Division of labor in trypanosome RNA processing and export through expanded Mex67 paralogs

. 2026 Jan 05 ; 54 (1) : .

Jazyk angličtina Země Anglie, Velká Británie Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41495905

Grantová podpora
R01 GM112108 NIH HHS - United States
R21 AI096069 NIH HHS - United States
R01 GM112108 NIGMS NIH HHS - United States
R01 AI140429-01A1 NIH HHS - United States
P41 GM109824, NIH HHS - United States
R21 AI096069 NIAID NIH HHS - United States
R01 AI140429 NIAID NIH HHS - United States
P41 GM109824 NIGMS NIH HHS - United States

In animals and fungi, bulk messenger RNA (mRNA) export to the cytoplasm is mediated by the Mex67/Mtr2 (NXF1/NXT1) heterodimer and driven by an ATP-dependent remodeling machinery on the cytoplasmic side of nuclear pore complexes, the exclusive gateways of nucleocytoplasmic transport. Uniquely, we show that trypanosomes have three distinct Mex67 paralogs (TbMex67, TbMex67b, and TbMex67L); each having a different non-redundant role in ribosomal RNA (rRNA) processing and mRNA export. Specifically, TbMex67 and TbMex67b retain canonical roles in mRNA export, albeit associating with specific mRNA cohorts and differing protein and mRNA interactomes in the vertebrate host and insect vector forms of the parasite. Further, TbMex67 and TbMex67b paralogs associate with the GTPase Ran export machinery, rather than ATP-dependent helicases, demonstrating significant departure in RNA export mechanisms in trypanosomes. In contrast, TbMex67L is not involved in mRNA export but primarily associates with ribosome biogenesis factors. Thus, in trypanosomes Mex67 paralogs have diverse functionalities with implications for evolutionary origins and diversity of the control of gene expression.

Zobrazit více v PubMed

Daniel  B, Nagy  G, Nagy  L. The intriguing complexities of mammalian gene regulation: how to link enhancers to regulated genes. Are we there yet?. FEBS Lett. 2014;588:2379–91. 10.1016/j.febslet.2014.05.041. PubMed DOI

Kaikkonen  MU, Lam  MT, Glass  CK. Non-coding RNAs as regulators of gene expression and epigenetics. Cardiovasc Res. 2011;90:430–40. 10.1093/cvr/cvr097. PubMed DOI PMC

Shaul  O. How introns enhance gene expression. Int J Biochem Cell Biol. 2017;91:145–55. 10.1016/j.biocel.2017.06.016. PubMed DOI

Wu  C. Chromatin remodeling and the control of gene expression. J Biol Chem. 1997;272:28171–4. 10.1074/jbc.272.45.28171. PubMed DOI

Kramer  S. Nuclear mRNA maturation and mRNA export control: from trypanosomes to opisthokonts. Parasitology. 2021;148:1196–1218. 10.1017/S0031182021000068. PubMed DOI PMC

Faraway  R, Zenklusen  D, Plaschka  C. Mechanisms of messenger RNA packaging and export. Annu Rev Cell Dev Biol. 2025;41:479–504. 10.1146/annurev-cellbio-101123-045256. PubMed DOI

Serpeloni  M, Moraes  CB, Muniz  JR  et al.  An essential nuclear protein in trypanosomes is a component of mRNA transcription/export pathway. PLoS One. 2011;6:e20730. 10.1371/journal.pone.0020730. PubMed DOI PMC

Obado  SO, Rout  MP, Field  MC. Sending the message: specialized RNA export mechanisms in trypanosomes. Trends Parasitol. 2022;38:854–67. 10.1016/j.pt.2022.07.008. PubMed DOI PMC

Makarov  AA, Padilla-Mejia  NE, Field  MC. Evolution and diversification of the nuclear pore complex. Biochem Soc Trans. 2021;49:1601–19. 10.1042/BST20200570. PubMed DOI PMC

Inoue  AH, Domingues  PF, Serpeloni  M  et al.  Proteomics uncovers novel components of an interactive protein network supporting RNA export in trypanosomes. Mol Cell Proteomics. 2022;21:100208. 10.1016/j.mcpro.2022.100208. PubMed DOI PMC

