A hub-and-spoke nuclear lamina architecture in trypanosomes
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
Wellcome Trust - United Kingdom
MR/N010558/1
Medical Research Council - United Kingdom
204697/Z/16/Z
Wellcome Trust - United Kingdom
PubMed
34151975
PubMed Central
PMC8255026
DOI
10.1242/jcs.251264
PII: 269176
Knihovny.cz E-zdroje
- Klíčová slova
- Heterochromatin, Lamina, Macromolecular assembly, Nuclear organization, Trypanosomatid,
- MeSH
- buněčné jádro MeSH
- jaderná lamina * genetika MeSH
- jaderný obal MeSH
- laminy genetika MeSH
- telomery MeSH
- Trypanosoma * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- laminy MeSH
The nuclear lamina supports many functions, including maintaining nuclear structure and gene expression control, and correct spatio-temporal assembly is vital to meet these activities. Recently, multiple lamina systems have been described that, despite independent evolutionary origins, share analogous functions. In trypanosomatids the two known lamina proteins, NUP-1 and NUP-2, have molecular masses of 450 and 170 kDa, respectively, which demands a distinct architecture from the ∼60 kDa lamin-based system of metazoa and other lineages. To uncover organizational principles for the trypanosome lamina we generated NUP-1 deletion mutants to identify domains and their arrangements responsible for oligomerization. We found that both the N- and C-termini act as interaction hubs, and that perturbation of these interactions impacts additional components of the lamina and nuclear envelope. Furthermore, the assembly of NUP-1 terminal domains suggests intrinsic organizational capacity. Remarkably, there is little impact on silencing of telomeric variant surface glycoprotein genes. We suggest that both terminal domains of NUP-1 have roles in assembling the trypanosome lamina and propose a novel architecture based on a hub-and-spoke configuration.
Zobrazit více v PubMed
Aaronson, R. P. and Blobel, G. (1975). Isolation of nuclear pore complexes in association with a lamina. Proc. Natl. Acad. Sci. USA 72, 1007-1011. 10.1073/pnas.72.3.1007 PubMed DOI PMC
Ahn, J., Jo, I., Kang, S.-M., Hong, S., Kim, S., Jeong, S., Kim, Y.-H., Park, B.-J. and Ha, N.-C. (2019). Structural basis for lamin assembly at the molecular level. Nat. Commun. 10, 3757. 10.1038/s41467-019-11684-x PubMed DOI PMC
Alibu, V. P., Storm, L., Haile, S., Clayton, C. and Horn, D. (2005). A doubly inducible system for RNA interference and rapid RNAi plasmid construction in Trypanosoma brucei. Mol. Biochem. Parasitol. 139, 75-82. 10.1016/j.molbiopara.2004.10.002 PubMed DOI
Allan, C., Burel, J.-M., Moore, J., Blackburn, C., Linkert, M., Loynton, S., Macdonald, D., Moore, W. J., Neves, C., Patterson, A.et al. (2012). OMERO: flexible, model-driven data management for experimental biology. Nat. Methods 9, 245-253. 10.1038/nmeth.1896 PubMed DOI PMC
Alsford, S. and Horn, D. (2008). Single-locus targeting constructs for reliable regulated RNAi and transgene expression in Trypanosoma brucei. Mol. Biochem. Parasitol. 161, 76-79. 10.1016/j.molbiopara.2008.05.006 PubMed DOI PMC
