Division of labor in trypanosome RNA processing and export through expanded Mex67 paralogs
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články
Grantová podpora
R01 GM112108
NIH HHS - United States
R21 AI096069
NIH HHS - United States
R01 GM112108
NIGMS NIH HHS - United States
R01 AI140429-01A1
NIH HHS - United States
P41 GM109824,
NIH HHS - United States
R21 AI096069
NIAID NIH HHS - United States
R01 AI140429
NIAID NIH HHS - United States
P41 GM109824
NIGMS NIH HHS - United States
PubMed
41495905
PubMed Central
PMC12774637
DOI
10.1093/nar/gkaf1443
PII: 8415842
Knihovny.cz E-zdroje
- MeSH
- aktivní transport - buněčné jádro MeSH
- messenger RNA metabolismus genetika MeSH
- nukleocytoplazmatické transportní proteiny * metabolismus genetika MeSH
- posttranskripční úpravy RNA * MeSH
- proteiny vázající RNA * metabolismus genetika MeSH
- protozoální proteiny * metabolismus genetika MeSH
- RNA protozoální metabolismus genetika MeSH
- RNA ribozomální metabolismus genetika MeSH
- transport RNA MeSH
- Trypanosoma brucei brucei * genetika metabolismus MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- messenger RNA MeSH
- nukleocytoplazmatické transportní proteiny * MeSH
- proteiny vázající RNA * MeSH
- protozoální proteiny * MeSH
- RNA protozoální MeSH
- RNA ribozomální MeSH
In animals and fungi, bulk messenger RNA (mRNA) export to the cytoplasm is mediated by the Mex67/Mtr2 (NXF1/NXT1) heterodimer and driven by an ATP-dependent remodeling machinery on the cytoplasmic side of nuclear pore complexes, the exclusive gateways of nucleocytoplasmic transport. Uniquely, we show that trypanosomes have three distinct Mex67 paralogs (TbMex67, TbMex67b, and TbMex67L); each having a different non-redundant role in ribosomal RNA (rRNA) processing and mRNA export. Specifically, TbMex67 and TbMex67b retain canonical roles in mRNA export, albeit associating with specific mRNA cohorts and differing protein and mRNA interactomes in the vertebrate host and insect vector forms of the parasite. Further, TbMex67 and TbMex67b paralogs associate with the GTPase Ran export machinery, rather than ATP-dependent helicases, demonstrating significant departure in RNA export mechanisms in trypanosomes. In contrast, TbMex67L is not involved in mRNA export but primarily associates with ribosome biogenesis factors. Thus, in trypanosomes Mex67 paralogs have diverse functionalities with implications for evolutionary origins and diversity of the control of gene expression.
Zobrazit více v PubMed
Daniel B, Nagy G, Nagy L. The intriguing complexities of mammalian gene regulation: how to link enhancers to regulated genes. Are we there yet?. FEBS Lett. 2014;588:2379–91. 10.1016/j.febslet.2014.05.041. PubMed DOI
Kaikkonen MU, Lam MT, Glass CK. Non-coding RNAs as regulators of gene expression and epigenetics. Cardiovasc Res. 2011;90:430–40. 10.1093/cvr/cvr097. PubMed DOI PMC
Shaul O. How introns enhance gene expression. Int J Biochem Cell Biol. 2017;91:145–55. 10.1016/j.biocel.2017.06.016. PubMed DOI
Wu C. Chromatin remodeling and the control of gene expression. J Biol Chem. 1997;272:28171–4. 10.1074/jbc.272.45.28171. PubMed DOI
Kramer S. Nuclear mRNA maturation and mRNA export control: from trypanosomes to opisthokonts. Parasitology. 2021;148:1196–1218. 10.1017/S0031182021000068. PubMed DOI PMC
