Evolution and diversification of the nuclear pore complex
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
Grantová podpora
Wellcome Trust - United Kingdom
204697/Z/16/Z
Wellcome Trust - United Kingdom
PubMed
34282823
PubMed Central
PMC8421043
DOI
10.1042/bst20200570
PII: 229274
Knihovny.cz E-zdroje
- Klíčová slova
- eukaryogenesis, evolutionary biology, nuclear pores, nuclear protein transport,
- MeSH
- biologická evoluce * MeSH
- biologický transport MeSH
- jaderný pór metabolismus MeSH
- membránové proteiny metabolismus MeSH
- messenger RNA metabolismus MeSH
- mitóza MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- membránové proteiny MeSH
- messenger RNA MeSH
The nuclear pore complex (NPC) is responsible for transport between the cytoplasm and nucleoplasm and one of the more intricate structures of eukaryotic cells. Typically composed of over 300 polypeptides, the NPC shares evolutionary origins with endo-membrane and intraflagellar transport system complexes. The modern NPC was fully established by the time of the last eukaryotic common ancestor and, hence, prior to eukaryote diversification. Despite the complexity, the NPC structure is surprisingly flexible with considerable variation between lineages. Here, we review diversification of the NPC in major taxa in view of recent advances in genomic and structural characterisation of plant, protist and nucleomorph NPCs and discuss the implications for NPC evolution. Furthermore, we highlight these changes in the context of mRNA export and consider how this process may have influenced NPC diversity. We reveal the NPC as a platform for continual evolution and adaptation.
Zobrazit více v PubMed
Fernandez-Martinez, J. and Rout, M.P. (2021) One ring to rule them all? Structural and functional diversity in the nuclear pore complex. Trends Biochem. Sci. 46, 595–607. 10.1016/j.tibs.2021.01.003 PubMed DOI PMC
Field, M.C. and Rout, M.P. (2019) Pore timing: the evolutionary origins of the nucleus and nuclear pore complex. F1000Res 8, F1000 Faculty Rev-369 10.12688/f1000research.16402.1 PubMed DOI PMC
Dacks, J.B. and Robinson, M.S. (2017) Outerwear through the ages: evolutionary cell biology of vesicle coats. Curr. Opin. Cell Biol. 47, 108–116 10.1016/j.ceb.2017.04.001 PubMed DOI
Faini, M., Beck, R., Wieland, F.T. and Briggs, J.A. (2013) Vesicle coats: structure, function, and general principles of assembly. Trends Cell Biol. 23, 279–288 10.1016/j.tcb.2013.01.005 PubMed DOI
Ori, A., Banterle, N., Iskar, M., Andres-Pons, A., Escher, C., Khanh Bui, H.et al. (2013) Cell type-specific nuclear pores: a case in point for context-dependent stoichiometry of molecular machines. Mol. Syst. Biol. 9, 648 10.1038/msb.2013.4 PubMed DOI PMC
Bui, K.H., von Appen, A., DiGuilio, A.L., Ori, A., Sparks, L., Mackmull, M.T.et al. (2013) Integrated structural analysis of the human nuclear pore complex scaffold. Cell 155, 1233–1243 10.1016/j.cell.2013.10.055 PubMed DOI
von Appen, A., Kosinski, J., Sparks, L., Ori, A., DiGuilio, A.L., Vollmer, B.et al. (2015) In situ structural analysis of the human nuclear pore complex. Nature 526, 526140–526143 10.1038/nature15381 PubMed DOI PMC
Kosinski, J., Mosalaganti, S., von Appen, A., Teimer, R., DiGuilio, A.L., Wan, W.et al. (2016) Molecular architecture of the inner ring scaffold of the human nuclear pore complex. Science 352, 363–365 10.1126/science.aaf0643 PubMed DOI PMC
Alber, F., Dokudovskaya, S., Veenhoff, L.M., Zhang, W., Kipper, J., Devos, D.et al. (2007) The molecular architecture of the nuclear pore complex. Nature 450, 695–701 10.1038/nature06405 PubMed DOI
Kim, S.J., Fernandez-Martinez, J., Nudelman, I., Shi, Y., Zhang, W., Raveh, B.et al. (2018) Integrative structure and functional anatomy of a nuclear pore complex. Nature 555, 475–482 10.1038/nature26003 PubMed DOI PMC
Kim, S.J., Fernandez-Martinez, J., Sampathkumar, P., Martel, A., Matsui, T., Tsuruta, H.et al. (2014) Integrative structure-function mapping of the nucleoporin Nup133 suggests a conserved mechanism for membrane anchoring of the nuclear pore complex. Mol. Cell. Proteom. 13, 2911–2926 10.1074/mcp.M114.040915 PubMed DOI PMC
Asakawa, H., Yang, H.J., Yamamoto, T.G., Ohtsuki, C., Chikashige, Y., Sakata-Sogawa, K.et al. (2014) Characterization of nuclear pore complex components in fission yeast Schizosaccharomyces pombe. Nucleus 5, 149–162 10.4161/nucl.28487 PubMed DOI PMC
Asakawa, H., Kojidani, T., Yang, H.J., Ohtsuki, C., Osakada, H., Matsuda, A.et al. (2019) Asymmetrical localization of Nup107-160 subcomplex components within the nuclear pore complex in fission yeast. PLoS Genet. 15, e1008061 10.1371/journal.pgen.1008061 PubMed DOI PMC
Amlacher, S., Sarges, P., Flemming, D., van Noort, V., Kunze, R., Devos, D.P.et al. (2011) Insight into structure and assembly of the nuclear pore complex by utilizing the genome of a eukaryotic thermophile. Cell 146, 277–289 10.1016/j.cell.2011.06.039 PubMed DOI
Thierbach, K., von Appen, A., Thoms, M., Beck, M., Flemming, D. and Hurt, E. (2013) Protein interfaces of the conserved Nup84 complex from Chaetomium thermophilum shown by crosslinking mass spectrometry and electron microscopy. Structure 21, 1672–1682 10.1016/j.str.2013.07.004 PubMed DOI
Fischer, J., Teimer, R., Amlacher, S., Kunze, R. and Hurt, E. (2015) Linker Nups connect the nuclear pore complex inner ring with the outer ring and transport channel. Nat. Struct. Mol. Biol. 22, 774–781 10.1038/nsmb.3084 PubMed DOI
Mosalaganti, S., Kosinski, J., Albert, S., Schaffer, M., Strenkert, D., Salome, P.A.et al. (2018) In situ architecture of the algal nuclear pore complex. Nat. Commun. 9, 2361 10.1038/s41467-018-04739-y PubMed DOI PMC