Okamura  M, Inose  H, Masuda  S. RNA export through the NPC in eukaryotes. Genes. 2015;6:124–49. 10.3390/genes6010124. PubMed DOI PMC

Strambio-De-Castillia  C, Niepel  M, Rout  MP. The nuclear pore complex: bridging nuclear transport and gene regulation. Nat Rev Mol Cell Biol. 2010;11:490–501. 10.1038/nrm2928. PubMed DOI

Ashkenazy-Titelman  A, Atrash  MK, Boocholez  A  et al.  RNA export through the nuclear pore complex is directional. Nat Commun. 2022;13:5881. 10.1038/s41467-022-33572-7. PubMed DOI PMC

Wing  CE, Fung  HYJ, Chook  YM. Karyopherin-mediated nucleocytoplasmic transport. Nat Rev Mol Cell Biol. 2022;23:307–28. 10.1038/s41580-021-00446-7. PubMed DOI PMC

Santos-Rosa  H, Moreno  H, Simos  G  et al.  Nuclear mRNA export requires complex formation between Mex67p and Mtr2p at the nuclear pores. Mol Cell Biol. 1998;18:6826–38. 10.1128/MCB.18.11.6826. PubMed DOI PMC

Wente  SR, Rout  MP. The nuclear pore complex and nuclear transport. Cold Spring Harb Perspect Biol. 2010;2:a000562. 10.1101/cshperspect.a000562. PubMed DOI PMC

Adams  RL, Terry  LJ, Wente  SR. Nucleoporin FG domains facilitate mRNP remodeling at the cytoplasmic face of the nuclear pore complex. Genetics. 2014;197:1213–24. 10.1534/genetics.114.164012. PubMed DOI PMC

Alcazar-Roman  AR, Tran  EJ, Guo  S  et al.  Inositol hexakisphosphate and Gle1 activate the DEAD-box protein Dbp5 for nuclear mRNA export. Nat Cell Biol. 2006;8:711–6. 10.1038/ncb1427. PubMed DOI

Hodge  CA, Colot  HV, Stafford  P  et al.  Rat8p/Dbp5p is a shuttling transport factor that interacts with Rat7p/Nup159p and Gle1p and suppresses the mRNA export defect of xpo1-1 cells. EMBO J. 1999;18:5778–88. 10.1093/emboj/18.20.5778. PubMed DOI PMC

Hodge  CA, Tran  EJ, Noble  KN  et al.  The Dbp5 cycle at the nuclear pore complex during mRNA export I: dbp5 mutants with defects in RNA binding and ATP hydrolysis define key steps for Nup159 and Gle1. Genes Dev. 2011;25:1052–64. 10.1101/gad.2041611. PubMed DOI PMC

Montpetit  B, Thomsen  ND, Helmke  KJ  et al.  A conserved mechanism of DEAD-box ATPase activation by nucleoporins and InsP6 in mRNA export. Nature. 2011;472:238–42. 10.1038/nature09862. PubMed DOI PMC

Noble  KN, Tran  EJ, Alcazar-Roman  AR  et al.  The Dbp5 cycle at the nuclear pore complex during mRNA export II: nucleotide cycling and mRNP remodeling by Dbp5 are controlled by Nup159 and Gle1. Genes Dev. 2011;25:1065–77. 10.1101/gad.2040611. PubMed DOI PMC

Weirich  CS, Erzberger  JP, Berger  JM  et al.  The N-terminal domain of Nup159 forms a beta-propeller that functions in mRNA export by tethering the helicase Dbp5 to the nuclear pore. Mol Cell. 2004;16:749–60. 10.1016/j.molcel.2004.10.032. PubMed DOI

Weirich  CS, Erzberger  JP, Flick  JS  et al.  Activation of the DExD/H-box protein Dbp5 by the nuclear-pore protein Gle1 and its coactivator InsP6 is required for mRNA export. Nat Cell Biol. 2006;8:668–76. 10.1038/ncb1424. PubMed DOI

Katahira  J, Strasser  K, Podtelejnikov  A  et al.  The Mex67p-mediated nuclear mRNA export pathway is conserved from yeast to human. EMBO J. 1999;18:2593–609. 10.1093/emboj/18.9.2593. PubMed DOI PMC