Aslett, M., Aurrecoechea, C., Berriman, M., Brestelli, J., Brunk, B. P., Carrington, M., Depledge, D. P., Fischer, S., Gajria, B., Gao, X.et al. (2010). TriTrypDB: a functional genomic resource for the Trypanosomatidae. Nucleic Acids Res. 38, D457-D462. 10.1093/nar/gkp851 PubMed DOI PMC
Benz, C., Dondelinger, F., McKean, P. G. and Urbaniak, M. D. (2017). Cell cycle synchronisation of Trypanosoma brucei by centrifugal counter-flow elutriation reveals the timing of nuclear and kinetoplast DNA replication. Sci. Rep. 7, 17599. 10.1038/s41598-017-17779-z PubMed DOI PMC
Bessat, M. and Ersfeld, K. (2009). Functional characterization of cohesin SMC3 and separase and their roles in the segregation of large and minichromosomes in Trypanosoma brucei. Mol. Microbiol. 71, 1371-1385. 10.1111/j.1365-2958.2009.06611.x PubMed DOI
Burkard, G., Fragoso, C. M. and Roditi, I. (2007). Highly efficient stable transformation of bloodstream forms of Trypanosoma brucei. Mol. Biochem. Parasitol. 153, 220-223. 10.1016/j.molbiopara.2007.02.008 PubMed DOI
Chatel, G. and Fahrenkrog, B. (2011). Nucleoporins: leaving the nuclear pore complex for a successful mitosis. Cell. Signal. 23, 1555-1562. 10.1016/j.cellsig.2011.05.023 PubMed DOI
Constantinescu, D., Gray, H. L., Sammak, P. J., Schatten, G. P. and Csoka, A. B. (2006). Lamin A/C expression is a marker of mouse and human embryonic stem cell differentiation. Stem Cells 24, 177-185. 10.1634/stemcells.2004-0159 PubMed DOI
Cox, J. and Mann, M. (2008). MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367-1372. 10.1038/nbt.1511 PubMed DOI
D'Archivio, S. and Wickstead, B. (2017). Trypanosome outer kinetochore proteins suggest conservation of chromosome segregation machinery across eukaryotes. J. Cell Biol. 216, 379-391. 10.1083/jcb.201608043 PubMed DOI PMC
Dean, S., Sunter, J., Wheeler, R. J., Hodkinson, I., Gluenz, E. and Gull, K. (2015). A toolkit enabling efficient, scalable and reproducible gene tagging in trypanosomatids. Open Biol. 5, 140197. 10.1098/rsob.140197 PubMed DOI PMC
Dean, S., Sunter, J. D. and Wheeler, R. J. (2017). TrypTag.org: a Trypanosome genome-wide protein localisation resource. Trends Parasitol. 33, 80-82. 10.1016/j.pt.2016.10.009 PubMed DOI PMC
Dechat, T., Pfleghaar, K., Sengupta, K., Shimi, T., Shumaker, D. K., Solimando, L. and Goldman, R. D. (2008). Nuclear lamins: major factors in the structural organization and function of the nucleus and chromatin. Genes Dev. 22, 832-853. 10.1101/gad.1652708 PubMed DOI PMC
Dechat, T., Adam, S. A. and Goldman, R. D. (2009). Nuclear lamins and chromatin: when structure meets function. Adv. Enzyme Regul. 49, 157-166. 10.1016/j.advenzreg.2008.12.003 PubMed DOI PMC
DeGrasse, J. A., DuBois, K. N., Devos, D., Siegel, T. N., Sali, A., Field, M. C., Rout, M. P. and Chait, B. T. (2009). Evidence for a shared nuclear pore complex architecture that is conserved from the last common eukaryotic ancestor. Mol. Cell. Proteomics 8, 2119-2130. 10.1074/mcp.M900038-MCP200 PubMed DOI PMC