Tamura, K., Fukao, Y., Iwamoto, M., Haraguchi, T. and Hara-Nishimura, I. (2010) Identification and characterization of nuclear pore complex components in Arabidopsis thaliana. Plant Cel 22, 4084–4097 10.1105/tpc.110.079947 PubMed DOI PMC
Zhang, C., An, N., Jia, P., Zhang, W., Liang, J., Zhang, X.et al. (2020) Genomic identification and expression analysis of nuclear pore proteins in Malus domestica. Sci. Rep. 10, 17426 10.1038/s41598-020-74171-0 PubMed DOI PMC
Iwamoto, M., Osakada, H., Mori, C., Fukuda, Y., Nagao, K., Obuse, C.et al. (2017) Compositionally distinct nuclear pore complexes of functionally distinct dimorphic nuclei in the ciliate Tetrahymena. J. Cell Sci. 130, 1822–1834 10.1242/jcs.199398 PubMed DOI PMC
Obado, S.O., Brillantes, M., Uryu, K., Zhang, W., Ketaren, N.E., Chait, B.T.et al. (2016) Interactome mapping reveals the evolutionary history of the nuclear pore complex. PLoS Biol. 14, e1002365 10.1371/journal.pbio.1002365 PubMed DOI PMC
Drin, G., Casella, J.F., Gautier, R., Boehmer, T., Schwartz, T.U. and Antonny, B. (2007) A general amphipathic alpha-helical motif for sensing membrane curvature. Nat. Struct. Mol. Biol. 14, 138–146 10.1038/nsmb1194 PubMed DOI
Shi, Y., Fernandez-Martinez, J., Tjioe, E., Pellarin, R., Kim, S.J., Williams, R.et al. (2014) Structural characterization by cross-linking reveals the detailed architecture of a coatomer-related heptameric module from the nuclear pore complex. Mol. Cell. Proteom. 13, 2927–2943 10.1074/mcp.M114.041673 PubMed DOI PMC
Nordeen, S.A., Turman, D.L. and Schwartz, T.U. (2020) Yeast Nup84-Nup133 complex structure details flexibility and reveals conservation of the membrane anchoring ALPS motif. Nat. Commun. 11, 6060 10.1038/s41467-020-19885-5 PubMed DOI PMC
Devos, D., Dokudovskaya, S., Alber, F., Williams, R., Chait, B.T., Sali, A.et al. (2004) Components of coated vesicles and nuclear pore complexes share a common molecular architecture. PLoS Biol. 2, e380 10.1371/journal.pbio.0020380 PubMed DOI PMC
Devos, D., Dokudovskaya, S., Williams, R., Alber, F., Eswar, N., Chait, B.T.et al. (2006) Simple fold composition and modular architecture of the nuclear pore complex. Proc. Natl Acad. Sci. U.S.A. 103, 2172–2177 10.1073/pnas.0506345103 PubMed DOI PMC
DeGrasse, J.A., DuBois, K.N., Devos, D., Siegel, T.N., Sali, A., Field, M.C.et al. (2009) Evidence for a shared nuclear pore complex architecture that is conserved from the last common eukaryotic ancestor. Mol. Cell. Proteom. 8, 2119–2130 10.1074/mcp.M900038-MCP200 PubMed DOI PMC
Lutzmann, M., Kunze, R., Buerer, A., Aebi, U. and Hurt, E. (2002) Modular self-assembly of a Y-shaped multiprotein complex from seven nucleoporins. EMBO J. 21, 387–397 10.1093/emboj/21.3.387 PubMed DOI PMC
Huang, G., Zhang, Y., Zhu, X., Zeng, C., Wang, Q., Zhou, Q.et al. (2020) Structure of the cytoplasmic ring of the Xenopus laevis nuclear pore complex by cryo-electron microscopy single particle analysis. Cell Res. 30, 520–531 10.1038/s41422-020-0319-4 PubMed DOI PMC
Kimura, N., Takizawa, M., Okita, K., Natori, O., Igarashi, K., Ueno, M.et al. (2002) Identification of a novel transcription factor, ELYS, expressed predominantly in mouse foetal haematopoietic tissues. Genes Cells 7, 435–446 10.1046/j.1365-2443.2002.00529.x PubMed DOI
Rasala, B.A., Orjalo, A.V., Shen, Z., Briggs, S. and Forbes, D.J. (2006) ELYS is a dual nucleoporin/kinetochore protein required for nuclear pore assembly and proper cell division. Proc. Natl Acad. Sci. U.S.A. 103, 17801–17806 10.1073/pnas.0608484103 PubMed DOI PMC
Rasala, B.A., Ramos, C., Harel, A. and Forbes, D.J. (2008) Capture of AT-rich chromatin by ELYS recruits POM121 and NDC1 to initiate nuclear pore assembly. Mol. Biol. Cell 19, 3982–3996 10.1091/mbc.e08-01-0012 PubMed DOI PMC
Padilla-Mejia, N.E., Makarov, A.A., Barlow, L.D., Butterfield, E.R. and Field, M.C. (2021) Evolution and diversification of the nuclear envelope. Nucleus 12, 21–41 10.1080/19491034.2021.1874135 PubMed DOI PMC
Koreny, L. and Field, M.C. (2016) Ancient eukaryotic origin and evolutionary plasticity of nuclear lamina. Genome Biol. Evol. 8, 2663–2671 10.1093/gbe/evw087 PubMed DOI PMC
Akey, C.W. and Radermacher, M. (1993) Architecture of the Xenopus nuclear pore complex revealed by three-dimensional cryo-electron microscopy. J. Cell Biol. 122, 1–19 10.1083/jcb.122.1.1 PubMed DOI PMC
Neumann, N., Lundin, D. and Poole, A.M. (2010) Comparative genomic evidence for a complete nuclear pore complex in the last eukaryotic common ancestor. PLoS One 5, e13241 10.1371/journal.pone.0013241 PubMed DOI PMC
Upla, P., Kim, S.J., Sampathkumar, P., Dutta, K., Cahill, S.M., Chemmama, I.E.et al. (2017) Molecular architecture of the major membrane ring component of the nuclear pore complex. Structure 25, 434–445 10.1016/j.str.2017.01.006 PubMed DOI PMC
Hao, Q., Zhang, B., Yuan, K., Shi, H. and Blobel, G. (2018) Electron microscopy of Chaetomium pom152 shows the assembly of ten-bead string. Cell Discov. 4, 56 10.1038/s41421-018-0057-7 PubMed DOI PMC
Zhang, Y., Li, S., Zeng, C., Huang, G., Zhu, X., Wang, Q.et al. (2020) Molecular architecture of the luminal ring of the Xenopus laevis nuclear pore complex. Cell Res. 30, 532–540 10.1038/s41422-020-0320-y PubMed DOI PMC
Wozniak, R.W., Blobel, G. and Rout, M.P. (1994) POM152 is an integral protein of the pore membrane domain of the yeast nuclear envelope. J. Cell Biol. 125, 31–42 10.1083/jcb.125.1.31 PubMed DOI PMC
Eriksson, C., Rustum, C. and Hallberg, E. (2004) Dynamic properties of nuclear pore complex proteins in gp210 deficient cells. FEBS Lett. 572, 261–265 10.1016/j.febslet.2004.07.044 PubMed DOI