Adl  SM, Simpson  AG, Lane  CE  et al.  The revised classification of eukaryotes. J Eukaryotic Microbiol. 2012;59:429–514. 10.1111/j.1550-7408.2012.00644.x. PubMed DOI PMC

Baldauf  SL. The deep roots of eukaryotes. Science. 2003;300:1703–6. 10.1126/science.1085544. PubMed DOI

Gabiatti  BP, Krenzer  J, Braune  S  et al.  Detailed characterisation of the trypanosome nuclear pore architecture reveals conserved asymmetrical functional hubs that drive mRNA export. PLoS Biol. 2025;23:e3003024. 10.1371/journal.pbio.3003024. PubMed DOI PMC

Obado  SO, Brillantes  M, Uryu  K  et al.  Interactome mapping reveals the evolutionary history of the nuclear pore complex. PLoS Biol. 2016;14:e1002365, 10.1371/journal.pbio.1002365. PubMed DOI PMC

Serpeloni  M, Jimenez-Ruiz  E, Vidal  NM  et al.  UAP56 is a conserved crucial component of a divergent mRNA export pathway in PubMed DOI PMC

Serpeloni  M, Vidal  NM, Goldenberg  S  et al.  Comparative genomics of proteins involved in RNA nucleocytoplasmic export. BMC Evol Biol. 2011;11:7. 10.1186/1471-2148-11-7. PubMed DOI PMC

Berriman  M, Ghedin  E, Hertz-Fowler  C  et al.  The genome of the African trypanosome PubMed DOI

Cordon-Obras  C, Gomez-Linan  C, Torres-Rusillo  S  et al.  Identification of sequence-specific promoters driving polycistronic transcription initiation by RNA polymerase II in trypanosomes. Cell Rep. 2022;38:110221. 10.1016/j.celrep.2021.110221. PubMed DOI

Siegel  TN, Hekstra  DR, Kemp  LE  et al.  Four histone variants mark the boundaries of polycistronic transcription units in PubMed DOI PMC

Clayton  C. The regulation of trypanosome gene expression by RNA-binding proteins. PLoS Pathog. 2013;9:e1003680. 10.1371/journal.ppat.1003680. PubMed DOI PMC

Butterfield  ER, Obado  SO, Scutts  SR  et al.  A lineage-specific protein network at the trypanosome nuclear envelope. Nucleus. 2024;15:2310452. 10.1080/19491034.2024.2310452. PubMed DOI PMC

Goos  C, Dejung  M, Wehman  AM  et al.  Trypanosomes can initiate nuclear export co-transcriptionally. Nucleic Acids Res. 2019;47:266–82. 10.1093/nar/gky1136. PubMed DOI PMC

Dostalova  A, Kaser  S, Cristodero  M  et al.  The nuclear mRNA export receptor Mex67–Mtr2 of PubMed DOI

Kramer  S, Kimblin  NC, Carrington  M. Genome-wide PubMed DOI PMC

Schwede  A, Manful  T, Jha  BA  et al.  The role of deadenylation in the degradation of unstable mRNAs in trypanosomes. Nucleic Acids Res. 2009;37:5511–28. 10.1093/nar/gkp571. PubMed DOI PMC

DeGrasse  JA, DuBois  KN, Devos  D  et al.  Evidence for a shared nuclear pore complex architecture that is conserved from the last common eukaryotic ancestor. Mol Cell Proteomics. 2009;8:2119–30. 10.1074/mcp.M900038-MCP200. PubMed DOI PMC

O’Reilly  AJ, Dacks  JB, Field  MC. Evolution of the karyopherin-beta family of nucleocytoplasmic transport factors; ancient origins and continued specialization. PLoS One. 2011;6:e19308. 10.1371/journal.pone.0019308. PubMed DOI PMC

Hegedusova  E, Kulkarni  S, Burgman  B  et al.  The general mRNA exporters Mex67 and Mtr2 play distinct roles in nuclear export of tRNAs in trypanosoma brucei. Nucleic Acids Res. 2019;47:8620–31. 10.1093/nar/gkz671. PubMed DOI PMC

