthetic bacterium Roseiflexus castenholzii. Photosynth Res. 2012;111:149–156. doi: 10.1007/s11120-011-9669-6. PubMed DOI
Xin Y, et al. Cryo-EM structure of the RC-LH core complex from an early branching photosynthetic prokaryote. Nat Commun. 2018;9:1568. doi: 10.1038/s41467-018-03881-x. PubMed DOI PMC
Yamada M, Zhang H, Hanada S, Nagashima KVP, Shimada K, Matsuura K. Structural and spectroscopic properties of a reaction center complex from the chlorosome-lacking filamentous anoxygenic phototrophic bacterium Roseiflexus castenholzii. J Bacteriol. 2005;187:1702. doi: 10.1128/JB.187.5.1702-1709.2005. PubMed DOI PMC
Yu L-J, Kawakami T, Kimura Y, Wang-Otomo Z-Y. Structural basis for the unusual qy red-shift and enhanced thermostability of the LH1 complex from Thermochromatium tepidum. Biochemistry. 2016;55:6495–6504. doi: 10.1021/acs.biochem.6b00742. PubMed DOI
Yu L-J, Suga M, Wang-Otomo Z-Y, Shen J-R. Novel features of LH1-RC from Thermochromatium tepidum revealed from its atomic resolution structure. FEBS J. 2018;285:4359–4366. doi: 10.1111/febs.14679. PubMed DOI
Zeng Y, Feng F, Medová H, Dean J, Koblížek M. Functional type 2 photosynthetic reaction centers found in the rare bacterial phylum Gemmatimonadetes. Proc Natl Acad Sci USA. 2014;111:7795. doi: 10.1073/pnas.1400295111. PubMed DOI PMC
Zhang J, Ma J, Liu D, Qin S, Sun S, Zhao J, Sui S-F. Structure of phycobilisome from the red alga Griffithsia pacifica. Nature. 2017 doi: 10.1038/nature24278. PubMed DOI
Zuber H. The structure of the light-harvesting pigment-protein complexes. In: Barber J, editor. The light reactions. Topics in photosynthesis. Amsterdam: Elsevier; 1987. pp. 197–259.
Zuber H, Cogdell RJ. Structure and organisation of purple bacterial antenna complexes. In: Blankenship RE, Madigan M, Bauer C, editors. Anoxygenic photosynthetic bacteria. Dordrecht: Kluwer Academic Publishers; 1995. pp. 315–348.