Olsson, M., Scheele, S. and Ekblom, P. (2004) Limited expression of nuclear pore membrane glycoprotein 210 in cell lines and tissues suggests cell-type specific nuclear pores in metazoans. Exp. Cell Res. 292, 359–370 10.1016/j.yexcr.2003.09.014 PubMed DOI
Cohen, M., Feinstein, N., Wilson, K.L. and Gruenbaum, Y. (2003) Nuclear pore protein gp210 is essential for viability in HeLa cells and Caenorhabditis elegans. Mol. Biol. Cell 14, 4230–4237 10.1091/mbc.e03-04-0260 PubMed DOI PMC
Stavru, F., Nautrup-Pedersen, G., Cordes, V.C. and Gorlich, D. (2006) Nuclear pore complex assembly and maintenance in POM121- and gp210-deficient cells. J. Cell Biol. 173, 477–483 10.1083/jcb.200601002 PubMed DOI PMC
Antonin, W., Franz, C., Haselmann, U., Antony, C. and Mattaj, I.W. (2005) The integral membrane nucleoporin pom121 functionally links nuclear pore complex assembly and nuclear envelope formation. Mol. Cell 17, 83–92 10.1016/j.molcel.2004.12.010 PubMed DOI
Winey, M., Hoyt, M.A., Chan, C., Goetsch, L., Botstein, D. and Byers, B. (1993) NDC1: a nuclear periphery component required for yeast spindle pole body duplication. J. Cell Biol. 122, 743–751 10.1083/jcb.122.4.743 PubMed DOI PMC
West, R.R., Vaisberg, E.V., Ding, R., Nurse, P. and McIntosh, J.R. (1998) Cut11(+): a gene required for cell cycle-dependent spindle pole body anchoring in the nuclear envelope and bipolar spindle formation in Schizosaccharomyces pombe. Mol. Biol. Cell 9, 2839–2855 10.1091/mbc.9.10.2839 PubMed DOI PMC
Eisenhardt, N., Redolfi, J. and Antonin, W. (2014) Interaction of Nup53 with Ndc1 and Nup155 is required for nuclear pore complex assembly. J. Cell Sci. 127, 908–921 10.1242/jcs.141739 PubMed DOI
Stavru, F., Hulsmann, B.B., Spang, A., Hartmann, E., Cordes, V.C. and Gorlich, D. (2006) NDC1: a crucial membrane-integral nucleoporin of metazoan nuclear pore complexes. J. Cell Biol. 173, 509–519 10.1083/jcb.200601001 PubMed DOI PMC
Frosst, P., Guan, T., Subauste, C., Hahn, K. and Gerace, L. (2002) Tpr is localized within the nuclear basket of the pore complex and has a role in nuclear protein export. J. Cell Biol. 156, 617–630 10.1083/jcb.200106046 PubMed DOI PMC
Ashkenazy-Titelman, A., Shav-Tal, Y. and Kehlenbach, R.H. (2020) Into the basket and beyond: the journey of mRNA through the nuclear pore complex. Biochem. J. 477, 23–44 10.1042/BCJ20190132 PubMed DOI
Strambio-de-Castillia, C., Blobel, G. and Rout, M.P. (1999) Proteins connecting the nuclear pore complex with the nuclear interior. J. Cell Biol. 144, 839–855 10.1083/jcb.144.5.839 PubMed DOI PMC
Kosova, B., Pante, N., Rollenhagen, C., Podtelejnikov, A., Mann, M., Aebi, U.et al. (2000) Mlp2p, a component of nuclear pore attached intranuclear filaments, associates with nic96p. J. Biol. Chem. 275, 343–350 10.1074/jbc.275.1.343 PubMed DOI
Niepel, M., Molloy, K.R., Williams, R., Farr, J.C., Meinema, A.C., Vecchietti, N.et al. (2013) The nuclear basket proteins Mlp1p and Mlp2p are part of a dynamic interactome including Esc1p and the proteasome. Mol. Biol. Cell 24, 3920–3938 10.1091/mbc.e13-07-0412 PubMed DOI PMC
Makise, M., Mackay, D.R., Elgort, S., Shankaran, S.S., Adam, S.A. and Ullman, K.S. (2012) The Nup153-Nup50 protein interface and its role in nuclear import. J. Biol. Chem. 287, 38515–38522 10.1074/jbc.M112.378893 PubMed DOI PMC
Duheron, V., Chatel, G., Sauder, U., Oliveri, V. and Fahrenkrog, B. (2014) Structural characterization of altered nucleoporin Nup153 expression in human cells by thin-section electron microscopy. Nucleus 5, 601–612 10.4161/19491034.2014.990853 PubMed DOI PMC
Lin, D.H. and Hoelz, A. (2019) The structure of the nuclear pore complex (an update). Annu. Rev. Biochem. 88, 725–783 10.1146/annurev-biochem-062917-011901 PubMed DOI PMC
Krull, S., Thyberg, J., Bjorkroth, B., Rackwitz, H.R. and Cordes, V.C. (2004) Nucleoporins as components of the nuclear pore complex core structure and Tpr as the architectural element of the nuclear basket. Mol. Biol. Cell 15, 4261–4277 10.1091/mbc.e04-03-0165 PubMed DOI PMC
Ball, J.R., Dimaano, C., Bilak, A., Kurchan, E., Zundel, M.T. and Ullman, K.S. (2007) Sequence preference in RNA recognition by the nucleoporin Nup153. J. Biol. Chem. 282, 8734–8740 10.1074/jbc.M608477200 PubMed DOI
Soop, T., Ivarsson, B., Bjorkroth, B., Fomproix, N., Masich, S., Cordes, V.C.et al. (2005) Nup153 affects entry of messenger and ribosomal ribonucleoproteins into the nuclear basket during export. Mol. Biol. Cell 16, 5610–5620 10.1091/mbc.e05-08-0715 PubMed DOI PMC
Umlauf, D., Bonnet, J., Waharte, F., Fournier, M., Stierle, M., Fischer, B.et al. (2013) The human TREX-2 complex is stably associated with the nuclear pore basket. J. Cell Sci. 126(Pt 12), 2656–2667 10.1242/jcs.118000 PubMed DOI
Walther, T.C., Fornerod, M., Pickersgill, H., Goldberg, M., Allen, T.D. and Mattaj, I.W. (2001) The nucleoporin Nup153 is required for nuclear pore basket formation, nuclear pore complex anchoring and import of a subset of nuclear proteins. EMBO J. 20, 5703–5714 10.1093/emboj/20.20.5703 PubMed DOI PMC
Aksenova, V., Smith, A., Lee, H., Bhat, P., Esnault, C., Chen, S.et al. (2020) Nucleoporin TPR is an integral component of the TREX-2 mRNA export pathway. Nat. Commun. 11, 4577 10.1038/s41467-020-18266-2 PubMed DOI PMC
Zhang, B., You, C., Zhang, Y., Zeng, L., Hu, J., Zhao, M.et al. (2020) Linking key steps of microRNA biogenesis by TREX-2 and the nuclear pore complex in Arabidopsis. Nat. Plants 6, 957–969 10.1038/s41477-020-0726-z PubMed DOI PMC
Jacob, Y., Mongkolsiriwatana, C., Veley, K.M., Kim, S.Y. and Michaels, S.D. (2007) The nuclear pore protein AtTPR is required for RNA homeostasis, flowering time, and auxin signaling. Plant Physiol. 144, 1383–1390 10.1104/pp.107.100735 PubMed DOI PMC