Faraway R, Zenklusen D, Plaschka C. Mechanisms of messenger RNA packaging and export. Annu Rev Cell Dev Biol. 2025;41:479–504. 10.1146/annurev-cellbio-101123-045256. PubMed DOI
Serpeloni M, Moraes CB, Muniz JR et al. An essential nuclear protein in trypanosomes is a component of mRNA transcription/export pathway. PLoS One. 2011;6:e20730. 10.1371/journal.pone.0020730. PubMed DOI PMC
Obado SO, Rout MP, Field MC. Sending the message: specialized RNA export mechanisms in trypanosomes. Trends Parasitol. 2022;38:854–67. 10.1016/j.pt.2022.07.008. PubMed DOI PMC
Makarov AA, Padilla-Mejia NE, Field MC. Evolution and diversification of the nuclear pore complex. Biochem Soc Trans. 2021;49:1601–19. 10.1042/BST20200570. PubMed DOI PMC
Inoue AH, Domingues PF, Serpeloni M et al. Proteomics uncovers novel components of an interactive protein network supporting RNA export in trypanosomes. Mol Cell Proteomics. 2022;21:100208. 10.1016/j.mcpro.2022.100208. PubMed DOI PMC
Okamura M, Inose H, Masuda S. RNA export through the NPC in eukaryotes. Genes. 2015;6:124–49. 10.3390/genes6010124. PubMed DOI PMC
Strambio-De-Castillia C, Niepel M, Rout MP. The nuclear pore complex: bridging nuclear transport and gene regulation. Nat Rev Mol Cell Biol. 2010;11:490–501. 10.1038/nrm2928. PubMed DOI
Ashkenazy-Titelman A, Atrash MK, Boocholez A et al. RNA export through the nuclear pore complex is directional. Nat Commun. 2022;13:5881. 10.1038/s41467-022-33572-7. PubMed DOI PMC
Wing CE, Fung HYJ, Chook YM. Karyopherin-mediated nucleocytoplasmic transport. Nat Rev Mol Cell Biol. 2022;23:307–28. 10.1038/s41580-021-00446-7. PubMed DOI PMC
Santos-Rosa H, Moreno H, Simos G et al. Nuclear mRNA export requires complex formation between Mex67p and Mtr2p at the nuclear pores. Mol Cell Biol. 1998;18:6826–38. 10.1128/MCB.18.11.6826. PubMed DOI PMC
Wente SR, Rout MP. The nuclear pore complex and nuclear transport. Cold Spring Harb Perspect Biol. 2010;2:a000562. 10.1101/cshperspect.a000562. PubMed DOI PMC
Adams RL, Terry LJ, Wente SR. Nucleoporin FG domains facilitate mRNP remodeling at the cytoplasmic face of the nuclear pore complex. Genetics. 2014;197:1213–24. 10.1534/genetics.114.164012. PubMed DOI PMC
Alcazar-Roman AR, Tran EJ, Guo S et al. Inositol hexakisphosphate and Gle1 activate the DEAD-box protein Dbp5 for nuclear mRNA export. Nat Cell Biol. 2006;8:711–6. 10.1038/ncb1427. PubMed DOI
Hodge CA, Colot HV, Stafford P et al. Rat8p/Dbp5p is a shuttling transport factor that interacts with Rat7p/Nup159p and Gle1p and suppresses the mRNA export defect of xpo1-1 cells. EMBO J. 1999;18:5778–88. 10.1093/emboj/18.20.5778. PubMed DOI PMC
Hodge CA, Tran EJ, Noble KN et al. The Dbp5 cycle at the nuclear pore complex during mRNA export I: dbp5 mutants with defects in RNA binding and ATP hydrolysis define key steps for Nup159 and Gle1. Genes Dev. 2011;25:1052–64. 10.1101/gad.2041611. PubMed DOI PMC
Montpetit B, Thomsen ND, Helmke KJ et al. A conserved mechanism of DEAD-box ATPase activation by nucleoporins and InsP6 in mRNA export. Nature. 2011;472:238–42. 10.1038/nature09862. PubMed DOI PMC
Noble KN, Tran EJ, Alcazar-Roman AR et al. The Dbp5 cycle at the nuclear pore complex during mRNA export II: nucleotide cycling and mRNP remodeling by Dbp5 are controlled by Nup159 and Gle1. Genes Dev. 2011;25:1065–77. 10.1101/gad.2040611. PubMed DOI PMC
