Evolutionary, structural and functional insights in nuclear organisation and nucleocytoplasmic transport in trypanosomes
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, přehledy, práce podpořená grantem
Grantová podpora
Wellcome Trust - United Kingdom
204697/Z/16/Z
Wellcome Trust - United Kingdom
PubMed
37789516
PubMed Central
PMC10953052
DOI
10.1002/1873-3468.14747
Knihovny.cz E-zdroje
- Klíčová slova
- evolutionary diversity, nuclear lamina, nuclear pore complex, nucleus, trypanosoma,
- MeSH
- aktivní transport - buněčné jádro fyziologie MeSH
- jaderný obal MeSH
- jaderný pór genetika metabolismus MeSH
- komplex proteinů jaderného póru * metabolismus MeSH
- lidé MeSH
- Trypanosoma * genetika metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- komplex proteinů jaderného póru * MeSH
One of the remarkable features of eukaryotes is the nucleus, delimited by the nuclear envelope (NE), a complex structure and home to the nuclear lamina and nuclear pore complex (NPC). For decades, these structures were believed to be mainly architectural elements and, in the case of the NPC, simply facilitating nucleocytoplasmic trafficking. More recently, the critical roles of the lamina, NPC and other NE constituents in genome organisation, maintaining chromosomal domains and regulating gene expression have been recognised. Importantly, mutations in genes encoding lamina and NPC components lead to pathogenesis in humans, while pathogenic protozoa disrupt the progression of normal development and expression of pathogenesis-related genes. Here, we review features of the lamina and NPC across eukaryotes and discuss how these elements are structured in trypanosomes, protozoa of high medical and veterinary importance, highlighting lineage-specific and conserved aspects of nuclear organisation.
Zobrazit více v PubMed
Schoch CL, Ciufo S, Domrachev M, Hotton CL, Kannan S, Khovanskaya R, Leipe D, McVeigh R, O'Neill K, Robbertse B et al. (2020) NCBI taxonomy: a comprehensive update on curation, resources and tools. Database (Oxford) 2020, baaa062. PubMed PMC
Englund PT, DiMaio DC and Price SS (1977) A nicked form of kinetoplast DNA in Leishmania tarentolae . J Biol Chem 252, 6208–6216. PubMed
Simpson L (1972) The kinetoplast of the hernoflagellates. Int Rev Cytol 32, 139–207.
Desquesnes M, Gonzatti M, Sazmand A, Thevenon S, Bossard G, Boulange A, Gimonneau G, Truc P, Herder S, Ravel S et al. (2022) A review on the diagnosis of animal trypanosomoses. Parasit Vectors 15, 64. PubMed PMC
Pays E, Radwanska M and Magez S (2023) The pathogenesis of African trypanosomiasis. Annu Rev Pathol 18, 19–45. PubMed
Buscher P, Gonzatti MI, Hebert L, Inoue N, Pascucci I, Schnaufer A, Suganuma K, Touratier L and Van Reet N (2019) Equine trypanosomosis: enigmas and diagnostic challenges. Parasit Vectors 12, 234. PubMed PMC
Luzak V, Lopez‐Escobar L, Siegel TN and Figueiredo LM (2021) Cell‐to‐cell heterogeneity in trypanosomes. Annu Rev Microbiol 75, 107–128. PubMed
Hill KL (2003) Biology and mechanism of trypanosoma cell motility. Eukaryot Cell 2, 200–208. PubMed PMC
Lamont GS, Tucker RS and Cross GA (1986) Analysis of antigen switching rates in Trypanosoma brucei . Parasitology 92 (Pt 2), 355–367. PubMed
Borst P (1986) Discontinuous transcription and antigenic variation in trypanosomes. Annu Rev Biochem 55, 701–732. PubMed
Navarro M and Gull K (2001) A pol I transcriptional body associated with VSG mono‐allelic expression in Trypanosoma brucei . Nature 414, 759–763. PubMed
Rudenko G, Bishop D, Gottesdiener K and Van der Ploeg LH (1989) Alpha‐amanitin resistant transcription of protein coding genes in insect and bloodstream form Trypanosoma brucei . EMBO J 8, 4259–4263. PubMed PMC
Rao SPS, Manjunatha UH, Mikolajczak S, Ashigbie PG and Diagana TT (2023) Drug discovery for parasitic diseases: powered by technology, enabled by pharmacology, informed by clinical science. Trends Parasitol 39, 260–271. PubMed
De Rycker M, Wyllie S, Horn D, Read KD and Gilbert IH (2023) Anti‐trypanosomatid drug discovery: progress and challenges. Nat Rev Microbiol 21, 35–50. PubMed PMC
WHO (2023) WHO Interim Guidelines for the Treatment of Gambiense Human African Trypanosomiasis. WHO, Geneva. PubMed
WHO (2023) Chagas disease (American trypanosomiasis). https://who.int/news-room/fact-sheets/detail/chagas-disease-(american trypanosomiasis). Accessed June 2023.