Xu, X.M., Rose, A., Muthuswamy, S., Jeong, S.Y., Venkatakrishnan, S., Zhao, Q.et al. (2007) NUCLEAR PORE ANCHOR, the Arabidopsis homolog of Tpr/Mlp1/Mlp2/megator, is involved in mRNA export and SUMO homeostasis and affects diverse aspects of plant development. Plant Cell 19, 1537–1548 10.1105/tpc.106.049239 PubMed DOI PMC
Lu, Q., Tang, X., Tian, G., Wang, F., Liu, K., Nguyen, V.et al. (2010) Arabidopsis homolog of the yeast TREX-2 mRNA export complex: components and anchoring nucleoporin. Plant J. 61, 259–270 10.1111/j.1365-313X.2009.04048.x PubMed DOI
Lee, E.S., Wolf, E.J., Ihn, S.S.J., Smith, H.W., Emili, A. and Palazzo, A.F. (2020) TPR is required for the efficient nuclear export of mRNAs and lncRNAs from short and intron-poor genes. Nucleic Acids Res. 48, 11645–11663 10.1093/nar/gkaa919 PubMed DOI PMC
Galy, V., Gadal, O., Fromont-Racine, M., Romano, A., Jacquier, A. and Nehrbass, U. (2004) Nuclear retention of unspliced mRNAs in yeast is mediated by perinuclear Mlp1. Cell 116, 63–73 10.1016/S0092-8674(03)01026-2 PubMed DOI
Bi, X., Cheng, Y.J., Hu, B., Ma, X., Wu, R., Wang, J.W.et al. (2017) Nonrandom domain organization of the Arabidopsis genome at the nuclear periphery. Genome Res. 27, 1162–1173 10.1101/gr.215186.116 PubMed DOI PMC
Holden, J.M., Koreny, L., Obado, S., Ratushny, A.V., Chen, W.M., Chiang, J.H.et al. (2014) Nuclear pore complex evolution: a trypanosome Mlp analogue functions in chromosomal segregation but lacks transcriptional barrier activity. Mol. Biol. Cell 25, 1421–1436 10.1091/mbc.e13-12-0750 PubMed DOI PMC
Katahira, J., Strasser, K., Podtelejnikov, A., Mann, M., Jung, J.U. and Hurt, E. (1999) The Mex67p-mediated nuclear mRNA export pathway is conserved from yeast to human. EMBO J. 18, 2593–2609 10.1093/emboj/18.9.2593 PubMed DOI PMC
Chen, S., Wang, R., Zheng, D., Zhang, H., Chang, X., Wang, K.et al. (2019) The mRNA export receptor NXF1 coordinates transcriptional dynamics, alternative polyadenylation, and mrna export. Mol. Cell 74, 118–131.e7 10.1016/j.molcel.2019.01.026 PubMed DOI PMC
Aibara, S., Katahira, J., Valkov, E. and Stewart, M. (2015) The principal mRNA nuclear export factor NXF1:NXT1 forms a symmetric binding platform that facilitates export of retroviral CTE-RNA. Nucleic Acids Res. 43, 1883–1893 10.1093/nar/gkv032 PubMed DOI PMC
Aibara, S., Valkov, E., Lamers, M.H., Dimitrova, L., Hurt, E. and Stewart, M. (2015) Structural characterization of the principal mRNA-export factor Mex67-Mtr2 from Chaetomium thermophilum. Acta Crystallogr. F Struct. Biol. Commun. 71(Pt 7), 876–888 10.1107/S2053230X15008766 PubMed DOI PMC
Ben-Yishay, R., Mor, A., Shraga, A., Ashkenazy-Titelman, A., Kinor, N., Schwed-Gross, A.et al. (2019) Imaging within single NPCs reveals NXF1's role in mRNA export on the cytoplasmic side of the pore. J. Cell Biol. 218, 2962–2981 10.1083/jcb.201901127 PubMed DOI PMC
Derrer, C.P., Mancini, R., Vallotton, P., Huet, S., Weis, K. and Dultz, E. (2019) The RNA export factor Mex67 functions as a mobile nucleoporin. J. Cell Biol. 218, 3967–3976 10.1083/jcb.201909028 PubMed DOI PMC
Stewart, M. (2010) Nuclear export of mRNA. Trends Biochem. Sci. 35, 609–617 10.1016/j.tibs.2010.07.001 PubMed DOI
Li, Y., Bor, Y.C., Fitzgerald, M.P., Lee, K.S., Rekosh, D. and Hammarskjold, M.L. (2016) An NXF1 mRNA with a retained intron is expressed in hippocampal and neocortical neurons and is translated into a protein that functions as an Nxf1 cofactor. Mol. Biol. Cell 27, 3903–3912 10.1091/mbc.E16-07-0515 PubMed DOI PMC
Eyboulet, F., Jeronimo, C., Cote, J. and Robert, F. (2020) The deubiquitylase Ubp15 couples transcription to mRNA export. eLife 9, e61264 10.7554/eLife.61264 PubMed DOI PMC
Aibara, S., Valkov, E., Lamers, M. and Stewart, M. (2015) Domain organization within the nuclear export factor Mex67:Mtr2 generates an extended mRNA binding surface. Nucleic Acids Res. 43, 1927–1936 10.1093/nar/gkv030 PubMed DOI PMC
Viphakone, N., Hautbergue, G.M., Walsh, M., Chang, C.T., Holland, A., Folco, E.G.et al. (2012) TREX exposes the RNA-binding domain of Nxf1 to enable mRNA export. Nat. Commun. 3, 1006 10.1038/ncomms2005 PubMed DOI PMC
Huang, Y., Gattoni, R., Stevenin, J. and Steitz, J.A. (2003) SR splicing factors serve as adapter proteins for TAP-dependent mRNA export. Mol. Cell 11, 837–843 10.1016/S1097-2765(03)00089-3 PubMed DOI
Muller-McNicoll, M., Botti, V., de Jesus Domingues, A.M., Brandl, H., Schwich, O.D., Steiner, M.C.et al. (2016) SR proteins are NXF1 adaptors that link alternative RNA processing to mRNA export. Genes Dev. 30, 553–566 10.1101/gad.276477.115 PubMed DOI PMC
Fribourg, S., Braun, I.C., Izaurralde, E. and Conti, E. (2001) Structural basis for the recognition of a nucleoporin FG repeat by the NTF2-like domain of the TAP/p15 mRNA nuclear export factor. Mol. Cell 8, 645–656 10.1016/S1097-2765(01)00348-3 PubMed DOI
Kramer, S., Kimblin, N.C. and Carrington, M. (2010) Genome-wide in silico screen for CCCH-type zinc finger proteins of Trypanosoma brucei, Trypanosoma cruzi and Leishmania major. BMC Genomics 11, 283 10.1186/1471-2164-11-283 PubMed DOI PMC
Dean, S., Sunter, J.D. and Wheeler, R.J. (2017) Tryptag.org: a trypanosome genome-wide protein localisation resource. Trends Parasitol. 33, 80–82 10.1016/j.pt.2016.10.009 PubMed DOI PMC
Aslett, M., Aurrecoechea, C., Berriman, M., Brestelli, J., Brunk, B.P., Carrington, M.et al. (2010) TriTrypDB: a functional genomic resource for the Trypanosomatidae. Nucleic Acids Res. 38, D457–D462 10.1093/nar/gkp851 PubMed DOI PMC
Dostalova, A., Kaser, S., Cristodero, M. and Schimanski, B. (2013) The nuclear mRNA export receptor Mex67-Mtr2 of Trypanosoma brucei contains a unique and essential zinc finger motif. Mol. Microbiol. 88, 728–739 10.1111/mmi.12217 PubMed DOI
