A hub-and-spoke nuclear lamina architecture in trypanosomes

. 2021 Jun 15 ; 134 (12) : . [epub] 20210621

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid34151975

Grantová podpora
Wellcome Trust - United Kingdom
MR/N010558/1 Medical Research Council - United Kingdom
204697/Z/16/Z Wellcome Trust - United Kingdom

The nuclear lamina supports many functions, including maintaining nuclear structure and gene expression control, and correct spatio-temporal assembly is vital to meet these activities. Recently, multiple lamina systems have been described that, despite independent evolutionary origins, share analogous functions. In trypanosomatids the two known lamina proteins, NUP-1 and NUP-2, have molecular masses of 450 and 170 kDa, respectively, which demands a distinct architecture from the ∼60 kDa lamin-based system of metazoa and other lineages. To uncover organizational principles for the trypanosome lamina we generated NUP-1 deletion mutants to identify domains and their arrangements responsible for oligomerization. We found that both the N- and C-termini act as interaction hubs, and that perturbation of these interactions impacts additional components of the lamina and nuclear envelope. Furthermore, the assembly of NUP-1 terminal domains suggests intrinsic organizational capacity. Remarkably, there is little impact on silencing of telomeric variant surface glycoprotein genes. We suggest that both terminal domains of NUP-1 have roles in assembling the trypanosome lamina and propose a novel architecture based on a hub-and-spoke configuration.

Zobrazit více v PubMed

Aaronson, R. P. and Blobel, G. (1975). Isolation of nuclear pore complexes in association with a lamina. PubMed DOI PMC

Ahn, J., Jo, I., Kang, S.-M., Hong, S., Kim, S., Jeong, S., Kim, Y.-H., Park, B.-J. and Ha, N.-C. (2019). Structural basis for lamin assembly at the molecular level. PubMed DOI PMC

Alibu, V. P., Storm, L., Haile, S., Clayton, C. and Horn, D. (2005). A doubly inducible system for RNA interference and rapid RNAi plasmid construction in PubMed DOI

Allan, C., Burel, J.-M., Moore, J., Blackburn, C., Linkert, M., Loynton, S., Macdonald, D., Moore, W. J., Neves, C., Patterson, A.et al. (2012). OMERO: flexible, model-driven data management for experimental biology. PubMed DOI PMC

Alsford, S. and Horn, D. (2008). Single-locus targeting constructs for reliable regulated RNAi and transgene expression in PubMed DOI PMC

Aslett, M., Aurrecoechea, C., Berriman, M., Brestelli, J., Brunk, B. P., Carrington, M., Depledge, D. P., Fischer, S., Gajria, B., Gao, X.et al. (2010). TriTrypDB: a functional genomic resource for the Trypanosomatidae. PubMed DOI PMC

Benz, C., Dondelinger, F., McKean, P. G. and Urbaniak, M. D. (2017). Cell cycle synchronisation of PubMed DOI PMC

Bessat, M. and Ersfeld, K. (2009). Functional characterization of cohesin SMC3 and separase and their roles in the segregation of large and minichromosomes in PubMed DOI

Burkard, G., Fragoso, C. M. and Roditi, I. (2007). Highly efficient stable transformation of bloodstream forms of PubMed DOI

Chatel, G. and Fahrenkrog, B. (2011). Nucleoporins: leaving the nuclear pore complex for a successful mitosis. PubMed DOI

Constantinescu, D., Gray, H. L., Sammak, P. J., Schatten, G. P. and Csoka, A. B. (2006). Lamin A/C expression is a marker of mouse and human embryonic stem cell differentiation. PubMed DOI

Cox, J. and Mann, M. (2008). MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. PubMed DOI

D'Archivio, S. and Wickstead, B. (2017). Trypanosome outer kinetochore proteins suggest conservation of chromosome segregation machinery across eukaryotes. PubMed DOI PMC

Dean, S., Sunter, J., Wheeler, R. J., Hodkinson, I., Gluenz, E. and Gull, K. (2015). A toolkit enabling efficient, scalable and reproducible gene tagging in trypanosomatids. PubMed DOI PMC