PAHO (2023) Chagas disease. https://www.paho.org/en/topics/chagas‐disease. Accessed June 2023.
Torres‐Guerrero E, Quintanilla‐Cedillo MR, Ruiz‐Esmenjaud J and Arenas R (2017) Leishmaniasis: a review. F1000Res 6, 750. PubMed PMC
Koumandou VL, Wickstead B, Ginger ML, van der Giezen M, Dacks JB and Field MC (2013) Molecular paleontology and complexity in the last eukaryotic common ancestor. Crit Rev Biochem Mol Biol 48, 373–396. PubMed PMC
Eme L, Tamarit D, Caceres EF, Stairs CW, De Anda V, Schon ME, Seitz KW, Dombrowski N, Lewis WH, Homa F et al. (2023) Inference and reconstruction of the heimdallarchaeial ancestry of eukaryotes. Nature 618, 992–999. PubMed PMC
Lopez‐Garcia P and Moreira D (2015) Open questions on the origin of eukaryotes. Trends Ecol Evol 30, 697–708. PubMed PMC
Lukes J, Skalicky T, Tyc J, Votypka J and Yurchenko V (2014) Evolution of parasitism in kinetoplastid flagellates. Mol Biochem Parasitol 195, 115–122. PubMed
Makarov AA, Padilla‐Mejia NE and Field MC (2021) Evolution and diversification of the nuclear pore complex. Biochem Soc Trans 49, 1601–1619. PubMed PMC
Aebi U, Cohn J, Buhle L and Gerace L (1986) The nuclear lamina is a meshwork of intermediate‐type filaments. Nature 323, 560–564. PubMed
Stiekema M, van Zandvoort M, Ramaekers FCS and Broers JLV (2020) Structural and mechanical aberrations of the nuclear lamina in disease. Cell 9, 1884. PubMed PMC
Turgay Y, Eibauer M, Goldman AE, Shimi T, Khayat M, Ben‐Harush K, Dubrovsky‐Gaupp A, Sapra KT, Goldman RD and Medalia O (2017) The molecular architecture of lamins in somatic cells. Nature 543, 261–264. PubMed PMC
Kollmar M (2015) Polyphyly of nuclear lamin genes indicates an early eukaryotic origin of the metazoan‐type intermediate filament proteins. Sci Rep 5, 10652. PubMed PMC
Evangelisti C, Rusciano I, Mongiorgi S, Ramazzotti G, Lattanzi G, Manzoli L, Cocco L and Ratti S (2022) The wide and growing range of lamin B‐related diseases: from laminopathies to cancer. Cell Mol Life Sci 79, 126. PubMed PMC
Shin JY and Worman HJ (2022) Molecular pathology of laminopathies. Annu Rev Pathol 17, 159–180. PubMed PMC
Tenga R and Medalia O (2020) Structure and unique mechanical aspects of nuclear lamin filaments. Curr Opin Struct Biol 64, 152–159. PubMed
Nmezi B, Xu J, Fu R, Armiger TJ, Rodriguez‐Bey G, Powell JS, Ma H, Sullivan M, Tu Y, Chen NY et al. (2019) Concentric organization of A‐ and B‐type lamins predicts their distinct roles in the spatial organization and stability of the nuclear lamina. Proc Natl Acad Sci USA 116, 4307–4315. PubMed PMC
Strelkov SV, Herrmann H and Aebi U (2003) Molecular architecture of intermediate filaments. Bioessays 25, 243–251. PubMed
Shimi T, Kittisopikul M, Tran J, Goldman AE, Adam SA, Zheng Y, Jaqaman K and Goldman RD (2015) Structural organization of nuclear lamins A, C, B1, and B2 revealed by superresolution microscopy. Mol Biol Cell 26, 4075–4086. PubMed PMC
Shimi T, Pfleghaar K, Kojima S, Pack CG, Solovei I, Goldman AE, Adam SA, Shumaker DK, Kinjo M, Cremer T et al. (2008) The A‐ and B‐type nuclear lamin networks: microdomains involved in chromatin organization and transcription. Genes Dev 22, 3409–3421. PubMed PMC
Goldberg MW, Huttenlauch I, Hutchison CJ and Stick R (2008) Filaments made from A‐ and B‐type lamins differ in structure and organization. J Cell Sci 121, 215–225. PubMed
Xie W, Chojnowski A, Boudier T, Lim JS, Ahmed S, Ser Z, Stewart C and Burke B (2016) A‐type lamins form distinct filamentous networks with differential nuclear pore complex associations. Curr Biol 26, 2651–2658. PubMed
Madsen‐Osterbye J, Bellanger A, Galigniana NM and Collas P (2022) Biology and model predictions of the dynamics and heterogeneity of chromatin‐nuclear lamina interactions. Front Cell Dev Biol 10, 913458. PubMed PMC
Vester K, Preussner M, Holton N, Feng S, Schultz C, Heyd F and Wahl MC (2022) Recruitment of a splicing factor to the nuclear lamina for its inactivation. Commun Biol 5, 736. PubMed PMC