Schwede, A., Manful, T., Jha, B.A., Helbig, C., Bercovich, N., Stewart, M.et al. (2009) The role of deadenylation in the degradation of unstable mRNAs in trypanosomes. Nucleic Acids Res. 37, 5511–5528 10.1093/nar/gkp571 PubMed DOI PMC
Rink, C. and Williams, N. (2019) Unique interactions of the nuclear export receptors TbMex67 and TbMtr2 with components of the 5S ribonuclear particle in Trypanosoma brucei. mSphere 4, e00471-19 10.1128/mSphere.00471-19 PubMed DOI PMC
Gissot, M., Hovasse, A., Chaloin, L., Schaeffer-Reiss, C., Van Dorsselaer, A. and Tomavo, S. (2017) An evolutionary conserved zinc finger protein is involved in Toxoplasma gondii mRNA nuclear export. Cell Microbiol. 19, e12644 10.1111/cmi.12644 PubMed DOI
Stewart, M. (2019) Structure and function of the TREX-2 complex. Subcell Biochem. 93, 461–470 10.1007/978-3-030-28151-9_15 PubMed DOI
Jani, D., Lutz, S., Hurt, E., Laskey, R.A., Stewart, M. and Wickramasinghe, V.O. (2012) Functional and structural characterization of the mammalian TREX-2 complex that links transcription with nuclear messenger RNA export. Nucleic Acids Res. 40, 4562–4573 10.1093/nar/gks059 PubMed DOI PMC
Dimitrova, L., Valkov, E., Aibara, S., Flemming, D., McLaughlin, S.H., Hurt, E.et al. (2015) Structural characterization of the Chaetomium thermophilum TREX-2 complex and its interaction with the mRNA nuclear export factor Mex67:Mtr2. Structure 23, 1246–1257 10.1016/j.str.2015.05.002 PubMed DOI PMC
Jani, D., Valkov, E. and Stewart, M. (2014) Structural basis for binding the TREX2 complex to nuclear pores, GAL1 localisation and mRNA export. Nucleic Acids Res. 42, 6686–6697 10.1093/nar/gku252 PubMed DOI PMC
Ellisdon, A.M., Dimitrova, L., Hurt, E. and Stewart, M. (2012) Structural basis for the assembly and nucleic acid binding of the TREX-2 transcription-export complex. Nat. Struct. Mol. Biol. 19, 328–336 10.1038/nsmb.2235 PubMed DOI PMC
Gordon, J.M.B., Aibara, S. and Stewart, M. (2017) Structure of the Sac3 RNA-binding M-region in the Saccharomyces cerevisiae TREX-2 complex. Nucleic Acids Res. 45, 5577–5585 10.1093/nar/gkx158 PubMed DOI PMC
Jani, D., Lutz, S., Marshall, N.J., Fischer, T., Kohler, A., Ellisdon, A.M.et al. (2009) Sus1, Cdc31, and the Sac3 CID region form a conserved interaction platform that promotes nuclear pore association and mRNA export. Mol. Cell 33, 727–737 10.1016/j.molcel.2009.01.033 PubMed DOI PMC
Sorensen, B.B., Ehrnsberger, H.F., Esposito, S., Pfab, A., Bruckmann, A., Hauptmann, J.et al. (2017) The Arabidopsis THO/TREX component TEX1 functionally interacts with MOS11 and modulates mRNA export and alternative splicing events. Plant Mol. Biol. 93, 283–298 10.1007/s11103-016-0561-9 PubMed DOI
Pfab, A., Bruckmann, A., Nazet, J., Merkl, R. and Grasser, K.D. (2018) The adaptor protein ENY2 is a component of the deubiquitination module of the Arabidopsis SAGA transcriptional co-activator complex but not of the TREX-2 complex. J. Mol. Biol. 430, 1479–1494 10.1016/j.jmb.2018.03.018 PubMed DOI
Yang, Y., La, H., Tang, K., Miki, D., Yang, L., Wang, B.et al. (2017) SAC3B, a central component of the mRNA export complex TREX-2, is required for prevention of epigenetic gene silencing in Arabidopsis. Nucleic Acids Res. 45, 181–197 10.1093/nar/gkw850 PubMed DOI PMC
Avila, A.R., Cabezas-Cruz, A. and Gissot, M. (2018) mRNA export in the apicomplexan parasite Toxoplasma gondii: emerging divergent components of a crucial pathway. Parasit Vectors 11, 62 10.1186/s13071-018-2648-4 PubMed DOI PMC
Meinel, D.M., Burkert-Kautzsch, C., Kieser, A., O'Duibhir, E., Siebert, M., Mayer, A.et al. (2013) Recruitment of TREX to the transcription machinery by its direct binding to the phospho-CTD of RNA polymerase II. PLoS Genet. 9, e1003914 10.1371/journal.pgen.1003914 PubMed DOI PMC
Puhringer, T., Hohmann, U., Fin, L., Pacheco-Fiallos, B., Schellhaas, U., Brennecke, J.et al. (2020) Structure of the human core transcription-export complex reveals a hub for multivalent interactions. eLife 9, e61503 10.7554/eLife.61503 PubMed DOI PMC
Portman, D.S., O'Connor, J.P. and Dreyfuss, G. (1997) YRA1, an essential Saccharomyces cerevisiae gene, encodes a novel nuclear protein with RNA annealing activity. RNA 3, 527–537 PMID: PubMed PMC
Longman, D., Johnstone, I.L. and Caceres, J.F. (2003) The Ref/Aly proteins are dispensable for mRNA export and development in Caenorhabditis elegans. RNA 9, 881–891 10.1261/rna.5420503 PubMed DOI PMC
Gatfield, D. and Izaurralde, E. (2002) REF1/Aly and the additional exon junction complex proteins are dispensable for nuclear mRNA export. J. Cell Biol. 159, 579–588 10.1083/jcb.200207128 PubMed DOI PMC
Kammel, C., Thomaier, M., Sorensen, B.B., Schubert, T., Langst, G., Grasser, M.et al. (2013) Arabidopsis DEAD-box RNA helicase UAP56 interacts with both RNA and DNA as well as with mRNA export factors. PLoS One 8, e60644 10.1371/journal.pone.0060644 PubMed DOI PMC
Yelina, N.E., Smith, L.M., Jones, A.M., Patel, K., Kelly, K.A. and Baulcombe, D.C. (2010) Putative Arabidopsis THO/TREX mRNA export complex is involved in transgene and endogenous siRNA biosynthesis. Proc. Natl Acad. Sci. U.S.A. 107, 13948–13953 10.1073/pnas.0911341107 PubMed DOI PMC
Pfaff, C., Ehrnsberger, H.F., Flores-Tornero, M., Sorensen, B.B., Schubert, T., Langst, G.et al. (2018) ALY RNA-binding proteins are required for nucleocytosolic mRNA transport and modulate plant growth and development. Plant Physiol. 177, 226–240 10.1104/pp.18.00173 PubMed DOI PMC
Serpeloni, M., Moraes, C.B., Muniz, J.R., Motta, M.C., Ramos, A.S., Kessler, R.L.et al. (2011) An essential nuclear protein in trypanosomes is a component of mRNA transcription/export pathway. PLoS One 6, e20730 10.1371/journal.pone.0020730 PubMed DOI PMC