Buhlmann  M, Walrad  P, Rico  E  et al.  NMD3 regulates both mRNA and rRNA nuclear export in African trypanosomes via an XPOI-linked pathway. Nucleic Acids Res. 2015;43:4491–504. 10.1093/nar/gkv330. PubMed DOI PMC

Rink  C, Ciganda  M, Williams  N. The nuclear export receptors TbMex67 and TbMtr2 are required for ribosome biogenesis in PubMed DOI PMC

Chatterjee  K, Majumder  S, Wan  Y  et al.  Sharing the load: Mex67–Mtr2 cofunctions with Los1 in primary tRNA nuclear export. Genes Dev. 2017;31:2186–98. 10.1101/gad.305904.117. PubMed DOI PMC

Faza  MB, Chang  Y, Occhipinti  L  et al.  Role of Mex67–Mtr2 in the nuclear export of 40S pre-ribosomes. PLoS Genet. 2012;8:e1002915. 10.1371/journal.pgen.1002915. PubMed DOI PMC

Yao  W, Lutzmann  M, Hurt  E. A versatile interaction platform on the Mex67–Mtr2 receptor creates an overlap between mRNA and ribosome export. EMBO J. 2008;27:6–16. 10.1038/sj.emboj.7601947. PubMed DOI PMC

Yao  W, Roser  D, Kohler  A  et al.  Nuclear export of ribosomal 60S subunits by the general mRNA export receptor Mex67–Mtr2. Mol Cell. 2007;26:51–62. 10.1016/j.molcel.2007.02.018. PubMed DOI

Senay  C, Ferrari  P, Rocher  C  et al.  The Mtr2–Mex67 NTF2-like domain complex. Structural insights into a dual role of Mtr2 for yeast nuclear export. J Biol Chem. 2003;278:48395–403. 10.1074/jbc.M308275200. PubMed DOI

Fribourg  S, Braun  IC, Izaurralde  E  et al.  Structural basis for the recognition of a nucleoporin FG repeat by the NTF2-like domain of the TAP/p15 mRNA nuclear export factor. Mol Cell. 2001;8:645–56. 10.1016/S1097-2765(01)00348-3. PubMed DOI

Fernandez-Martinez  J, Kim  SJ, Shi  Y  et al.  Structure and function of the nuclear pore complex cytoplasmic mRNA export platform. Cell. 2016;167:1215–28. 10.1016/j.cell.2016.10.028. PubMed DOI PMC

Folkmann  AW, Noble  KN, Cole  CN  et al.  Dbp5, Gle1-IP6 and Nup159: a working model for mRNP export. Nucleus. 2011;2:540–8. 10.4161/nucl.2.6.17881. PubMed DOI PMC

DuBois  KN, Alsford  S, Holden  JM  et al.  NUP-1 is a large coiled-coil nucleoskeletal protein in trypanosomes with lamin-like functions. PLoS Biol. 2012;10:e1001287. 10.1371/journal.pbio.1001287. PubMed DOI PMC

Holden  JM, Koreny  L, Obado  S  et al.  Nuclear pore complex evolution: a trypanosome Mlp analogue functions in chromosomal segregation but lacks transcriptional barrier activity. MBoC. 2014;25:1421–36. 10.1091/mbc.e13-12-0750. PubMed DOI PMC

Florini  F, Naguleswaran  A, Gharib  WH  et al.  Unexpected diversity in eukaryotic transcription revealed by the retrotransposon hotspot family of trypanosoma brucei. Nucleic Acids Res. 2019;47:1725–39. 10.1093/nar/gky1255. PubMed DOI PMC

Kramer  S. The ApaH-like phosphatase TbALPH1 is the major mRNA decapping enzyme of trypanosomes. PLoS Pathog. 2017;13:e1006456. 10.1371/journal.ppat.1006456. PubMed DOI PMC

Hirumi  H, Hirumi  K. Continuous cultivation of PubMed DOI

Urbaniak  MD, Martin  DM, Ferguson  MA. Global quantitative SILAC phosphoproteomics reveals differential phosphorylation is widespread between the procyclic and bloodstream form lifecycle stages of PubMed DOI PMC