Weirich CS, Erzberger JP, Berger JM et al. The N-terminal domain of Nup159 forms a beta-propeller that functions in mRNA export by tethering the helicase Dbp5 to the nuclear pore. Mol Cell. 2004;16:749–60. 10.1016/j.molcel.2004.10.032. PubMed DOI
Weirich CS, Erzberger JP, Flick JS et al. Activation of the DExD/H-box protein Dbp5 by the nuclear-pore protein Gle1 and its coactivator InsP6 is required for mRNA export. Nat Cell Biol. 2006;8:668–76. 10.1038/ncb1424. PubMed DOI
Katahira J, Strasser K, Podtelejnikov A et al. The Mex67p-mediated nuclear mRNA export pathway is conserved from yeast to human. EMBO J. 1999;18:2593–609. 10.1093/emboj/18.9.2593. PubMed DOI PMC
Adl SM, Simpson AG, Lane CE et al. The revised classification of eukaryotes. J Eukaryotic Microbiol. 2012;59:429–514. 10.1111/j.1550-7408.2012.00644.x. PubMed DOI PMC
Baldauf SL. The deep roots of eukaryotes. Science. 2003;300:1703–6. 10.1126/science.1085544. PubMed DOI
Gabiatti BP, Krenzer J, Braune S et al. Detailed characterisation of the trypanosome nuclear pore architecture reveals conserved asymmetrical functional hubs that drive mRNA export. PLoS Biol. 2025;23:e3003024. 10.1371/journal.pbio.3003024. PubMed DOI PMC
Obado SO, Brillantes M, Uryu K et al. Interactome mapping reveals the evolutionary history of the nuclear pore complex. PLoS Biol. 2016;14:e1002365, 10.1371/journal.pbio.1002365. PubMed DOI PMC
Serpeloni M, Jimenez-Ruiz E, Vidal NM et al. UAP56 is a conserved crucial component of a divergent mRNA export pathway in PubMed DOI PMC
Serpeloni M, Vidal NM, Goldenberg S et al. Comparative genomics of proteins involved in RNA nucleocytoplasmic export. BMC Evol Biol. 2011;11:7. 10.1186/1471-2148-11-7. PubMed DOI PMC
Berriman M, Ghedin E, Hertz-Fowler C et al. The genome of the African trypanosome PubMed DOI
Cordon-Obras C, Gomez-Linan C, Torres-Rusillo S et al. Identification of sequence-specific promoters driving polycistronic transcription initiation by RNA polymerase II in trypanosomes. Cell Rep. 2022;38:110221. 10.1016/j.celrep.2021.110221. PubMed DOI
Siegel TN, Hekstra DR, Kemp LE et al. Four histone variants mark the boundaries of polycistronic transcription units in PubMed DOI PMC
Clayton C. The regulation of trypanosome gene expression by RNA-binding proteins. PLoS Pathog. 2013;9:e1003680. 10.1371/journal.ppat.1003680. PubMed DOI PMC
Butterfield ER, Obado SO, Scutts SR et al. A lineage-specific protein network at the trypanosome nuclear envelope. Nucleus. 2024;15:2310452. 10.1080/19491034.2024.2310452. PubMed DOI PMC
Goos C, Dejung M, Wehman AM et al. Trypanosomes can initiate nuclear export co-transcriptionally. Nucleic Acids Res. 2019;47:266–82. 10.1093/nar/gky1136. PubMed DOI PMC
Dostalova A, Kaser S, Cristodero M et al. The nuclear mRNA export receptor Mex67–Mtr2 of PubMed DOI
Kramer S, Kimblin NC, Carrington M. Genome-wide PubMed DOI PMC
Schwede A, Manful T, Jha BA et al. The role of deadenylation in the degradation of unstable mRNAs in trypanosomes. Nucleic Acids Res. 2009;37:5511–28. 10.1093/nar/gkp571. PubMed DOI PMC
DeGrasse JA, DuBois KN, Devos D et al. Evidence for a shared nuclear pore complex architecture that is conserved from the last common eukaryotic ancestor. Mol Cell Proteomics. 2009;8:2119–30. 10.1074/mcp.M900038-MCP200. PubMed DOI PMC