Naetar N, Georgiou K, Knapp C, Bronshtein I, Zier E, Fichtinger P, Dechat T, Garini Y and Foisner R (2021) LAP2alpha maintains a mobile and low assembly state of A‐type lamins in the nuclear interior. Elife 10, e63476. PubMed PMC
Liu SY and Ikegami K (2020) Nuclear lamin phosphorylation: an emerging role in gene regulation and pathogenesis of laminopathies. Nucleus 11, 299–314. PubMed PMC
Ikegami K, Secchia S, Almakki O, Lieb JD and Moskowitz IP (2020) Phosphorylated lamin A/C in the nuclear interior binds active enhancers associated with abnormal transcription in progeria. Dev Cell 52, 699–713.e11. PubMed PMC
Ottaviano Y and Gerace L (1985) Phosphorylation of the nuclear lamins during interphase and mitosis. J Biol Chem 260, 624–632. PubMed
Ogbadoyi E, Ersfeld K, Robinson D, Sherwin T and Gull K (2000) Architecture of the Trypanosoma brucei nucleus during interphase and mitosis. Chromosoma 108, 501–513. PubMed
Kruger A, Batsios P, Baumann O, Luckert E, Schwarz H, Stick R, Meyer I and Graf R (2012) Characterization of NE81, the first lamin‐like nucleoskeleton protein in a unicellular organism. Mol Biol Cell 23, 360–370. PubMed PMC
Batsios P, Graf R, Koonce MP, Larochelle DA and Meyer I (2019) Nuclear envelope organization in Dictyostelium discoideum . Int J Dev Biol 63, 509–519. PubMed
Koreny L and Field MC (2016) Ancient eukaryotic origin and evolutionary plasticity of nuclear lamina. Genome Biol Evol 8, 2663–2671. PubMed PMC
Andrulis ED, Zappulla DC, Ansari A, Perrod S, Laiosa CV, Gartenberg MR and Sternglanz R (2002) Esc1, a nuclear periphery protein required for Sir4‐based plasmid anchoring and partitioning. Mol Cell Biol 22, 8292–8301. PubMed PMC
Faure G, Jezequel K, Roisne‐Hamelin F, Bitard‐Feildel T, Lamiable A, Marcand S and Callebaut I (2019) Discovery and evolution of new domains in yeast heterochromatin factor Sir4 and its partner Esc1. Genome Biol Evol 11, 572–585. PubMed PMC
Ciska M, Hikida R, Masuda K and Moreno Diaz de la Espina S (2019) Evolutionary history and structure of nuclear matrix constituent proteins, the plant analogues of lamins. J Exp Bot 70, 2651–2664. PubMed PMC
Ciska M, Masuda K and Moreno Diaz de la Espina S (2013) Lamin‐like analogues in plants: the characterization of NMCP1 in Allium cepa . J Exp Bot 64, 1553–1564. PubMed PMC
Ciska M, Masuda K and Moreno Diaz de la Espina S (2018) Characterization of the lamin analogue NMCP2 in the monocot Allium cepa . Chromosoma 127, 103–113. PubMed
DuBois KN, Alsford S, Holden JM, Buisson J, Swiderski M, Bart JM, Ratushny AV, Wan Y, Bastin P, Barry JD et al. (2012) NUP‐1 is a large coiled‐coil nucleoskeletal protein in trypanosomes with lamin‐like functions. PLoS Biol 10, e1001287. PubMed PMC
Maishman L, Obado SO, Alsford S, Bart JM, Chen WM, Ratushny AV, Navarro M, Horn D, Aitchison JD, Chait BT et al. (2016) Co‐dependence between trypanosome nuclear lamina components in nuclear stability and control of gene expression. Nucleic Acids Res 44, 10554–10570. PubMed PMC
Rout MP, Obado SO, Schenkman S and Field MC (2017) Specialising the parasite nucleus: pores, lamins, chromatin, and diversity. PLoS Pathog 13, e1006170. PubMed PMC
Graf R, Batsios P and Meyer I (2015) Evolution of centrosomes and the nuclear lamina: Amoebozoan assets. Eur J Cell Biol 94, 249–256. PubMed
O'Malley MA, Leger MM, Wideman JG and Ruiz‐Trillo I (2019) Concepts of the last eukaryotic common ancestor. Nat Ecol Evol 3, 338–344. PubMed
Rout MP and Field MC (2001) Isolation and characterization of subnuclear compartments from Trypanosoma brucei. Identification of a major repetitive nuclear lamina component. J Biol Chem 276, 38261–38271. PubMed
Picchi GF, Ferreira AM, Souza FS, Lourenco EE, Arauco PR, Lorusso A, Bordignon J, Krieger MA, Goldenberg S and Fragoso SP (2011) Trypanosoma cruzi: identification of DNA targets of the nuclear periphery coiled‐coil protein TcNUP‐1. Exp Parasitol 127, 147–152. PubMed