Oberholzer  M, Morand  S, Kunz  S  et al.  A vector series for rapid PCR-mediated C-terminal in situ tagging of PubMed DOI

Butterfield  ER, Abbott  JC, Field  MC. Automated phylogenetic analysis using best reciprocal BLAST. Methods Mol Biol. 2021;2369:41–63. PubMed

Edgar  RC. Muscle5: high-accuracy alignment ensembles enable unbiased assessments of sequence homology and phylogeny. Nat Commun. 2022;13:6968. 10.1038/s41467-022-34630-w. PubMed DOI PMC

Lawrence  TJ, Kauffman  KT, Amrine  KC  et al.  FAST: FAST analysis of sequences toolbox. Front Genet. 2015;6:172. 10.3389/fgene.2015.00172. PubMed DOI PMC

Price  MN, Dehal  PS, Arkin  AP. FastTree 2–approximately maximum-likelihood trees for large alignments. PLoS One. 2010;5:e9490. 10.1371/journal.pone.0009490. PubMed DOI PMC

Obado  SO, Field  MC, Chait  BT  et al.  High-efficiency isolation of nuclear envelope protein complexes from trypanosomes. Methods Mol Biol. 2016;1411:67–80. PubMed

Fenyo  D, Eriksson  J, Beavis  R. Mass spectrometric protein identification using the global proteome machine. Methods Mol Biol. 2010;673:189–202. PubMed PMC

Fridy  PC, Li  Y, Keegan  S  et al.  A robust pipeline for rapid production of versatile nanobody repertoires. Nat Methods. 2014;11:1253–60. 10.1038/nmeth.3170. PubMed DOI PMC

Kohler  A, Hurt  E. Exporting RNA from the nucleus to the cytoplasm. Nat Rev Mol Cell Biol. 2007;8:761–73. 10.1038/nrm2255. PubMed DOI

Kim  D, Paggi  JM, Park  C  et al.  Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol. 2019;37:907–15. 10.1038/s41587-019-0201-4. PubMed DOI PMC

Liao  Y, Smyth  GK, Shi  W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014;30:923–30. 10.1093/bioinformatics/btt656. PubMed DOI

Robinson  MD, McCarthy  DJ, Smyth  GK. edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26:139–40. 10.1093/bioinformatics/btp616. PubMed DOI PMC

Alsford  S, Turner  DJ, Obado  SO  et al.  High-throughput phenotyping using parallel sequencing of RNA interference targets in the African trypanosome. Genome Res. 2011;21:915–24. 10.1101/gr.115089.110. PubMed DOI PMC

Wirtz  E, Leal  S, Ochatt  C  et al.  A tightly regulated inducible expression system for conditional gene knock-outs and dominant-negative genetics in Trypanosoma brucei. Mol Biochem Parasitol. 1999;99:89–101. 10.1016/S0166-6851(99)00002-X. PubMed DOI

Soding  J, Biegert  A, Lupas  AN. The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res. 2005;33:W244–8. 10.1093/nar/gki408. PubMed DOI PMC

Jumper  J, Evans  R, Pritzel  A  et al.  Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596:583–9. 10.1038/s41586-021-03819-2. PubMed DOI PMC

Wheeler  RJ. A resource for improved predictions of Trypanosoma and Leishmania protein three-dimensional structure. PLoS One. 2021;16:e0259871. 10.1371/journal.pone.0259871. PubMed DOI PMC

Pettersen  EF, Goddard  TD, Huang  CC  et al.  UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci. 2021;30:70–82. 10.1002/pro.3943. PubMed DOI PMC

Gabernet-Castello  C, O’Reilly  AJ, Dacks  JB  et al.  Evolution of Tre-2/Bub2/Cdc16 (TBC) Rab GTPase-activating proteins. MBoC. 2013;24:1574–83. 10.1091/mbc.e12-07-0557. PubMed DOI PMC

Seewald  MJ, Korner  C, Wittinghofer  A  et al.  RanGAP mediates GTP hydrolysis without an arginine finger. Nature. 2002;415:662–6. 10.1038/415662a. PubMed DOI