Depreux, F. F., Puckelwartz, M. J., Augustynowicz, A., Wolfgeher, D., Labno, C. M., Pierre-Louis, D., Cicka, D., Kron, S. J., Holaska, J. and McNally, E. M. (2015). Disruption of the lamin A and matrin-3 interaction by myopathic LMNA mutations. Hum. Mol. Genet. 24, 4284-4295. 10.1093/hmg/ddv160 PubMed DOI PMC
Dobin, A., Davis, C. A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., Batut, P., Chaisson, M. and Gingeras, T. R. (2013). STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15-21. 10.1093/bioinformatics/bts635 PubMed DOI PMC
DuBois, K. N., Alsford, S., Holden, J. M., Buisson, J., Swiderski, M., Bart, J.-M., Ratushny, A. V., Wan, Y., Bastin, P., Barry, J. D.et al. (2012). NUP-1 is a large coiled-coil nucleoskeletal protein in trypanosomes with lamin-like functions. PLoS Biol. 10, e1001287. 10.1371/journal.pbio.1001287 PubMed DOI PMC
Erben, E. D., Fadda, A., Lueong, S., Hoheisel, J. D. and Clayton, C. (2014). A genome-wide tethering screen reveals novel potential post-transcriptional regulators in Trypanosoma brucei. PLoS Pathog. 10, e1004178. 10.1371/journal.ppat.1004178 PubMed DOI PMC
Ersfeld, K. and Gull, K. (1997). Partitioning of large and minichromosomes in Trypanosoma brucei. Science. 276, 611-614. 10.1126/science.276.5312.611 PubMed DOI
Faria, J., Glover, L., Hutchinson, S., Boehm, C., Field, M. C. and Horn, D. (2019). Monoallelic expression and epigenetic inheritance sustained by a Trypanosoma brucei variant surface glycoprotein exclusion complex. Nat. Commun. 10, 3023. 10.1038/s41467-019-10823-8 PubMed DOI PMC
Field, M. C., Allen, C. L., Dhir, V., Goulding, D., Hall, B. S., Morgan, G. W., Veazey, P. and Engstler, M. (2004). New approaches to the microscopic imaging of Trypanosoma brucei. Microsc. Microanal. 10, 621-636. 10.1017/S1431927604040942 PubMed DOI
Field, M. C., Horn, D., Alsford, S., Koreny, L. and Rout, M. P. (2012). Telomeres, tethers and trypanosomes. Nucleus 3, 478-486. 10.4161/nucl.22167 PubMed DOI PMC
Figueiredo, L. M. and Cross, G. A. M. (2010). Nucleosomes are depleted at the VSG expression site transcribed by RNA Polymerase I in African Trypanosomes. Eukaryot. Cell. 9, 148-154. 10.1128/EC.00282-09 PubMed DOI PMC
Florini, F., Naguleswaran, A., Gharib, W. H., Bringaud, F. and Roditi, I. (2019). Unexpected diversity in eukaryotic transcription revealed by the retrotransposon hotspot family of Trypanosoma brucei. Nucleic Acids Res. 47, 1725-1739. 10.1093/nar/gky1255 PubMed DOI PMC
Gadelha, C., Rothery, S., Morphew, M., McIntosh, J. R., Severs, N. J. and Gull, K. (2009). Membrane domains and flagellar pocket boundaries are influenced by the cytoskeleton in African trypanosomes. Proc. Natl. Acad. Sci. USA 106, 17425-17430. 10.1073/pnas.0909289106 PubMed DOI PMC
Gesson, K., Vidak, S. and Foisner, R. (2014). Lamina-associated polypeptide (LAP)2α and nucleoplasmic lamins in adult stem cell regulation and disease. Semin. Cell Dev. Biol. 29, 116-124. 10.1016/j.semcdb.2013.12.009 PubMed DOI PMC