Padilla‐Mejia NE, Koreny L, Holden J, Vancova M, Lukes J, Zoltner M and Field MC (2021) A hub‐and‐spoke nuclear lamina architecture in trypanosomes. J Cell Sci 134, jcs251264. PubMed PMC
Funkhouser CM, Sknepnek R, Shimi T, Goldman AE, Goldman RD and Olvera de la Cruz M (2013) Mechanical model of blebbing in nuclear lamin meshworks. Proc Natl Acad Sci USA 110, 3248–3253. PubMed PMC
Obado SO, Brillantes M, Uryu K, Zhang W, Ketaren NE, Chait BT, Field MC and Rout MP (2016) Interactome mapping reveals the evolutionary history of the nuclear pore complex. PLoS Biol 14, e1002365. PubMed PMC
Mugo E and Clayton C (2017) Expression of the RNA‐binding protein RBP10 promotes the bloodstream‐form differentiation state in Trypanosoma brucei . PLoS Pathog 13, e1006560. PubMed PMC
Muller LSM, Cosentino RO, Forstner KU, Guizetti J, Wedel C, Kaplan N, Janzen CJ, Arampatzi P, Vogel J, Steinbiss S et al. (2018) Genome organization and DNA accessibility control antigenic variation in trypanosomes. Nature 563, 121–125. PubMed PMC
Faria J, Luzak V, Muller LSM, Brink BG, Hutchinson S, Glover L, Horn D and Siegel TN (2021) Spatial integration of transcription and splicing in a dedicated compartment sustains monogenic antigen expression in African trypanosomes. Nat Microbiol 6, 289–300. PubMed PMC
Shanmugasundram A, Starns D, Bohme U, Amos B, Wilkinson PA, Harb OS, Warrenfeltz S, Kissinger JC, McDowell MA, Roos DS et al. (2023) TriTrypDB: an integrated functional genomics resource for kinetoplastida. PLoS Negl Trop Dis 17, e0011058. PubMed PMC
Urbaniak MD, Martin DM and Ferguson MA (2013) Global quantitative SILAC phosphoproteomics reveals differential phosphorylation is widespread between the procyclic and bloodstream form lifecycle stages of Trypanosoma brucei . J Proteome Res 12, 2233–2244. PubMed PMC
Li Y, Jiang X, Zhang Y, Gao Z, Liu Y, Hu J, Hu X, Li L, Shi J and Gao N (2019) Nuclear accumulation of UBC9 contributes to SUMOylation of lamin A/C and nucleophagy in response to DNA damage. J Exp Clin Cancer Res 38, 67. PubMed PMC
Beck M and Hurt E (2017) The nuclear pore complex: understanding its function through structural insight. Nat Rev Mol Cell Biol 18, 73–89. PubMed
Callam HG and Tomlin SG (1950) Experimental studies on amphibian oocyte nuclei. Proc R Soc Lond B Biol Sci 137, 367–378. PubMed
Lin DH and Hoelz A (2019) The structure of the nuclear pore complex (an update). Annu Rev Biochem 88, 725–783. PubMed PMC
Amlacher S, Sarges P, Flemming D, van Noort V, Kunze R, Devos DP, Arumugam M, Bork P and Hurt E (2011) Insight into structure and assembly of the nuclear pore complex by utilizing the genome of a eukaryotic thermophile. Cell 146, 277–289. PubMed
Bley CJ, Nie S, Mobbs GW, Petrovic S, Gres AT, Liu X, Mukherjee S, Harvey S, Huber FM, Lin DH et al. (2022) Architecture of the cytoplasmic face of the nuclear pore. Science 376, eabm9129. PubMed PMC
Fernandez‐Martinez J, Kim SJ, Shi Y, Upla P, Pellarin R, Gagnon M, Chemmama IE, Wang J, Nudelman I, Zhang W et al. (2016) Structure and function of the nuclear pore complex cytoplasmic mRNA export platform. Cell 167, 1215–1228.e25. PubMed PMC
Fontana P, Dong Y, Pi X, Tong AB, Hecksel CW, Wang L, Fu TM, Bustamante C and Wu H (2022) Structure of cytoplasmic ring of nuclear pore complex by integrative cryo‐EM and AlphaFold. Science 376, eabm9326. PubMed PMC
Huang G, Zhan X, Zeng C, Liang K, Zhu X, Zhao Y, Wang P, Wang Q, Zhou Q, Tao Q et al. (2022) Cryo‐EM structure of the inner ring from the Xenopus laevis nuclear pore complex. Cell Res 32, 451–460. PubMed PMC
Huang G, Zhan X, Zeng C, Zhu X, Liang K, Zhao Y, Wang P, Wang Q, Zhou Q, Tao Q et al. (2022) Cryo‐EM structure of the nuclear ring from Xenopus laevis nuclear pore complex. Cell Res 32, 349–358. PubMed PMC