Herold  A, Suyama  M, Rodrigues  JP  et al.  TAP (NXF1) belongs to a multigene family of putative RNA export factors with a conserved modular architecture. Mol Cell Biol. 2000;20:8996–9008. 10.1128/MCB.20.23.8996-9008.2000. PubMed DOI PMC

Segref  A, Sharma  K, Doye  V  et al.  Mex67p, a novel factor for nuclear mRNA export, binds to both poly(A)+ RNA and nuclear pores. EMBO J. 1997;16:3256–71. 10.1093/emboj/16.11.3256. PubMed DOI PMC

Rink  C, Williams  N. Unique interactions of the nuclear export receptors TbMex67 and TbMtr2 with components of the 5S ribonuclear particle in trypanosoma brucei. mSphere. 2019;4:e00471–19. 10.1128/mSphere.00471-19. PubMed DOI PMC

Gwizdek  C, Iglesias  N, Rodriguez  MS  et al.  Ubiquitin-associated domain of Mex67 synchronizes recruitment of the mRNA export machinery with transcription. Proc Natl Acad Sci USA. 2006;103:16376–81. 10.1073/pnas.0607941103. PubMed DOI PMC

Aibara  S, Katahira  J, Valkov  E  et al.  The principal mRNA nuclear export factor NXF1:NXT1 forms a symmetric binding platform that facilitates export of retroviral CTE-RNA. Nucleic Acids Res. 2015;43:1883–93. 10.1093/nar/gkv032. PubMed DOI PMC

Blevins  MB, Smith  AM, Phillips  EM  et al.  Complex formation among the RNA export proteins Nup98, Rae1/Gle2, and TAP. J Biol Chem. 2003;278:20979–88. 10.1074/jbc.M302061200. PubMed DOI

Murphy  R, Watkins  JL, Wente  SR. GLE2, a PubMed DOI PMC

Pritchard  CE, Fornerod  M, Kasper  LH  et al.  RAE1 is a shuttling mRNA export factor that binds to a GLEBS-like NUP98 motif at the nuclear pore complex through multiple domains. J Cell Biol. 1999;145:237–54. 10.1083/jcb.145.2.237. PubMed DOI PMC

Kramer  S, Bannerman-Chukualim  B, Ellis  L  et al.  Differential localization of the two PubMed DOI PMC

Zoltner  M, Krienitz  N, Field  MC  et al.  Comparative proteomics of the two PubMed DOI PMC

Natalizio  BJ, Wente  SR. Postage for the messenger: designating routes for nuclear mRNA export. Trends Cell Biol. 2013;23:365–73. 10.1016/j.tcb.2013.03.006. PubMed DOI PMC

Bishola Tshitenge  T, Clayton  C. The PubMed DOI PMC

Mishra  A, Kaur  JN, McSkimming  DI  et al.  Selective nuclear export of mRNAs is promoted by DRBD18 in PubMed DOI PMC

Dean  S, Sunter  JD, Wheeler  RJ. TrypTag.org: a trypanosome genome-wide protein localisation resource. Trends Parasitol. 2017;33:80–2. 10.1016/j.pt.2016.10.009. PubMed DOI PMC

Klingauf-Nerurkar  P, Gillet  LC, Portugal-Calisto  D  et al.  The GTPase Nog1 co-ordinates the assembly, maturation and quality control of distant ribosomal functional centers. eLife. 2020;9 :e52474. 10.7554/eLife.52474. PubMed DOI PMC

Pestov  DG, Stockelman  MG, Strezoska  Z  et al.  ERB1, the yeast homolog of mammalian Bop1, is an essential gene required for maturation of the 25S and 5.8S ribosomal RNAs. Nucleic Acids Res. 2001;29:3621–30. 10.1093/nar/29.17.3621. PubMed DOI PMC

Grant  RP, Neuhaus  D, Stewart  M. Structural basis for the interaction between the Tap/NXF1 UBA domain and FG nucleoporins at 1A resolution. J Mol Biol. 2003;326:849–58. 10.1016/S0022-2836(02)01474-2. PubMed DOI

Suyama  M, Doerks  T, Braun  IC  et al.  Prediction of structural domains of TAP reveals details of its interaction with p15 and nucleoporins. EMBO Rep. 2000;1:53–8. 10.1093/embo-reports/kvd009. PubMed DOI PMC