O’Reilly AJ, Dacks JB, Field MC. Evolution of the karyopherin-beta family of nucleocytoplasmic transport factors; ancient origins and continued specialization. PLoS One. 2011;6:e19308. 10.1371/journal.pone.0019308. PubMed DOI PMC
Hegedusova E, Kulkarni S, Burgman B et al. The general mRNA exporters Mex67 and Mtr2 play distinct roles in nuclear export of tRNAs in trypanosoma brucei. Nucleic Acids Res. 2019;47:8620–31. 10.1093/nar/gkz671. PubMed DOI PMC
Buhlmann M, Walrad P, Rico E et al. NMD3 regulates both mRNA and rRNA nuclear export in African trypanosomes via an XPOI-linked pathway. Nucleic Acids Res. 2015;43:4491–504. 10.1093/nar/gkv330. PubMed DOI PMC
Rink C, Ciganda M, Williams N. The nuclear export receptors TbMex67 and TbMtr2 are required for ribosome biogenesis in PubMed DOI PMC
Chatterjee K, Majumder S, Wan Y et al. Sharing the load: Mex67–Mtr2 cofunctions with Los1 in primary tRNA nuclear export. Genes Dev. 2017;31:2186–98. 10.1101/gad.305904.117. PubMed DOI PMC
Faza MB, Chang Y, Occhipinti L et al. Role of Mex67–Mtr2 in the nuclear export of 40S pre-ribosomes. PLoS Genet. 2012;8:e1002915. 10.1371/journal.pgen.1002915. PubMed DOI PMC
Yao W, Lutzmann M, Hurt E. A versatile interaction platform on the Mex67–Mtr2 receptor creates an overlap between mRNA and ribosome export. EMBO J. 2008;27:6–16. 10.1038/sj.emboj.7601947. PubMed DOI PMC
Yao W, Roser D, Kohler A et al. Nuclear export of ribosomal 60S subunits by the general mRNA export receptor Mex67–Mtr2. Mol Cell. 2007;26:51–62. 10.1016/j.molcel.2007.02.018. PubMed DOI
Senay C, Ferrari P, Rocher C et al. The Mtr2–Mex67 NTF2-like domain complex. Structural insights into a dual role of Mtr2 for yeast nuclear export. J Biol Chem. 2003;278:48395–403. 10.1074/jbc.M308275200. PubMed DOI
Fribourg S, Braun IC, Izaurralde E et al. Structural basis for the recognition of a nucleoporin FG repeat by the NTF2-like domain of the TAP/p15 mRNA nuclear export factor. Mol Cell. 2001;8:645–56. 10.1016/S1097-2765(01)00348-3. PubMed DOI
Fernandez-Martinez J, Kim SJ, Shi Y et al. Structure and function of the nuclear pore complex cytoplasmic mRNA export platform. Cell. 2016;167:1215–28. 10.1016/j.cell.2016.10.028. PubMed DOI PMC
Folkmann AW, Noble KN, Cole CN et al. Dbp5, Gle1-IP6 and Nup159: a working model for mRNP export. Nucleus. 2011;2:540–8. 10.4161/nucl.2.6.17881. PubMed DOI PMC
DuBois KN, Alsford S, Holden JM et al. NUP-1 is a large coiled-coil nucleoskeletal protein in trypanosomes with lamin-like functions. PLoS Biol. 2012;10:e1001287. 10.1371/journal.pbio.1001287. PubMed DOI PMC
Holden JM, Koreny L, Obado S et al. Nuclear pore complex evolution: a trypanosome Mlp analogue functions in chromosomal segregation but lacks transcriptional barrier activity. MBoC. 2014;25:1421–36. 10.1091/mbc.e13-12-0750. PubMed DOI PMC
Florini F, Naguleswaran A, Gharib WH et al. Unexpected diversity in eukaryotic transcription revealed by the retrotransposon hotspot family of trypanosoma brucei. Nucleic Acids Res. 2019;47:1725–39. 10.1093/nar/gky1255. PubMed DOI PMC
Kramer S. The ApaH-like phosphatase TbALPH1 is the major mRNA decapping enzyme of trypanosomes. PLoS Pathog. 2017;13:e1006456. 10.1371/journal.ppat.1006456. PubMed DOI PMC
Hirumi H, Hirumi K. Continuous cultivation of PubMed DOI