Glover, L., Hutchinson, S., Alsford, S. and Horn, D. (2016). VEX1 controls the allelic exclusion required for antigenic variation in trypanosomes. Proc. Natl. Acad. Sci. USA 113, 7225-7230. 10.1073/pnas.1600344113 PubMed DOI PMC
Gluenz, E., Sharma, R., Carrington, M. and Gull, K. (2008). Functional characterization of cohesin subunit SCC1 in Trypanosoma brucei and dissection of mutant phenotypes in two life cycle stages. Mol. Microbiol. 69, 666-680. 10.1111/j.1365-2958.2008.06320.x PubMed DOI PMC
Goldberg, M. W. and Allen, T. D. (1996). The nuclear pore complex and lamina: three-dimensional structures and interactions determined by field emission in-lens scanning electron microscopy. J. Mol. Biol. 257, 848-865. 10.1006/jmbi.1996.0206 PubMed DOI
Goldberg, M. W., Huttenlauch, I., Hutchison, C. J. and Stick, R. (2008). Filaments made from A- and B-type lamins differ in structure and organization. J. Cell Sci. 121, 215-225. 10.1242/jcs.022020 PubMed DOI
Goos, C., Dejung, M., Janzen, C. J., Butter, F. and Kramer, S. (2017). The nuclear proteome of Trypanosoma brucei. PLoS ONE 12, e0181884. 10.1371/journal.pone.0181884 PubMed DOI PMC
Gruenbaum, Y. and Foisner, R. (2015). Lamins: nuclear intermediate filament proteins with fundamental functions in nuclear mechanics and genome regulation. Annu. Rev. Biochem. 84, 131-164. 10.1146/annurev-biochem-060614-034115 PubMed DOI
Hirumi, H. and Hirumi, K. (1989). Continuous cultivation of Trypanosoma brucei blood stream forms in a medium containing a low concentration of serum protein without feeder cell layers. J. Parasitol. 75, 985-989. 10.2307/3282883 PubMed DOI
Holden, J. M., Koreny, L., Obado, S., Ratushny, A. V., Chen, W.-M., Chiang, J.-H., Kelly, S., Chait, B. T., Aitchison, J. D., Rout, M. P.et al. (2014). Nuclear pore complex evolution: a trypanosome Mlp analogue functions in chromosomal segregation but lacks transcriptional barrier activity. Mol. Biol. Cell 25, 1421-1436. 10.1091/mbc.e13-12-0750 PubMed DOI PMC
Hübner, S., Eam, J. E., Hübner, A. and Jans, D. A. (2006). Laminopathy-inducing lamin A mutants can induce redistribution of lamin binding proteins into nuclear aggregates. Exp. Cell Res. 312, 171-183. 10.1016/j.yexcr.2005.10.011 PubMed DOI
Ibarra, A. and Hetzer, M. W. (2015). Nuclear pore proteins and the control of genome functions. Genes Dev. 29, 337-349. 10.1101/gad.256495.114 PubMed DOI PMC
Izumi, M., Vaughan, O. A., Hutchison, C. J. and Gilbert, D. M. (2000). Head and/or CaaX domain deletions of lamin proteins disrupt preformed Lamin A and C but not lamin B structure in mammalian cells. Mol. Biol. Cell 11, 4323-4337. 10.1091/mbc.11.12.4323 PubMed DOI PMC
Kang, S.-M., Yoon, M.-H. and Park, B.-J. (2018). Laminopathies: mutations on single gene and various human genetic diseases. BMB Rep. 51, 327-337. 10.5483/BMBRep.2018.51.7.113 PubMed DOI PMC
Kelly, S., Reed, J., Kramer, S., Ellis, L., Webb, H., Sunter, J., Salje, J., Marinsek, N., Gull, K., Wickstead, B.et al. (2007). Functional genomics in Trypanosoma brucei: a collection of vectors for the expression of tagged proteins from endogenous and ectopic gene loci. Mol. Biochem. Parasitol. 154, 103-109. 10.1016/j.molbiopara.2007.03.012 PubMed DOI PMC