Serpeloni, M., Jimenez-Ruiz, E., Vidal, N.M., Kroeber, C., Andenmatten, N., Lemgruber, L.et al. (2016) UAP56 is a conserved crucial component of a divergent mRNA export pathway in Toxoplasma gondii. Mol. Microbiol. 102, 672–689 10.1111/mmi.13485 PubMed DOI PMC
Serpeloni, M., Vidal, N.M., Goldenberg, S., Avila, A.R. and Hoffmann, F.G. (2011) Comparative genomics of proteins involved in RNA nucleocytoplasmic export. BMC Evol. Biol. 11, 7 10.1186/1471-2148-11-7 PubMed DOI PMC
Rajakyla, E.K., Viita, T., Kyheroinen, S., Huet, G., Treisman, R. and Vartiainen, M.K. (2015) RNA export factor Ddx19 is required for nuclear import of the SRF coactivator MKL1. Nat. Commun. 6, 5978 10.1038/ncomms6978 PubMed DOI PMC
Kaminski, T., Siebrasse, J.P. and Kubitscheck, U. (2013) A single molecule view on Dbp5 and mRNA at the nuclear pore. Nucleus 4, 8–13 10.4161/nucl.23386 PubMed DOI PMC
Folkmann, A.W., Noble, K.N., Cole, C.N. and Wente, S.R. (2011) Dbp5, Gle1-IP6 and Nup159: a working model for mRNP export. Nucleus 2, 540–548 10.4161/nucl.2.6.17881 PubMed DOI PMC
Arul Nambi Rajan, A. and Montpetit, B. (2021) Emerging molecular functions and novel roles for the DEAD-box protein Dbp5/DDX19 in gene expression. Cell. Mol. Life Sci. 78, 2019–2030 10.1007/s00018-020-03680-y PubMed DOI PMC
Lin, D.H., Correia, A.R., Cai, S.W., Huber, F.M., Jette, C.A. and Hoelz, A. (2018) Structural and functional analysis of mRNA export regulation by the nuclear pore complex. Nat. Commun. 9, 2319 10.1038/s41467-018-04459-3 PubMed DOI PMC
Kendirgi, F., Barry, D.M., Griffis, E.R., Powers, M.A. and Wente, S.R. (2003) An essential role for hGle1 nucleocytoplasmic shuttling in mRNA export. J. Cell Biol. 160, 1029–1040 10.1083/jcb.200211081 PubMed DOI PMC
Braud, C., Zheng, W. and Xiao, W. (2013) Identification and analysis of LNO1-like and AtGLE1-like nucleoporins in plants. Plant Signal. Behav. 8, e27376 10.4161/psb.27376 PubMed DOI PMC
Lee, H.S., Lee, D.H., Cho, H.K., Kim, S.H., Auh, J.H. and Pai, H.S. (2015) InsP6-sensitive variants of the Gle1 mRNA export factor rescue growth and fertility defects of the ipk1 low-phytic-acid mutation in Arabidopsis. Plant Cell 27, 417–431 10.1105/tpc.114.132134 PubMed DOI PMC
Imai, A., Ohtani, M., Nara, A., Tsukakoshi, A., Narita, A., Hirakawa, H.et al. (2020) The Lotus japonicus nucleoporin GLE1 is involved in symbiotic association with rhizobia. Physiol. Plant. 168, 590–600 10.1111/ppl.12996 PubMed DOI
Lee, J.Y., Lee, H.S., Wi, S.J., Park, K.Y., Schmit, A.C. and Pai, H.S. (2009) Dual functions of Nicotiana benthamiana Rae1 in interphase and mitosis. Plant J. 59, 278–291 10.1111/j.1365-313X.2009.03869.x PubMed DOI
Irwin, N.A.T. and Keeling, P.J. (2019) Extensive reduction of the nuclear pore complex in nucleomorphs. Genome Biol. Evol. 11, 678–687 10.1093/gbe/evz029 PubMed DOI PMC
Pazos, F. and Valencia, A. (2008) Protein co-evolution, co-adaptation and interactions. EMBO J. 27, 2648–2655 10.1038/emboj.2008.189 PubMed DOI PMC
Gong, S., Worth, C.L., Bickerton, G.R., Lee, S., Tanramluk, D. and Blundell, T.L. (2009) Structural and functional restraints in the evolution of protein families and superfamilies. Biochem. Soc. Trans. 37, 727–733 10.1042/BST0370727 PubMed DOI
Bapteste, E., Charlebois, R.L., MacLeod, D. and Brochier, C. (2005) The two tempos of nuclear pore complex evolution: highly adapting proteins in an ancient frozen structure. Genome Biol. 6, R85 10.1186/gb-2005-6-10-r85 PubMed DOI PMC
Worth, C.L., Gong, S. and Blundell, T.L. (2009) Structural and functional constraints in the evolution of protein families. Nat. Rev. Mol. Cell Biol. 10, 709–720 10.1038/nrm2762 PubMed DOI
Pal, C., Papp, B. and Lercher, M.J. (2006) An integrated view of protein evolution. Nat. Rev. Genet. 7, 337–348 10.1038/nrg1838 PubMed DOI
D'Angelo, M.A., Gomez-Cavazos, J.S., Mei, A., Lackner, D.H. and Hetzer, M.W. (2012) A change in nuclear pore complex composition regulates cell differentiation. Dev. Cell 22, 446–458 10.1016/j.devcel.2011.11.021 PubMed DOI PMC
Rosenblum, J.S. and Blobel, G. (1999) Autoproteolysis in nucleoporin biogenesis. Proc. Natl Acad. Sci. U.S.A. 96, 11370–11375 10.1073/pnas.96.20.11370 PubMed DOI PMC
Griffis, E.R., Xu, S. and Powers, M.A. (2003) Nup98 localizes to both nuclear and cytoplasmic sides of the nuclear pore and binds to two distinct nucleoporin subcomplexes. Mol. Biol. Cell 14, 600–610 10.1091/mbc.e02-09-0582 PubMed DOI PMC
Teixeira, M.T., Fabre, E. and Dujon, B. (1999) Self-catalyzed cleavage of the yeast nucleoporin Nup145p precursor. J. Biol. Chem. 274, 32439–32444 10.1074/jbc.274.45.32439 PubMed DOI
Allegretti, M., Zimmerli, C.E., Rantos, V., Wilfling, F., Ronchi, P., Fung, H.K.H.et al. (2020) In-cell architecture of the nuclear pore and snapshots of its turnover. Nature 586, 796–800 10.1038/s41586-020-2670-5 PubMed DOI
Mahamid, J., Pfeffer, S., Schaffer, M., Villa, E., Danev, R., Cuellar, L.K.et al. (2016) Visualizing the molecular sociology at the HeLa cell nuclear periphery. Science 351, 969–972 10.1126/science.aad8857 PubMed DOI
Liashkovich, I., Meyring, A., Kramer, A. and Shahin, V. (2011) Exceptional structural and mechanical flexibility of the nuclear pore complex. J. Cell Physiol. 226, 675–682 10.1002/jcp.22382 PubMed DOI
Jaggi, R.D., Franco-Obregon, A., Muhlhausser, P., Thomas, F., Kutay, U. and Ensslin, K. (2003) Modulation of nuclear pore topology by transport modifiers. Biophys. J. 84, 665–670 10.1016/S0006-3495(03)74886-3 PubMed DOI PMC
Koh, J. and Blobel, G. (2015) Allosteric regulation in gating the central channel of the nuclear pore complex. Cell 161, 1361–1373 10.1016/j.cell.2015.05.013 PubMed DOI