Urbaniak MD, Martin DM, Ferguson MA. Global quantitative SILAC phosphoproteomics reveals differential phosphorylation is widespread between the procyclic and bloodstream form lifecycle stages of PubMed DOI PMC
Oberholzer M, Morand S, Kunz S et al. A vector series for rapid PCR-mediated C-terminal in situ tagging of PubMed DOI
Butterfield ER, Abbott JC, Field MC. Automated phylogenetic analysis using best reciprocal BLAST. Methods Mol Biol. 2021;2369:41–63. PubMed
Edgar RC. Muscle5: high-accuracy alignment ensembles enable unbiased assessments of sequence homology and phylogeny. Nat Commun. 2022;13:6968. 10.1038/s41467-022-34630-w. PubMed DOI PMC
Lawrence TJ, Kauffman KT, Amrine KC et al. FAST: FAST analysis of sequences toolbox. Front Genet. 2015;6:172. 10.3389/fgene.2015.00172. PubMed DOI PMC
Price MN, Dehal PS, Arkin AP. FastTree 2–approximately maximum-likelihood trees for large alignments. PLoS One. 2010;5:e9490. 10.1371/journal.pone.0009490. PubMed DOI PMC
Obado SO, Field MC, Chait BT et al. High-efficiency isolation of nuclear envelope protein complexes from trypanosomes. Methods Mol Biol. 2016;1411:67–80. PubMed
Fenyo D, Eriksson J, Beavis R. Mass spectrometric protein identification using the global proteome machine. Methods Mol Biol. 2010;673:189–202. PubMed PMC
Fridy PC, Li Y, Keegan S et al. A robust pipeline for rapid production of versatile nanobody repertoires. Nat Methods. 2014;11:1253–60. 10.1038/nmeth.3170. PubMed DOI PMC
Kohler A, Hurt E. Exporting RNA from the nucleus to the cytoplasm. Nat Rev Mol Cell Biol. 2007;8:761–73. 10.1038/nrm2255. PubMed DOI
Kim D, Paggi JM, Park C et al. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol. 2019;37:907–15. 10.1038/s41587-019-0201-4. PubMed DOI PMC
Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014;30:923–30. 10.1093/bioinformatics/btt656. PubMed DOI
Robinson MD, McCarthy DJ, Smyth GK. edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26:139–40. 10.1093/bioinformatics/btp616. PubMed DOI PMC
Alsford S, Turner DJ, Obado SO et al. High-throughput phenotyping using parallel sequencing of RNA interference targets in the African trypanosome. Genome Res. 2011;21:915–24. 10.1101/gr.115089.110. PubMed DOI PMC
Wirtz E, Leal S, Ochatt C et al. A tightly regulated inducible expression system for conditional gene knock-outs and dominant-negative genetics in Trypanosoma brucei. Mol Biochem Parasitol. 1999;99:89–101. 10.1016/S0166-6851(99)00002-X. PubMed DOI
Soding J, Biegert A, Lupas AN. The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res. 2005;33:W244–8. 10.1093/nar/gki408. PubMed DOI PMC
Jumper J, Evans R, Pritzel A et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596:583–9. 10.1038/s41586-021-03819-2. PubMed DOI PMC
Wheeler RJ. A resource for improved predictions of Trypanosoma and Leishmania protein three-dimensional structure. PLoS One. 2021;16:e0259871. 10.1371/journal.pone.0259871. PubMed DOI PMC
Pettersen EF, Goddard TD, Huang CC et al. UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci. 2021;30:70–82. 10.1002/pro.3943. PubMed DOI PMC
Gabernet-Castello C, O’Reilly AJ, Dacks JB et al. Evolution of Tre-2/Bub2/Cdc16 (TBC) Rab GTPase-activating proteins. MBoC. 2013;24:1574–83. 10.1091/mbc.e12-07-0557. PubMed DOI PMC