Kim, Y., Zheng, X. and Zheng, Y. (2019). Role of lamins in 3D genome organization and global gene expression. Nucleus 10, 33-41. 10.1080/19491034.2019.1578601 PubMed DOI PMC
Koreny, L. and Field, M. C. (2016). Ancient eukaryotic origin and evolutionary plasticity of nuclear lamina. Genome Biol. Evol. 8, 2663-2671. 10.1093/gbe/evw087 PubMed DOI PMC
Lehner, C. F., Stick, R., Eppenberger, H. M. and Nigg, E. A. (1987). Differential expression of nuclear lamin proteins during chicken development. J. Cell Biol. 105, 577-587. 10.1083/jcb.105.1.577 PubMed DOI PMC
Liu, J., Rolef Ben-Shahar, T., Riemer, D., Treinin, M., Spann, P., Weber, K., Fire, A. and Gruenbaum, Y. (2000). Essential roles for Caenorhabditis elegans lamin gene in nuclear organization, cell cycle progression, and spatial organization of nuclear pore complexes. Mol. Biol. Cell 11, 3937-3947. 10.1091/mbc.11.11.3937 PubMed DOI PMC
Lueong, S., Merce, C., Fischer, B., Hoheisel, J. D. and Erben, E. D. (2016). Gene expression regulatory networks in Trypanosoma brucei: insights into the role of the mRNA-binding proteome. Mol. Microbiol. 100, 457-471. 10.1111/mmi.13328 PubMed DOI
Lupas, A. N. and Gruber, M. (2005). The structure of α-helical coiled coils. Adv. Protein Chem. 70, 37-38. 10.1016/S0065-3233(05)70003-6 PubMed DOI
Maishman, L., Obado, S. O., Alsford, S., Bart, J.-M., Chen, W.-M., Ratushny, A. V., Navarro, M., Horn, D., Aitchison, J. D., Chait, B. T.et al. (2016). Co-dependence between trypanosome nuclear lamina components in nuclear stability and control of gene expression. Nucleic Acids Res. 44, 10554-10570. 10.1093/nar/gkw751 PubMed DOI PMC
Makarov, A. A., Zou, J., Houston, D. R., Spanos, C., Solovyova, A. S., Cardenal-Peralta, C., Rappsilber, J. and Schirmer, E. C. (2019). Lamin A molecular compression and sliding as mechanisms behind nucleoskeleton elasticity. Nat. Commun. 10, 3056. 10.1038/s41467-019-11063-6 PubMed DOI PMC
Mounkes, L. C., Kozlov, S. V., Rottman, J. N. and Stewart, C. L. (2005). Expression of an LMNA-N195K variant of A-type lamins results in cardiac conduction defects and death in mice. Hum. Mol. Genet. 14, 2167-2180. 10.1093/hmg/ddi221 PubMed DOI
Muchir, A., Medioni, J., Laluc, M., Massart, C., Arimura, T., van der Kooi, A. J., Desguerre, I., Mayer, M., Ferrer, X., Briault, S.et al. (2004). Nuclear envelope alterations in fibroblasts from patients with muscular dystrophy, cardiomyopathy, and partial lipodystrophy carrying lamin A/C gene mutations. Muscle Nerve 30, 444-450. 10.1002/mus.20122 PubMed DOI
Muchir, A., van Engelen, B. G., Lammens, M., Mislow, J. M., McNally, E., Schwartz, K. and Bonne, G. (2003). Nuclear envelope alterations in fibroblasts from LGMD1B patients carrying nonsense Y259X heterozygous or homozygous mutation in lamin A/C gene. Exp. Cell. Res. 291, 352-362. 10.1016/j.yexcr.2003.07.002 PubMed DOI
Mugnier, M. R., Cross, G. A. M. and Papavasiliou, F. N. (2015). The in vivo dynamics of antigenic variation in Trypanosoma brucei. Science 347, 1470-1473. 10.1126/science.aaa4502 PubMed DOI PMC