Kent  HM, Moore  MS, Quimby  BB  et al.  Engineered mutants in the switch II loop of Ran define the contribution made by key residues to the interaction with nuclear transport factor 2 (NTF2) and the role of this interaction in nuclear protein import. J Mol Biol. 1999;289:565–77. 10.1006/jmbi.1999.2775. PubMed DOI

Sarkar  A, Pech  M, Thoms  M  et al.  Ribosome-stalk biogenesis is coupled with recruitment of nuclear-export factor to the nascent 60S subunit. Nat Struct Mol Biol. 2016;23:1074–82. 10.1038/nsmb.3312. PubMed DOI

Jensen  BC, Wang  Q, Kifer  CT  et al.  The NOG1 GTP-binding protein is required for biogenesis of the 60 S ribosomal subunit. J Biol Chem. 2003;278:32204–11. 10.1074/jbc.M304198200. PubMed DOI

Lueong  S, Merce  C, Fischer  B  et al.  Gene expression regulatory networks in PubMed DOI

Hendriks  EF, Robinson  DR, Hinkins  M  et al.  A novel CCCH protein which modulates differentiation of PubMed DOI PMC

Shi  H, Butler  K, Tschudi  C. A single-point mutation in the RNA-binding protein 6 generates PubMed DOI PMC

Kolev  NG, Ramey-Butler  K, Cross  GA  et al.  Developmental progression to infectivity in PubMed DOI PMC

Mony  BM, MacGregor  P, Ivens  A  et al.  Genome-wide dissection of the quorum sensing signalling pathway in PubMed DOI PMC

Richardson  JP, Beecroft  RP, Tolson  DL  et al.  Procyclin: an unusual immunodominant glycoprotein surface antigen from the procyclic stage of African trypanosomes. Mol Biochem Parasitol. 1988;31:203–16. 10.1016/0166-6851(88)90150-8. PubMed DOI

Colmerauer  ME, Davis  CE, Pearson  TW. The trypanosome surface glycoprotein procyclin is expressed only on tsetse fly vector stages of the parasite. Parasitol Res. 1989;76:171–3. 10.1007/BF00930841. PubMed DOI

Roditi  I, Schwarz  H, Pearson  TW  et al.  Procyclin gene expression and loss of the variant surface glycoprotein during differentiation of trypanosoma brucei. J Cell Biol. 1989;108:737–46. 10.1083/jcb.108.2.737. PubMed DOI PMC

Hoeijmakers  JH, Frasch  AC, Bernards  A  et al.  Novel expression-linked copies of the genes for variant surface antigens in trypanosomes. Nature. 1980;284:78–80. 10.1038/284078a0. PubMed DOI

Boothroyd  JC, Cross  GA, Hoeijmakers  JH.  et al.  A variant surface glycoprotein of PubMed DOI

Gunzl  A, Bruderer  T, Laufer  G  et al.  RNA polymerase I transcribes procyclin genes and variant surface glycoprotein gene expression sites in PubMed DOI PMC

Lee  MG, Van der Ploeg  LH. Transcription of protein-coding genes in trypanosomes by RNA polymerase I. Annu Rev Microbiol. 1997;51:463–89. 10.1146/annurev.micro.51.1.463. PubMed DOI

Vanhamme  L, Poelvoorde  P, Pays  A  et al.  Differential RNA elongation controls the variant surface glycoprotein gene expression sites of PubMed DOI

Kassem  A, Pays  E, Vanhamme  L. Transcription is initiated on silent variant surface glycoprotein expression sites despite monoallelic expression in PubMed DOI PMC

Faria  J, Briggs  EM, Black  JA  et al.  Emergence and adaptation of the cellular machinery directing antigenic variation in the African trypanosome. Curr Opin Microbiol. 2022;70:102209. 10.1016/j.mib.2022.102209. PubMed DOI

Pozzi  B, Naguleswaran  A, Florini  F  et al.  The RNA export factor TbMex67 connects transcription and RNA export in PubMed DOI PMC

Galvan  SC, Castro  C, Segura  E  et al.  Nucleotide sequences of the six very small molecules of PubMed DOI PMC