Kim SJ, Fernandez‐Martinez J, Nudelman I, Shi Y, Zhang W, Raveh B, Herricks T, Slaughter BD, Hogan JA, Upla P et al. (2018) Integrative structure and functional anatomy of a nuclear pore complex. Nature 555, 475–482. PubMed PMC
Kim SJ, Fernandez‐Martinez J, Sampathkumar P, Martel A, Matsui T, Tsuruta H, Weiss TM, Shi Y, Markina‐Inarrairaegui A, Bonanno JB et al. (2014) Integrative structure‐function mapping of the nucleoporin Nup133 suggests a conserved mechanism for membrane anchoring of the nuclear pore complex. Mol Cell Proteomics 13, 2911–2926. PubMed PMC
Kosinski J, Mosalaganti S, von Appen A, Teimer R, DiGuilio AL, Wan W, Bui KH, Hagen WJ, Briggs JA, Glavy JS et al. (2016) Molecular architecture of the inner ring scaffold of the human nuclear pore complex. Science 352, 363–365. PubMed PMC
von Appen A, Kosinski J, Sparks L, Ori A, DiGuilio AL, Vollmer B, Mackmull MT, Banterle N, Parca L, Kastritis P et al. (2015) In situ structural analysis of the human nuclear pore complex. Nature 526, 140–143. PubMed PMC
Zhang Y, Li S, Zeng C, Huang G, Zhu X, Wang Q, Wang K, Zhou Q, Yan C, Zhang W et al. (2020) Molecular architecture of the luminal ring of the Xenopus laevis nuclear pore complex. Cell Res 30, 532–540. PubMed PMC
Zhu X, Huang G, Zeng C, Zhan X, Liang K, Xu Q, Zhao Y, Wang P, Wang Q, Zhou Q et al. (2022) Structure of the cytoplasmic ring of the Xenopus laevis nuclear pore complex. Science 376, eabl8280. PubMed
Asakawa H, Kojidani T, Yang HJ, Ohtsuki C, Osakada H, Matsuda A, Iwamoto M, Chikashige Y, Nagao K, Obuse C et al. (2019) Asymmetrical localization of Nup107‐160 subcomplex components within the nuclear pore complex in fission yeast. PLoS Genet 15, e1008061. PubMed PMC
Asakawa H, Yang HJ, Yamamoto TG, Ohtsuki C, Chikashige Y, Sakata‐Sogawa K, Tokunaga M, Iwamoto M, Hiraoka Y and Haraguchi T (2014) Characterization of nuclear pore complex components in fission yeast Schizosaccharomyces pombe . Nucleus 5, 149–162. PubMed PMC
Mosalaganti S, Kosinski J, Albert S, Schaffer M, Strenkert D, Salome PA, Merchant SS, Plitzko JM, Baumeister W, Engel BD et al. (2018) In situ architecture of the algal nuclear pore complex. Nat Commun 9, 2361. PubMed PMC
Tamura K, Fukao Y, Iwamoto M, Haraguchi T and Hara‐Nishimura I (2010) Identification and characterization of nuclear pore complex components in Arabidopsis thaliana . Plant Cell 22, 4084–4097. PubMed PMC
Zhang C, An N, Jia P, Zhang W, Liang J, Zhang X, Zhou H, Ma W, Han M, Xing L et al. (2020) Genomic identification and expression analysis of nuclear pore proteins in Malus domestica . Sci Rep 10, 17426. PubMed PMC
Iwamoto M, Osakada H, Mori C, Fukuda Y, Nagao K, Obuse C, Hiraoka Y and Haraguchi T (2017) Compositionally distinct nuclear pore complexes of functionally distinct dimorphic nuclei in the ciliate Tetrahymena . J Cell Sci 130, 1822–1834. PubMed PMC
DeGrasse JA, DuBois KN, Devos D, Siegel TN, Sali A, Field MC, Rout MP and Chait BT (2009) Evidence for a shared nuclear pore complex architecture that is conserved from the last common eukaryotic ancestor. Mol Cell Proteomics 8, 2119–2130. PubMed PMC
Chopra K, Bawaria S and Chauhan R (2019) Evolutionary divergence of the nuclear pore complex from fungi to metazoans. Protein Sci 28, 571–586. PubMed PMC
Fernandez‐Martinez J and Rout MP (2021) One ring to rule them all? Structural and functional diversity in the nuclear pore complex. Trends Biochem Sci 46, 595–607. PubMed PMC
Frosst P, Guan T, Subauste C, Hahn K and Gerace L (2002) Tpr is localized within the nuclear basket of the pore complex and has a role in nuclear protein export. J Cell Biol 156, 617–630. PubMed PMC
Krull S, Thyberg J, Bjorkroth B, Rackwitz HR and Cordes VC (2004) Nucleoporins as components of the nuclear pore complex core structure and Tpr as the architectural element of the nuclear basket. Mol Biol Cell 15, 4261–4277. PubMed PMC