Mugo, E. and Clayton, C. (2017). Expression of the RNA-binding protein RBP10 promotes the bloodstream-form differentiation state in Trypanosoma brucei. PLoS Pathog. 13, e1006560. 10.1371/journal.ppat.1006560 PubMed DOI PMC
Müller, L. S. M., Cosentino, R. O., Förstner, K. U., Guizetti, J., Wedel, C., Kaplan, N., Janzen, C. J., Arampatzi, P., Vogel, J., Steinbiss, S.et al. (2018). Genome organization and DNA accessibility control antigenic variation in trypanosomes. Nature 563, 121-125. 10.1038/s41586-018-0619-8 PubMed DOI PMC
Naetar, N., Ferraioli, S. and Foisner, R. (2017). Lamins in the nuclear interior – life outside the lamina. J. Cell Sci. 130, 2087-2096. 10.1242/jcs.203430 PubMed DOI
Ngô, H., Tschudi, C., Gull, K. and Ullu, E. (1998). Double-stranded RNA induces mRNA degradation in Trypanosoma brucei. Proc. Natl. Acad. Sci. USA 95, 14687-14692. 10.1073/pnas.95.25.14687 PubMed DOI PMC
Nmezi, B., Xu, J., Fu, R., Armiger, T. J., Rodriguez-Bey, G., Powell, J. S., Ma, H., Sullivan, M., Tu, Y., Chen, N. Y.et al. (2019). Concentric organization of A- and B-type lamins predicts their distinct roles in the spatial organization and stability of the nuclear lamina. Proc. Natl. Acad. Sci. USA 116, 4307-4315. 10.1073/pnas.1810070116 PubMed DOI PMC
Obado, S. O., Brillantes, M., Uryu, K., Zhang, W., Ketaren, N. E., Chait, B. T., Field, M. C. and Rout, M. P. (2016). Interactome mapping reveals the evolutionary history of the nuclear pore complex. PLoS Biol. 14, e1002365. 10.1371/journal.pbio.1002365 PubMed DOI PMC
Oberholzer, M., Morand, S., Kunz, S. and Seebeck, T. (2006). A vector series for rapid PCR-mediated C-terminal in situ tagging of Trypanosoma brucei genes. Mol. Biochem. Parasitol. 145, 117-120. 10.1016/j.molbiopara.2005.09.002 PubMed DOI
Ogbadoyi, E., Ersfeld, K., Robinson, D., Sherwin, T. and Gull, K. (2000). Architecture of the Trypanosoma brucei nucleus during interphase and mitosis. Chromosoma 108, 501-513. 10.1007/s004120050402 PubMed DOI
Pinger, J., Chowdhury, S. and Papavasiliou, F. N. (2017). Variant surface glycoprotein density defines an immune evasion threshold for African trypanosomes undergoing antigenic variation. Nat. Commun. 8, 828. 10.1038/s41467-017-00959-w PubMed DOI PMC
Radwanska, M., Vereecke, N., Deleeuw, V., Pinto, J. and Magez, S. (2018). Salivarian Trypanosomosis: a review of parasites involved, their global distribution and their interaction with the innate and adaptive mammalian host immune system. Front. Immunol. 9, 2253. 10.3389/fimmu.2018.02253 PubMed DOI PMC
Redmond, S., Vadivelu, J. and Field, M. C. (2003). RNAit: an automated web-based tool for the selection of RNAi targets in Trypanosoma brucei. Mol. Biochem. Parasitol. 128, 115-118. 10.1016/S0166-6851(03)00045-8 PubMed DOI
Rober, R. A., Weber, K. and Osborn, M. (1989). Differential timing of nuclear lamin A/C expression in the various organs of the mouse embryo and the young animal: a developmental study. Development 105, 365-378. 10.1242/dev.105.2.365 PubMed DOI