Blus, B.J., Koh, J., Krolak, A., Seo, H.S., Coutavas, E. and Blobel, G. (2019) Allosteric modulation of nucleoporin assemblies by intrinsically disordered regions. Sci. Adv. 5, eaax1836 10.1126/sciadv.aax1836 PubMed DOI PMC
Feldherr, C.M. and Akin, D. (1990) The permeability of the nuclear envelope in dividing and nondividing cell cultures. J. Cell Biol. 111, 1–8 10.1083/jcb.111.1.1 PubMed DOI PMC
Elosegui-Artola, A., Andreu, I., Beedle, A.E.M., Lezamiz, A., Uroz, M., Kosmalska, A.J.et al. (2017) Force triggers YAP nuclear entry by regulating transport across nuclear pores. Cell 171, 1397–1410.e14 10.1016/j.cell.2017.10.008 PubMed DOI
Guttinger, S., Laurell, E. and Kutay, U. (2009) Orchestrating nuclear envelope disassembly and reassembly during mitosis. Nat. Rev. Mol. Cell Biol. 10, 178–191 10.1038/nrm2641 PubMed DOI
Pradillo, M., Evans, D. and Graumann, K. (2019) The nuclear envelope in higher plant mitosis and meiosis. Nucleus 10, 55–66 10.1080/19491034.2019.1587277 PubMed DOI PMC
Cross, F.R. and Umen, J.G. (2015) The Chlamydomonas cell cycle. Plant J. 82, 370–392 10.1111/tpj.12795 PubMed DOI PMC
Ali, E.I., Loidl, J. and Howard-Till, R.A. (2018) A streamlined cohesin apparatus is sufficient for mitosis and meiosis in the protist Tetrahymena. Chromosoma 127, 421–435 10.1007/s00412-018-0673-x PubMed DOI PMC
Ogbadoyi, E., Ersfeld, K., Robinson, D., Sherwin, T. and Gull, K. (2000) Architecture of the Trypanosoma brucei nucleus during interphase and mitosis. Chromosoma 108, 501–513 10.1007/s004120050402 PubMed DOI
Champion, L., Linder, M.I. and Kutay, U. (2017) Cellular reorganization during mitotic entry. Trends Cell Biol. 27, 26–41 10.1016/j.tcb.2016.07.004 PubMed DOI
Dultz, E., Zanin, E., Wurzenberger, C., Braun, M., Rabut, G., Sironi, L.et al. (2008) Systematic kinetic analysis of mitotic dis- and reassembly of the nuclear pore in living cells. J. Cell Biol. 180, 857–865 10.1083/jcb.200707026 PubMed DOI PMC
Dey, G., Culley, S., Curran, S., Schmidt, U., Henriques, R., Kukulski, W.et al. (2020) Closed mitosis requires local disassembly of the nuclear envelope. Nature 585, 119–123 10.1038/s41586-020-2648-3 PubMed DOI PMC
Exposito-Serrano, M., Sanchez-Molina, A., Gallardo, P., Salas-Pino, S. and Daga, R.R. (2020) Selective nuclear pore complex removal drives nuclear envelope division in fission yeast. Curr. Biol. 30, 3212–3222.e2 10.1016/j.cub.2020.05.066 PubMed DOI
Kaiser, C.A. and Schekman, R. (1990) Distinct sets of SEC genes govern transport vesicle formation and fusion early in the secretory pathway. Cell 61, 723–733 10.1016/0092-8674(90)90483-U PubMed DOI
Dokudovskaya, S., Waharte, F., Schlessinger, A., Pieper, U., Devos, D.P., Cristea, I.M.et al. (2011) A conserved coatomer-related complex containing Sec13 and Seh1 dynamically associates with the vacuole in Saccharomyces cerevisiae. Mol. Cell. Proteom. 10, M110 006478 10.1074/mcp.M110.006478 PubMed DOI PMC
Itoh, G., Sugino, S., Ikeda, M., Mizuguchi, M., Kanno, S., Amin, M.A.et al. (2013) Nucleoporin Nup188 is required for chromosome alignment in mitosis. Cancer Sci. 104, 871–879 10.1111/cas.12159 PubMed DOI PMC
Hashizume, C., Moyori, A., Kobayashi, A., Yamakoshi, N., Endo, A. and Wong, R.W. (2013) Nucleoporin Nup62 maintains centrosome homeostasis. Cell Cycle 12, 3804–3816 10.4161/cc.26671 PubMed DOI PMC
Zuccolo, M., Alves, A., Galy, V., Bolhy, S., Formstecher, E., Racine, V.et al. (2007) The human Nup107-160 nuclear pore subcomplex contributes to proper kinetochore functions. EMBO J. 26, 1853–1864 10.1038/sj.emboj.7601642 PubMed DOI PMC
Belgareh, N., Rabut, G., Bai, S.W., van Overbeek, M., Beaudouin, J., Daigle, N.et al. (2001) An evolutionarily conserved NPC subcomplex, which redistributes in part to kinetochores in mammalian cells. J. Cell Biol. 154, 1147–1160 10.1083/jcb.200101081 PubMed DOI PMC
Loiodice, I., Alves, A., Rabut, G., Van Overbeek, M., Ellenberg, J., Sibarita, J.B.et al. (2004) The entire Nup107-160 complex, including three new members, is targeted as one entity to kinetochores in mitosis. Mol. Biol. Cell 15, 3333–3344 10.1091/mbc.e03-12-0878 PubMed DOI PMC
Platani, M., Santarella-Mellwig, R., Posch, M., Walczak, R., Swedlow, J.R. and Mattaj, I.W. (2009) The Nup107-160 nucleoporin complex promotes mitotic events via control of the localization state of the chromosome passenger complex. Mol. Biol. Cell 20, 5260–5275 10.1091/mbc.e09-05-0377 PubMed DOI PMC
Platani, M., Samejima, I., Samejima, K., Kanemaki, M.T. and Earnshaw, W.C. (2018) Seh1 targets GATOR2 and Nup153 to mitotic chromosomes. J. Cell Sci. 131, jcs213140 10.1242/jcs.213140 PubMed DOI PMC
Davis, L.I. and Blobel, G. (1987) Nuclear pore complex contains a family of glycoproteins that includes p62: glycosylation through a previously unidentified cellular pathway. Proc. Natl Acad. Sci. U.S.A. 84, 7552–7556 10.1073/pnas.84.21.7552 PubMed DOI PMC
Kuhn, T.M., Pascual-Garcia, P., Gozalo, A., Little, S.C. and Capelson, M. (2019) Chromatin targeting of nuclear pore proteins induces chromatin decondensation. J. Cell Biol. 218, 2945–2961 10.1083/jcb.201807139 PubMed DOI PMC
Capelson, M., Liang, Y., Schulte, R., Mair, W., Wagner, U. and Hetzer, M.W. (2010) Chromatin-bound nuclear pore components regulate gene expression in higher eukaryotes. Cell 140, 372–383 10.1016/j.cell.2009.12.054 PubMed DOI PMC
Kalverda, B., Pickersgill, H., Shloma, V.V. and Fornerod, M. (2010) Nucleoporins directly stimulate expression of developmental and cell-cycle genes inside the nucleoplasm. Cell 140, 360–371 10.1016/j.cell.2010.01.011 PubMed DOI