Seewald MJ, Korner C, Wittinghofer A et al. RanGAP mediates GTP hydrolysis without an arginine finger. Nature. 2002;415:662–6. 10.1038/415662a. PubMed DOI
Herold A, Suyama M, Rodrigues JP et al. TAP (NXF1) belongs to a multigene family of putative RNA export factors with a conserved modular architecture. Mol Cell Biol. 2000;20:8996–9008. 10.1128/MCB.20.23.8996-9008.2000. PubMed DOI PMC
Segref A, Sharma K, Doye V et al. Mex67p, a novel factor for nuclear mRNA export, binds to both poly(A)+ RNA and nuclear pores. EMBO J. 1997;16:3256–71. 10.1093/emboj/16.11.3256. PubMed DOI PMC
Rink C, Williams N. Unique interactions of the nuclear export receptors TbMex67 and TbMtr2 with components of the 5S ribonuclear particle in trypanosoma brucei. mSphere. 2019;4:e00471–19. 10.1128/mSphere.00471-19. PubMed DOI PMC
Gwizdek C, Iglesias N, Rodriguez MS et al. Ubiquitin-associated domain of Mex67 synchronizes recruitment of the mRNA export machinery with transcription. Proc Natl Acad Sci USA. 2006;103:16376–81. 10.1073/pnas.0607941103. PubMed DOI PMC
Aibara S, Katahira J, Valkov E et al. The principal mRNA nuclear export factor NXF1:NXT1 forms a symmetric binding platform that facilitates export of retroviral CTE-RNA. Nucleic Acids Res. 2015;43:1883–93. 10.1093/nar/gkv032. PubMed DOI PMC
Blevins MB, Smith AM, Phillips EM et al. Complex formation among the RNA export proteins Nup98, Rae1/Gle2, and TAP. J Biol Chem. 2003;278:20979–88. 10.1074/jbc.M302061200. PubMed DOI
Murphy R, Watkins JL, Wente SR. GLE2, a PubMed DOI PMC
Pritchard CE, Fornerod M, Kasper LH et al. RAE1 is a shuttling mRNA export factor that binds to a GLEBS-like NUP98 motif at the nuclear pore complex through multiple domains. J Cell Biol. 1999;145:237–54. 10.1083/jcb.145.2.237. PubMed DOI PMC
Kramer S, Bannerman-Chukualim B, Ellis L et al. Differential localization of the two PubMed DOI PMC
Zoltner M, Krienitz N, Field MC et al. Comparative proteomics of the two PubMed DOI PMC
Natalizio BJ, Wente SR. Postage for the messenger: designating routes for nuclear mRNA export. Trends Cell Biol. 2013;23:365–73. 10.1016/j.tcb.2013.03.006. PubMed DOI PMC
Bishola Tshitenge T, Clayton C. The PubMed DOI PMC
Mishra A, Kaur JN, McSkimming DI et al. Selective nuclear export of mRNAs is promoted by DRBD18 in PubMed DOI PMC
Dean S, Sunter JD, Wheeler RJ. TrypTag.org: a trypanosome genome-wide protein localisation resource. Trends Parasitol. 2017;33:80–2. 10.1016/j.pt.2016.10.009. PubMed DOI PMC
Klingauf-Nerurkar P, Gillet LC, Portugal-Calisto D et al. The GTPase Nog1 co-ordinates the assembly, maturation and quality control of distant ribosomal functional centers. eLife. 2020;9 :e52474. 10.7554/eLife.52474. PubMed DOI PMC
Pestov DG, Stockelman MG, Strezoska Z et al. ERB1, the yeast homolog of mammalian Bop1, is an essential gene required for maturation of the 25S and 5.8S ribosomal RNAs. Nucleic Acids Res. 2001;29:3621–30. 10.1093/nar/29.17.3621. PubMed DOI PMC
Grant RP, Neuhaus D, Stewart M. Structural basis for the interaction between the Tap/NXF1 UBA domain and FG nucleoporins at 1A resolution. J Mol Biol. 2003;326:849–58. 10.1016/S0022-2836(02)01474-2. PubMed DOI
Suyama M, Doerks T, Braun IC et al. Prediction of structural domains of TAP reveals details of its interaction with p15 and nucleoporins. EMBO Rep. 2000;1:53–8. 10.1093/embo-reports/kvd009. PubMed DOI PMC