Roditi, I., Schwartz, H., Pearson, T. W., Beecroft, R. P., Liu, M. K., Richardson, J. P., Bühring, H. J., Pleiss, J., Bülow, R. and Williams, R. O. (1989). Procyclin gene expression and loss of the variant surface glycoprotein during differentiation of Trypanosoma brucei. J. Cell Biol. 108, 737-746. 10.1083/jcb.108.2.737 PubMed DOI PMC
Saura, A., Iribarren, P. A., Rojas-Barros, D., Bart, J. M., López-Farfán, D., Andrés-León, E., Vidal-Cobo, I., Boehm, C., Alvarez, V. E.et al. (2019). SUMOylated SNF2PH promotes variant surface glycoprotein expression in bloodstream trypanosomes. EMBO Rep. 20, e48029. 10.15252/embr.201948029 PubMed DOI PMC
Schumann Burkard, G., Jutzi, P. and Roditi, I. (2011). Genome-wide RNAi screens in bloodstream form trypanosomes identify drug transporters. Mol. Biochem. Parasitol. 175, 91-94. 10.1016/j.molbiopara.2010.09.002 PubMed DOI
Shimi, T., Pfleghaar, K., Kojima, S.-i., Pack, C.-G., Solovei, I., Goldman, A. E., Adam, S. A., Shumaker, D. K., Kinjo, M., Cremer, T.et al. (2008). The A- and B-type nuclear lamin networks: microdomains involved in chromatin organization and transcription. Genes Dev. 22, 3409-3421. 10.1101/gad.1735208 PubMed DOI PMC
Shimi, T., Kittisopikul, M., Tran, J., Goldman, A. E., Adam, S. A., Zheng, Y., Jaqaman, K. and Goldman, R. D. (2015). Structural organization of nuclear lamins A, C, B1 and B2 revealed by superresolution microscopy. Mol. Biol. Cell 26, 4075-4086. 10.1091/mbc.E15-07-0461 PubMed DOI PMC
Siddam, A. D., Gautier-Courteille, C., Perez-Campos, L., Anand, D., Kakrana, A., Dang, C. A., Legagneux, V., Méreau, A., Viet, J., Gross, J. M.et al. (2018). The RNA binding protein Celf1 post-transcriptionally regulates p27Kip1 and Dnase2b to control fiber cell nuclear degradation in lens development. PLoS Genet. 14, e1007278. 10.1371/journal.pgen.1007278 PubMed DOI PMC
Simon, D. N. and Wilson, K. L. (2013). Partners and post-translational modifications of nuclear lamins. Chromosoma 122, 13-31. 10.1007/s00412-013-0399-8 PubMed DOI PMC
Stijlemans, B., Caljon, G., Van Den Abbeele, J., Van Ginderachter, J. A., Magez, S. and De Trez, C. (2016). Immune evasion strategies of Trypanosoma brucei within the mammalian host: progression to pathogenicity. Front. Immunol. 7, 233. 10.3389/fimmu.2016.00233 PubMed DOI PMC
Strawn, L. A., Shen, T., Shulga, N., Goldfarb, D. S. and Wente, S. R. (2004). Minimal nuclear pore complexes define FG repeat domains essential for transport. Nat. Cell Biol. 6, 197-206. 10.1038/ncb1097 PubMed DOI
Stuurman, N., Delbecque, J. P., Callaerts, P. and Aebi, U. (1999). Ectopic overexpression of Drosophila lamin C is stage-specific lethal. Exp. Cell Res. 248, 350-357. 10.1006/excr.1999.4396 PubMed DOI
Swift, J. and Discher, D. E. (2014). The nuclear lamina is mechano-responsive to ECM elasticity in mature tissue. J. Cell Sci. 127, 3005-3015. 10.1242/jcs.149203 PubMed DOI PMC
Sylvius, N., Hathaway, A., Boudreau, E., Gupta, P., Labib, S., Bolongo, P. M., Rippstein, P., McBride, H., Bilinska, Z. T. and Tesson, F. (2008). Specific contribution of lamin A and lamin C in the development of laminopathies. Exp. Cell Res. 314, 2362-2375. 10.1016/j.yexcr.2008.04.017 PubMed DOI PMC