Vanden Broeck  A, Klinge  S. Eukaryotic ribosome assembly. Annu Rev Biochem. 2024;93:189–210. 10.1146/annurev-biochem-030222-113611. PubMed DOI

Rajan  KS, Chikne  V, Decker  K  et al.  Unique aspects of rRNA biogenesis in trypanosomatids. Trends Parasitol. 2019;35:778–94. 10.1016/j.pt.2019.07.012. PubMed DOI

Hobeika  M, Brockmann  C, Gruessing  F  et al.  Structural requirements for the ubiquitin-associated domain of the mRNA export factor Mex67 to bind its specific targets, the transcription elongation THO complex component Hpr1 and nucleoporin FXFG repeats. J Biol Chem. 2009;284:17575–83. 10.1074/jbc.M109.004374. PubMed DOI PMC

Brown  JA, Bharathi  A, Ghosh  A  et al.  A mutation in the PubMed DOI

Izaurralde  E. A novel family of nuclear transport receptors mediates the export of messenger RNA to the cytoplasm. Eur J Cell Biol. 2002;81:577–84. 10.1078/0171-9335-00273. PubMed DOI

Jun  L, Frints  S, Duhamel  H  et al.  NXF5, a novel member of the nuclear RNA export factor family, is lost in a male patient with a syndromic form of mental retardation. Curr Biol. 2001;11:1381–91. 10.1016/S0960-9822(01)00419-5. PubMed DOI

Kerkow  DE, Carmel  AB, Menichelli  E  et al.  The structure of the NXF2/NXT1 heterodimeric complex reveals the combined specificity and versatility of the NTF2-like fold. J Mol Biol. 2012;415:649–65. 10.1016/j.jmb.2011.11.027. PubMed DOI PMC

Yang  J, Bogerd  HP, Wang  PJ  et al.  Two closely related human nuclear export factors utilize entirely distinct export pathways. Mol Cell. 2001;8:397–406. 10.1016/S1097-2765(01)00303-3. PubMed DOI

Lai  D, Sakkas  D, Huang  Y. The fragile X mental retardation protein interacts with a distinct mRNA nuclear export factor NXF2. RNA. 2006;12:1446–9. 10.1261/rna.94306. PubMed DOI PMC

Zhang  M, Wang  Q, Huang  Y. Fragile X mental retardation protein FMRP and the RNA export factor NXF2 associate with and destabilize Nxf1 mRNA in neuronal cells. Proc Natl Acad Sci USA. 2007;104:10057–62. 10.1073/pnas.0700169104. PubMed DOI PMC

Alber  F, Dokudovskaya  S, Veenhoff  LM  et al.  The molecular architecture of the nuclear pore complex. Nature. 2007;450:695–701. 10.1038/nature06405. PubMed DOI

Katahira  J, Miki  T, Takano  K  et al.  Nuclear RNA export factor 7 is localized in processing bodies and neuronal RNA granules through interactions with shuttling hnRNPs. Nucleic Acids Res. 2008;36:616–28. 10.1093/nar/gkm556. PubMed DOI PMC

Vanmarsenille  L, Verbeeck  J, Belet  S  et al.  Generation and characterization of an Nxf7 knockout mouse to study NXF5 deficiency in a patient with intellectual disability. PLoS One. 2013;8:e64144. 10.1371/journal.pone.0064144. PubMed DOI PMC

Tan  W, Zolotukhin  AS, Tretyakova  I  et al.  Identification and characterization of the mouse nuclear export factor (Nxf) family members. Nucleic Acids Res. 2005;33:3855–65. 10.1093/nar/gki706. PubMed DOI PMC

Wiegand  HL, Coburn  GA, Zeng  Y  et al.  Formation of Tap/NXT1 heterodimers activates Tap-dependent nuclear mRNA export by enhancing recruitment to nuclear pore complexes. Mol Cell Biol. 2002;22:245–56. 10.1128/MCB.22.1.245-256.2002. PubMed DOI PMC

Maishman  L, Obado  SO, Alsford  S  et al.  Co-dependence between trypanosome nuclear lamina components in nuclear stability and control of gene expression. Nucleic Acids Res. 2016;44:10554–70. 10.1093/nar/gkw751. PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...