Vaquerizas, J.M., Suyama, R., Kind, J., Miura, K., Luscombe, N.M. and Akhtar, A. (2010) Nuclear pore proteins nup153 and megator define transcriptionally active regions in the Drosophila genome. PLoS Genet. 6, e1000846 10.1371/journal.pgen.1000846 PubMed DOI PMC
Franks, T.M., McCloskey, A., Shokirev, M.N., Benner, C., Rathore, A. and Hetzer, M.W. (2017) Nup98 recruits the Wdr82-Set1A/COMPASS complex to promoters to regulate H3K4 trimethylation in hematopoietic progenitor cells. Genes Dev. 31, 2222–2234 10.1101/gad.306753.117 PubMed DOI PMC
Light, W.H., Freaney, J., Sood, V., Thompson, A., D'Urso, A., Horvath, C.M.et al. (2013) A conserved role for human Nup98 in altering chromatin structure and promoting epigenetic transcriptional memory. PLoS Biol. 11, e1001524 10.1371/journal.pbio.1001524 PubMed DOI PMC
Ibarra, A., Benner, C., Tyagi, S., Cool, J. and Hetzer, M.W. (2016) Nucleoporin-mediated regulation of cell identity genes. Genes Dev. 30, 2253–2258 10.1101/gad.287417.116 PubMed DOI PMC
Iglesias, N., Paulo, J.A., Tatarakis, A., Wang, X., Edwards, A.L., Bhanu, N.V.et al. (2020) Native chromatin proteomics reveals a role for specific nucleoporins in heterochromatin organization and maintenance. Mol. Cell 77, 51–66.e8 10.1016/j.molcel.2019.10.018 PubMed DOI PMC
Gozalo, A., Duke, A., Lan, Y., Pascual-Garcia, P., Talamas, J.A., Nguyen, S.C.et al. (2020) Core components of the nuclear pore bind distinct states of chromatin and contribute to polycomb repression. Mol. Cell 77, 67–81.e7 10.1016/j.molcel.2019.10.017 PubMed DOI PMC
Van de Vosse, D.W., Wan, Y., Lapetina, D.L., Chen, W.M., Chiang, J.H., Aitchison, J.D.et al. (2013) A role for the nucleoporin Nup170p in chromatin structure and gene silencing. Cell 152, 969–983 10.1016/j.cell.2013.01.049 PubMed DOI PMC
Kehat, I., Accornero, F., Aronow, B.J. and Molkentin, J.D. (2011) Modulation of chromatin position and gene expression by HDAC4 interaction with nucleoporins. J. Cell Biol. 193, 21–29 10.1083/jcb.201101046 PubMed DOI PMC
Smith, S., Galinha, C., Desset, S., Tolmie, F., Evans, D., Tatout, C.et al. (2015) Marker gene tethering by nucleoporins affects gene expression in plants. Nucleus 6, 471–478 10.1080/19491034.2015.1126028 PubMed DOI PMC
Kee, H.L., Dishinger, J.F., Blasius, T.L., Liu, C.J., Margolis, B. and Verhey, K.J. (2012) A size-exclusion permeability barrier and nucleoporins characterize a ciliary pore complex that regulates transport into cilia. Nat. Cell Biol. 14, 431–437 10.1038/ncb2450 PubMed DOI PMC
Endicott, S.J. and Brueckner, M. (2018) NUP98 sets the size-exclusion diffusion limit through the ciliary base. Curr. Biol. 28, 1643–1650.e3 10.1016/j.cub.2018.04.014 PubMed DOI PMC
Del Viso, F., Huang, F., Myers, J., Chalfant, M., Zhang, Y., Reza, N.et al. (2016) Congenital heart disease genetics uncovers context-dependent organization and function of nucleoporins at cilia. Dev. Cell 38, 478–492 10.1016/j.devcel.2016.08.002 PubMed DOI PMC
Marquez, J., Bhattacharya, D., Lusk, C.P. and Khokha, M.K. (2021) Nucleoporin NUP205 plays a critical role in cilia and congenital disease. Dev. Biol. 469, 46–53 10.1016/j.ydbio.2020.10.001 PubMed DOI PMC
Nachury, M.V., Seeley, E.S. and Jin, H. (2010) Trafficking to the ciliary membrane: how to get across the periciliary diffusion barrier? Annu. Rev. Cell Dev. Biol. 26, 59–87 10.1146/annurev.cellbio.042308.113337 PubMed DOI PMC
Dishinger, J.F., Kee, H.L., Jenkins, P.M., Fan, S., Hurd, T.W., Hammond, J.W.et al. (2010) Ciliary entry of the kinesin-2 motor KIF17 is regulated by importin-beta2 and RanGTP. Nat. Cell Biol. 12, 703–710 10.1038/ncb2073 PubMed DOI PMC
Hurd, T.W., Fan, S. and Margolis, B.L. (2011) Localization of retinitis pigmentosa 2 to cilia is regulated by Importin beta2. J. Cell Sci. 124(Pt 5), 718–726 10.1242/jcs.070839 PubMed DOI PMC
Breslow, D.K., Koslover, E.F., Seydel, F., Spakowitz, A.J. and Nachury, M.V. (2013) An in vitro assay for entry into cilia reveals unique properties of the soluble diffusion barrier. J. Cell Biol. 203, 129–147 10.1083/jcb.201212024 PubMed DOI PMC
Salisbury, J.L., Suino, K.M., Busby, R. and Springett, M. (2002) Centrin-2 is required for centriole duplication in mammalian cells. Curr. Biol. 12, 1287–1292 10.1016/S0960-9822(02)01019-9 PubMed DOI
Resendes, K.K., Rasala, B.A. and Forbes, D.J. (2008) Centrin 2 localizes to the vertebrate nuclear pore and plays a role in mRNA and protein export. Mol. Cell. Biol. 28, 1755–1769 10.1128/MCB.01697-07 PubMed DOI PMC
Ludwig, M. and Gibbs, S.P. (1989) Evidence that the nucleomorphs of chlorarachnion reptans (chlorarachniophyceae) are vestigial nuclei: morphology, division and DNA-DAPI fluorescence. J. Phycol. 25, 385–394 10.1111/j.1529-8817.1989.tb00135.x DOI
Jovanovic-Talisman, T., Tetenbaum-Novatt, J., McKenney, A.S., Zilman, A., Peters, R., Rout, M.P.et al. (2009) Artificial nanopores that mimic the transport selectivity of the nuclear pore complex. Nature 457, 1023–1027 10.1038/nature07600 PubMed DOI PMC
Fragasso, A., de Vries, H.W., Andersson, J., van der Sluis, E.O., van der Giessen, E., Dahlin, A.et al. (2021) A designer FG-Nup that reconstitutes the selective transport barrier of the nuclear pore complex. Nat. Commun. 12, 2010 10.1038/s41467-021-22293-y PubMed DOI PMC
Panatala, R., Barbato, S., Kozai, T., Luo, J., Kapinos, L.E. and Lim, R.Y.H. (2019) Nuclear pore membrane proteins self-assemble into nanopores. Biochemistry 58, 484–488 10.1021/acs.biochem.8b01179 PubMed DOI
A lineage-specific protein network at the trypanosome nuclear envelope
Reconstructing the last common ancestor of all eukaryotes
Lessons from the deep: mechanisms behind diversification of eukaryotic protein complexes
Coatomer in the universe of cellular complexity