Turgay, Y., Eibauer, M., Goldman, A. E., Shimi, T., Khayat, M., Ben-Harush, K., Dubrovsky-Gaupp, A., Sapra, K. T., Goldman, R. D. and Medalia, O. (2017). The molecular architecture of lamins in somatic cells. Nature 543, 261-264. 10.1038/nature21382 PubMed DOI PMC
Tyanova, S., Temu, T., Sinitcyn, P., Carlson, A., Hein, M. Y., Geiger, T., Mann, M. and Cox, J. (2016). The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat. Methods 13, 731-740. 10.1038/nmeth.3901 PubMed DOI
Verstraeten, V. L. R. M., Broers, J. L. V., Ramaekers, F. C. S. and van Steensel, M. A. M. (2007). The nuclear envelope, a key structure in cellular integrity and gene expression. Curr. Med. Chem. 14, 1231-1248. 10.2174/092986707780598032 PubMed DOI
Vidak, S., Georgiou, K., Fichtinger, P., Naetar, N., Dechat, T. and Foisner, R. (2018). Nucleoplasmic lamins define growth-regulating functions of lamina-associated polypeptide 2α in progeria cells. J. Cell Sci. 131, jcs208462. 10.1242/jcs.208462 PubMed DOI PMC
Vizcaíno, J. A., Csordas, A., del-Toro, N., Dianes, J. A., Griss, J., Lavidas, I., Mayer, G., Perez-Riverol, Y., Reisinger, F., Ternent, T.et al. (2016). 2016 update of the PRIDE database and its related tools. Nucleic Acids Res. 44, D447-D456. 10.1093/nar/gkv1145 PubMed DOI PMC
Wirtz, E., Leal, S., Ochatt, C. and Cross, G. A. M. (1999). A tightly regulated inducible expression system for conditional gene knock-outs and dominant-negative genetics in Trypanosoma brucei. Mol. Biochem. Parasitol. 99, 89-101. 10.1016/S0166-6851(99)00002-X PubMed DOI
Woodward, R. and Gull, K. (1990). Timing of nuclear and kinetoplast DNA replication and early morphological events in the cell cycle of Trypanosoma brucei. J. Cell Sci. 95, 49-57. 10.1242/jcs.95.1.49 PubMed DOI
Wu, Z., Jin, Z., Zhang, X., Shen, N., Wang, J., Zhao, Y. and Mei, L. (2016). Nup62, associated with spindle microtubule rather than spindle matrix, is involved in chromosome alignment and spindle assembly during mitosis. Cell Biol. Int. 40, 968-975. 10.1002/cbin.10633 PubMed DOI
Yang, L., Munck, M., Swaminathan, K., Kapinos, L. E., Noegel, A. A. and Neumann, S. (2013). Mutations in LMNA Modulate the Lamin A - Nesprin-2 interaction and cause LINC complex alterations. PLoS ONE 8, e71850. 10.1371/journal.pone.0071850 PubMed DOI PMC
Yatskevich, S., Rhodes, J. and Nasmyth, K. (2019). Organization of chromosomal DNA by SMC complexes. Annu. Rev. Genet. 53, 445-482. 10.1146/annurev-genet-112618-043633 PubMed DOI
Zahr, H. C. and Jaalouk, D. E. (2018). Exploring the crosstalk between LMNA and splicing machinery gene mutations in dilated cardiomyopathy. Front. Genet. 9, 231. 10.3389/fgene.2018.00231 PubMed DOI PMC
Zheng, X., Hu, J., Yue, S., Kristiani, L., Kim, M., Sauria, M., Taylor, J., Kim, Y. and Zheng, Y. (2018). Lamins organize the global three-dimensional genome from the nuclear periphery. Mol. Cell 71, 802-815.e7. 10.1016/j.molcel.2018.05.017 PubMed DOI PMC
Evolution and diversification of the nuclear envelope