Duheron V, Chatel G, Sauder U, Oliveri V and Fahrenkrog B (2014) Structural characterization of altered nucleoporin Nup153 expression in human cells by thin‐section electron microscopy. Nucleus 5, 601–612. PubMed PMC
Derrer CP, Mancini R, Vallotton P, Huet S, Weis K and Dultz E (2019) The RNA export factor Mex67 functions as a mobile nucleoporin. J Cell Biol 218, 3967–3976. PubMed PMC
Stewart M (2019) Structure and function of the TREX‐2 complex. Subcell Biochem 93, 461–470. PubMed
Xie Y and Ren Y (2019) Mechanisms of nuclear mRNA export: a structural perspective. Traffic 20, 829–840. PubMed PMC
Schneider M, Hellerschmied D, Schubert T, Amlacher S, Vinayachandran V, Reja R, Pugh BF, Clausen T and Kohler A (2015) The nuclear pore‐associated TREX‐2 complex employs mediator to regulate gene expression. Cell 162, 1016–1028. PubMed PMC
Holden JM, Koreny L, Obado S, Ratushny AV, Chen WM, Chiang JH, Kelly S, Chait BT, Aitchison JD, Rout MP et al. (2014) Nuclear pore complex evolution: a trypanosome Mlp analogue functions in chromosomal segregation but lacks transcriptional barrier activity. Mol Biol Cell 25, 1421–1436. PubMed PMC
Obado SO, Rout MP and Field MC (2022) Sending the message: specialized RNA export mechanisms in trypanosomes. Trends Parasitol 38, 854–867. PubMed PMC
Dostalova A, Kaser S, Cristodero M and Schimanski B (2013) The nuclear mRNA export receptor Mex67‐Mtr2 of Trypanosoma brucei contains a unique and essential zinc finger motif. Mol Microbiol 88, 728–739. PubMed
Obado SO, Stein M, Hegedúsová E, Zhang W, Hutchinson S, Brillantes M, Glover L, Paris Z, Chait BT, Field MC et al. (2022) Mex67 paralogs mediate division of labor in trypanosome RNA processing and export. bioRxiv. doi: 10.1101/2022.06.27.497849 [PREPRINT]. DOI
Aibara S, Valkov E, Lamers MH, Dimitrova L, Hurt E and Stewart M (2015) Structural characterization of the principal mRNA‐export factor Mex67‐Mtr2 from Chaetomium thermophilum . Acta Crystallogr F Struct Biol Commun 71, 876–888. PubMed PMC
Hegedusova E, Kulkarni S, Burgman B, Alfonzo JD and Paris Z (2019) The general mRNA exporters Mex67 and Mtr2 play distinct roles in nuclear export of tRNAs in Trypanosoma brucei . Nucleic Acids Res 47, 8620–8631. PubMed PMC
Folkmann AW, Noble KN, Cole CN and Wente SR (2011) Dbp5, Gle1‐IP6 and Nup159: a working model for mRNP export. Nucleus 2, 540–548. PubMed PMC
Stuwe T, Bley CJ, Thierbach K, Petrovic S, Schilbach S, Mayo DJ, Perriches T, Rundlet EJ, Jeon YE, Collins LN et al. (2015) Architecture of the fungal nuclear pore inner ring complex. Science 350, 56–64. PubMed PMC
Courjol F, Mouveaux T, Lesage K, Saliou JM, Werkmeister E, Bonabaud M, Rohmer M, Slomianny C, Lafont F and Gissot M (2017) Characterization of a nuclear pore protein sheds light on the roles and composition of the Toxoplasma gondii nuclear pore complex. Cell Mol Life Sci 74, 2107–2125. PubMed PMC
Ambekar SV, Beck JR and Mair GR (2022) TurboID identification of evolutionarily divergent components of the nuclear pore complex in the malaria model Plasmodium berghei . mBio 13, e0181522. PubMed PMC
Kehrer J, Kuss C, Andres‐Pons A, Reustle A, Dahan N, Devos D, Kudryashev M, Beck M, Mair GR and Frischknecht F (2018) Nuclear pore complex components in the malaria parasite Plasmodium berghei . Sci Rep 8, 11249. PubMed PMC
Dahan‐Pasternak N, Nasereddin A, Kolevzon N, Pe'er M, Wong W, Shinder V, Turnbull L, Whitchurch CB, Elbaum M, Gilberger TW et al. (2013) PfSec13 is an unusual chromatin‐associated nucleoporin of Plasmodium falciparum that is essential for parasite proliferation in human erythrocytes. J Cell Sci 126, 3055–3069. PubMed
Weiner A, Dahan‐Pasternak N, Shimoni E, Shinder V, von Huth P, Elbaum M and Dzikowski R (2011) 3D nuclear architecture reveals coupled cell cycle dynamics of chromatin and nuclear pores in the malaria parasite Plasmodium falciparum . Cell Microbiol 13, 967–977. PubMed