Kent HM, Moore MS, Quimby BB et al. Engineered mutants in the switch II loop of Ran define the contribution made by key residues to the interaction with nuclear transport factor 2 (NTF2) and the role of this interaction in nuclear protein import. J Mol Biol. 1999;289:565–77. 10.1006/jmbi.1999.2775. PubMed DOI
Sarkar A, Pech M, Thoms M et al. Ribosome-stalk biogenesis is coupled with recruitment of nuclear-export factor to the nascent 60S subunit. Nat Struct Mol Biol. 2016;23:1074–82. 10.1038/nsmb.3312. PubMed DOI
Jensen BC, Wang Q, Kifer CT et al. The NOG1 GTP-binding protein is required for biogenesis of the 60 S ribosomal subunit. J Biol Chem. 2003;278:32204–11. 10.1074/jbc.M304198200. PubMed DOI
Lueong S, Merce C, Fischer B et al. Gene expression regulatory networks in PubMed DOI
Hendriks EF, Robinson DR, Hinkins M et al. A novel CCCH protein which modulates differentiation of PubMed DOI PMC
Shi H, Butler K, Tschudi C. A single-point mutation in the RNA-binding protein 6 generates PubMed DOI PMC
Kolev NG, Ramey-Butler K, Cross GA et al. Developmental progression to infectivity in PubMed DOI PMC
Mony BM, MacGregor P, Ivens A et al. Genome-wide dissection of the quorum sensing signalling pathway in PubMed DOI PMC
Richardson JP, Beecroft RP, Tolson DL et al. Procyclin: an unusual immunodominant glycoprotein surface antigen from the procyclic stage of African trypanosomes. Mol Biochem Parasitol. 1988;31:203–16. 10.1016/0166-6851(88)90150-8. PubMed DOI
Colmerauer ME, Davis CE, Pearson TW. The trypanosome surface glycoprotein procyclin is expressed only on tsetse fly vector stages of the parasite. Parasitol Res. 1989;76:171–3. 10.1007/BF00930841. PubMed DOI
Roditi I, Schwarz H, Pearson TW et al. Procyclin gene expression and loss of the variant surface glycoprotein during differentiation of trypanosoma brucei. J Cell Biol. 1989;108:737–46. 10.1083/jcb.108.2.737. PubMed DOI PMC
Hoeijmakers JH, Frasch AC, Bernards A et al. Novel expression-linked copies of the genes for variant surface antigens in trypanosomes. Nature. 1980;284:78–80. 10.1038/284078a0. PubMed DOI
Boothroyd JC, Cross GA, Hoeijmakers JH. et al. A variant surface glycoprotein of PubMed DOI
Gunzl A, Bruderer T, Laufer G et al. RNA polymerase I transcribes procyclin genes and variant surface glycoprotein gene expression sites in PubMed DOI PMC
Lee MG, Van der Ploeg LH. Transcription of protein-coding genes in trypanosomes by RNA polymerase I. Annu Rev Microbiol. 1997;51:463–89. 10.1146/annurev.micro.51.1.463. PubMed DOI
Vanhamme L, Poelvoorde P, Pays A et al. Differential RNA elongation controls the variant surface glycoprotein gene expression sites of PubMed DOI
Kassem A, Pays E, Vanhamme L. Transcription is initiated on silent variant surface glycoprotein expression sites despite monoallelic expression in PubMed DOI PMC
Faria J, Briggs EM, Black JA et al. Emergence and adaptation of the cellular machinery directing antigenic variation in the African trypanosome. Curr Opin Microbiol. 2022;70:102209. 10.1016/j.mib.2022.102209. PubMed DOI
Pozzi B, Naguleswaran A, Florini F et al. The RNA export factor TbMex67 connects transcription and RNA export in PubMed DOI PMC
Galvan SC, Castro C, Segura E et al. Nucleotide sequences of the six very small molecules of PubMed DOI PMC