Maul GG, Deaven LL, Freed JJ, Campbell GL and Becak W (1980) Investigation of the determinants of nuclear pore number. Cytogenet Cell Genet 26, 175–190. PubMed
Rabut G, Lenart P and Ellenberg J (2004) Dynamics of nuclear pore complex organization through the cell cycle. Curr Opin Cell Biol 16, 314–321. PubMed
Field MC and Rout MP (2019) Pore timing: the evolutionary origins of the nucleus and nuclear pore complex. F1000Res 8, F1000 Faculty Rev‐369. PubMed PMC
Field MC (2023) Deviating from the norm: nuclear organisation in trypanosomes. Curr Opin Cell Biol 85, 102234. PubMed
Akey CW, Singh D, Ouch C, Echeverria I, Nudelman I, Varberg JM, Yu Z, Fang F, Shi Y, Wang J et al. (2022) Comprehensive structure and functional adaptations of the yeast nuclear pore complex. Cell 185, 361–378.e25. PubMed PMC
Galy V, Gadal O, Fromont‐Racine M, Romano A, Jacquier A and Nehrbass U (2004) Nuclear retention of unspliced mRNAs in yeast is mediated by perinuclear Mlp1. Cell 116, 63–73. PubMed
Niepel M, Molloy KR, Williams R, Farr JC, Meinema AC, Vecchietti N, Cristea IM, Chait BT, Rout MP and Strambio‐De‐Castillia C (2013) The nuclear basket proteins Mlp1p and Mlp2p are part of a dynamic interactome including Esc1p and the proteasome. Mol Biol Cell 24, 3920–3938. PubMed PMC
Bensidoun P, Reiter T, Montpetit B, Zenklusen D and Oeffinger M (2022) Nuclear mRNA metabolism drives selective basket assembly on a subset of nuclear pore complexes in budding yeast. Mol Cell 82, 3856–3871.e6. PubMed PMC
Delavoie F, Soldan V, Rinaldi D, Dauxois JY and Gleizes PE (2019) The path of pre‐ribosomes through the nuclear pore complex revealed by electron tomography. Nat Commun 10, 497. PubMed PMC
Ori A, Banterle N, Iskar M, Andres‐Pons A, Escher C, Khanh Bui H, Sparks L, Solis‐Mezarino V, Rinner O, Bork P et al. (2013) Cell type‐specific nuclear pores: a case in point for context‐dependent stoichiometry of molecular machines. Mol Syst Biol 9, 648. PubMed PMC
Raices M and D'Angelo MA (2012) Nuclear pore complex composition: a new regulator of tissue‐specific and developmental functions. Nat Rev Mol Cell Biol 13, 687–699. PubMed
Zhang X, Chen S, Yoo S, Chakrabarti S, Zhang T, Ke T, Oberti C, Yong SL, Fang F, Li L et al. (2008) Mutation in nuclear pore component NUP155 leads to atrial fibrillation and early sudden cardiac death. Cell 135, 1017–1027. PubMed
Pascual‐Garcia P and Capelson M (2021) The nuclear pore complex and the genome: organizing and regulatory principles. Curr Opin Genet Dev 67, 142–150. PubMed PMC
Liu J and Hetzer MW (2022) Nuclear pore complex maintenance and implications for age‐related diseases. Trends Cell Biol 32, 216–227. PubMed
Nofrini V, Di Giacomo D and Mecucci C (2016) Nucleoporin genes in human diseases. Eur J Hum Genet 24, 1388–1395. PubMed PMC
Braun DA, Sadowski CE, Kohl S, Lovric S, Astrinidis SA, Pabst WL, Gee HY, Ashraf S, Lawson JA, Shril S et al. (2016) Mutations in nuclear pore genes NUP93, NUP205 and XPO5 cause steroid‐resistant nephrotic syndrome. Nat Genet 48, 457–465. PubMed PMC
Miyake N, Tsukaguchi H, Koshimizu E, Shono A, Matsunaga S, Shiina M, Mimura Y, Imamura S, Hirose T, Okudela K et al. (2015) Biallelic mutations in nuclear pore complex subunit NUP107 cause early‐childhood‐onset steroid‐resistant nephrotic syndrome. Am J Hum Genet 97, 555–566. PubMed PMC
Shore T, Levi T, Kalifa R, Dreifuss A, Rekler D, Weinberg‐Shukron A, Nevo Y, Bialistoky T, Moyal V, Gold MY et al. (2022) Nucleoporin107 mediates female sexual differentiation via Dsx. Elife 11, e72632. PubMed PMC
Weinberg‐Shukron A, Renbaum P, Kalifa R, Zeligson S, Ben‐Neriah Z, Dreifuss A, Abu‐Rayyan A, Maatuk N, Fardian N, Rekler D et al. (2015) A mutation in the nucleoporin‐107 gene causes XX gonadal dysgenesis. J Clin Invest 125, 4295–4304. PubMed PMC
Hegedusova E, Marsalova V, Kulkarni S and Paris Z (2022) Trafficking and/or division: distinct roles of nucleoporins based on their location within the nuclear pore complex. RNA Biol 19, 650–661. PubMed PMC
Holden JM, Koreny L, Obado S, Ratushny AV, Chen WM, Bart JM, Navarro M, Chait BT, Aitchison JD, Rout MP et al. (2018) Involvement in surface antigen expression by a moonlighting FG‐repeat nucleoporin in trypanosomes. Mol Biol Cell 29, 1100–1110. PubMed PMC
De Souza CP, Osmani AH, Hashmi SB and Osmani SA (2004) Partial nuclear pore complex disassembly during closed mitosis in Aspergillus nidulans . Curr Biol 14, 1973–1984. PubMed
Dey G, Culley S, Curran S, Schmidt U, Henriques R, Kukulski W and Baum B (2020) Closed mitosis requires local disassembly of the nuclear envelope. Nature 585, 119–123. PubMed PMC
Exposito‐Serrano M, Sanchez‐Molina A, Gallardo P, Salas‐Pino S and Daga RR (2020) Selective nuclear pore complex removal drives nuclear envelope division in fission yeast. Curr Biol 30, 3212–3222.e2. PubMed
Osmani AH, Davies J, Liu HL, Nile A and Osmani SA (2006) Systematic deletion and mitotic localization of the nuclear pore complex proteins of Aspergillus nidulans . Mol Biol Cell 17, 4946–4961. PubMed PMC
Zhu Y, Wang B, Tang K, Hsu CC, Xie S, Du H, Yang Y, Tao WA and Zhu JK (2017) An Arabidopsis nucleoporin NUP85 modulates plant responses to ABA and salt stress. PLoS Genet 13, e1007124. PubMed PMC
Dilworth DJ, Tackett AJ, Rogers RS, Yi EC, Christmas RH, Smith JJ, Siegel AF, Chait BT, Wozniak RW and Aitchison JD (2005) The mobile nucleoporin Nup2p and chromatin‐bound Prp20p function in endogenous NPC‐mediated transcriptional control. J Cell Biol 171, 955–965. PubMed PMC
Holla S, Dhakshnamoorthy J, Folco HD, Balachandran V, Xiao H, Sun LL, Wheeler D, Zofall M and Grewal SIS (2020) Positioning heterochromatin at the nuclear periphery suppresses histone turnover to promote epigenetic inheritance. Cell 180, 150–164.e15. PubMed PMC
Iglesias N, Paulo JA, Tatarakis A, Wang X, Edwards AL, Bhanu NV, Garcia BA, Haas W, Gygi SP and Moazed D (2020) Native chromatin proteomics reveals a role for specific nucleoporins in heterochromatin organization and maintenance. Mol Cell 77, 51–66.e8. PubMed PMC
Gozalo A, Duke A, Lan Y, Pascual‐Garcia P, Talamas JA, Nguyen SC, Shah PP, Jain R, Joyce EF and Capelson M (2020) Core components of the nuclear pore bind distinct states of chromatin and contribute to polycomb repression. Mol Cell 77, 67–81.e7. PubMed PMC
Munafo M, Lawless VR, Passera A, MacMillan S, Bornelov S, Haussmann IU, Soller M, Hannon GJ and Czech B (2021) Channel nuclear pore complex subunits are required for transposon silencing in Drosophila. Elife 10, e66321. PubMed PMC
Isnard A, Christian JG, Kodiha M, Stochaj U, McMaster WR and Olivier M (2015) Impact of Leishmania infection on host macrophage nuclear physiology and nucleopore complex integrity. PLoS Pathog 11, e1004776. PubMed PMC
Guay‐Vincent MM, Matte C, Berthiaume AM, Olivier M, Jaramillo M and Descoteaux A (2022) Revisiting Leishmania GP63 host cell targets reveals a limited spectrum of substrates. PLoS Pathog 18, e1010640. PubMed PMC
Huber S, Bar A, Epp S, Schmuckli‐Maurer J, Eberhard N, Humbel BM, Hemphill A and Woods K (2020) Recruitment of host nuclear pore components to the vicinity of Theileria Schizonts. mSphere 5, e00709‐19. PubMed PMC
UniProt‐Consortium (2023) UniProt: the universal protein knowledgebase in 2023. Nucleic Acids Res 51, D523–D531. PubMed PMC
Gabler F, Nam SZ, Till S, Mirdita M, Steinegger M, Soding J, Lupas AN and Alva V (2020) Protein sequence analysis using the MPI bioinformatics toolkit. Curr Protoc Bioinformatics 72, e108. PubMed
Blunt EL, Shandler JA, Hughes EJ, Sussman H, Christopherson RC and Richards EJ (2020) Coordination of NMCP1‐ and NMCP2‐class proteins within the plant nucleoskeleton. Mol Biol Cell 31, 2948–2958. PubMed PMC
Burki F, Roger AJ, Brown MW and Simpson AGB (2020) The new tree of eukaryotes. Trends Ecol Evol 35, 43–55. PubMed