Vanden Broeck A, Klinge S. Eukaryotic ribosome assembly. Annu Rev Biochem. 2024;93:189–210. 10.1146/annurev-biochem-030222-113611. PubMed DOI
Rajan KS, Chikne V, Decker K et al. Unique aspects of rRNA biogenesis in trypanosomatids. Trends Parasitol. 2019;35:778–94. 10.1016/j.pt.2019.07.012. PubMed DOI
Hobeika M, Brockmann C, Gruessing F et al. Structural requirements for the ubiquitin-associated domain of the mRNA export factor Mex67 to bind its specific targets, the transcription elongation THO complex component Hpr1 and nucleoporin FXFG repeats. J Biol Chem. 2009;284:17575–83. 10.1074/jbc.M109.004374. PubMed DOI PMC
Brown JA, Bharathi A, Ghosh A et al. A mutation in the PubMed DOI
Izaurralde E. A novel family of nuclear transport receptors mediates the export of messenger RNA to the cytoplasm. Eur J Cell Biol. 2002;81:577–84. 10.1078/0171-9335-00273. PubMed DOI
Jun L, Frints S, Duhamel H et al. NXF5, a novel member of the nuclear RNA export factor family, is lost in a male patient with a syndromic form of mental retardation. Curr Biol. 2001;11:1381–91. 10.1016/S0960-9822(01)00419-5. PubMed DOI
Kerkow DE, Carmel AB, Menichelli E et al. The structure of the NXF2/NXT1 heterodimeric complex reveals the combined specificity and versatility of the NTF2-like fold. J Mol Biol. 2012;415:649–65. 10.1016/j.jmb.2011.11.027. PubMed DOI PMC
Yang J, Bogerd HP, Wang PJ et al. Two closely related human nuclear export factors utilize entirely distinct export pathways. Mol Cell. 2001;8:397–406. 10.1016/S1097-2765(01)00303-3. PubMed DOI
Lai D, Sakkas D, Huang Y. The fragile X mental retardation protein interacts with a distinct mRNA nuclear export factor NXF2. RNA. 2006;12:1446–9. 10.1261/rna.94306. PubMed DOI PMC
Zhang M, Wang Q, Huang Y. Fragile X mental retardation protein FMRP and the RNA export factor NXF2 associate with and destabilize Nxf1 mRNA in neuronal cells. Proc Natl Acad Sci USA. 2007;104:10057–62. 10.1073/pnas.0700169104. PubMed DOI PMC
Alber F, Dokudovskaya S, Veenhoff LM et al. The molecular architecture of the nuclear pore complex. Nature. 2007;450:695–701. 10.1038/nature06405. PubMed DOI
Katahira J, Miki T, Takano K et al. Nuclear RNA export factor 7 is localized in processing bodies and neuronal RNA granules through interactions with shuttling hnRNPs. Nucleic Acids Res. 2008;36:616–28. 10.1093/nar/gkm556. PubMed DOI PMC
Vanmarsenille L, Verbeeck J, Belet S et al. Generation and characterization of an Nxf7 knockout mouse to study NXF5 deficiency in a patient with intellectual disability. PLoS One. 2013;8:e64144. 10.1371/journal.pone.0064144. PubMed DOI PMC
Tan W, Zolotukhin AS, Tretyakova I et al. Identification and characterization of the mouse nuclear export factor (Nxf) family members. Nucleic Acids Res. 2005;33:3855–65. 10.1093/nar/gki706. PubMed DOI PMC
Wiegand HL, Coburn GA, Zeng Y et al. Formation of Tap/NXT1 heterodimers activates Tap-dependent nuclear mRNA export by enhancing recruitment to nuclear pore complexes. Mol Cell Biol. 2002;22:245–56. 10.1128/MCB.22.1.245-256.2002. PubMed DOI PMC
Maishman L, Obado SO, Alsford S et al. Co-dependence between trypanosome nuclear lamina components in nuclear stability and control of gene expression. Nucleic Acids Res. 2016;44:10554–70. 10.1093/nar/gkw751. PubMed DOI PMC