Dean, S., Sunter, J. D. and Wheeler, R. J. (2017). TrypTag.org: a Trypanosome genome-wide protein localisation resource. PubMed DOI PMC

Dechat, T., Pfleghaar, K., Sengupta, K., Shimi, T., Shumaker, D. K., Solimando, L. and Goldman, R. D. (2008). Nuclear lamins: major factors in the structural organization and function of the nucleus and chromatin. PubMed DOI PMC

Dechat, T., Adam, S. A. and Goldman, R. D. (2009). Nuclear lamins and chromatin: when structure meets function. PubMed DOI PMC

DeGrasse, J. A., DuBois, K. N., Devos, D., Siegel, T. N., Sali, A., Field, M. C., Rout, M. P. and Chait, B. T. (2009). Evidence for a shared nuclear pore complex architecture that is conserved from the last common eukaryotic ancestor. PubMed DOI PMC

Depreux, F. F., Puckelwartz, M. J., Augustynowicz, A., Wolfgeher, D., Labno, C. M., Pierre-Louis, D., Cicka, D., Kron, S. J., Holaska, J. and McNally, E. M. (2015). Disruption of the lamin A and matrin-3 interaction by myopathic LMNA mutations. PubMed DOI PMC

Dobin, A., Davis, C. A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., Batut, P., Chaisson, M. and Gingeras, T. R. (2013). STAR: ultrafast universal RNA-seq aligner. PubMed DOI PMC

DuBois, K. N., Alsford, S., Holden, J. M., Buisson, J., Swiderski, M., Bart, J.-M., Ratushny, A. V., Wan, Y., Bastin, P., Barry, J. D.et al. (2012). NUP-1 is a large coiled-coil nucleoskeletal protein in trypanosomes with lamin-like functions. PubMed DOI PMC

Erben, E. D., Fadda, A., Lueong, S., Hoheisel, J. D. and Clayton, C. (2014). A genome-wide tethering screen reveals novel potential post-transcriptional regulators in PubMed DOI PMC

Ersfeld, K. and Gull, K. (1997). Partitioning of large and minichromosomes in PubMed DOI

Faria, J., Glover, L., Hutchinson, S., Boehm, C., Field, M. C. and Horn, D. (2019). Monoallelic expression and epigenetic inheritance sustained by a PubMed DOI PMC

Field, M. C., Allen, C. L., Dhir, V., Goulding, D., Hall, B. S., Morgan, G. W., Veazey, P. and Engstler, M. (2004). New approaches to the microscopic imaging of PubMed DOI

Field, M. C., Horn, D., Alsford, S., Koreny, L. and Rout, M. P. (2012). Telomeres, tethers and trypanosomes. PubMed DOI PMC

Figueiredo, L. M. and Cross, G. A. M. (2010). Nucleosomes are depleted at the VSG expression site transcribed by RNA Polymerase I in African Trypanosomes. PubMed DOI PMC

Florini, F., Naguleswaran, A., Gharib, W. H., Bringaud, F. and Roditi, I. (2019). Unexpected diversity in eukaryotic transcription revealed by the retrotransposon hotspot family of PubMed DOI PMC

Gadelha, C., Rothery, S., Morphew, M., McIntosh, J. R., Severs, N. J. and Gull, K. (2009). Membrane domains and flagellar pocket boundaries are influenced by the cytoskeleton in African trypanosomes. PubMed DOI PMC

Gesson, K., Vidak, S. and Foisner, R. (2014). Lamina-associated polypeptide (LAP)2α and nucleoplasmic lamins in adult stem cell regulation and disease. PubMed DOI PMC

Glover, L., Hutchinson, S., Alsford, S. and Horn, D. (2016). VEX1 controls the allelic exclusion required for antigenic variation in trypanosomes. PubMed DOI PMC

Gluenz, E., Sharma, R., Carrington, M. and Gull, K. (2008). Functional characterization of cohesin subunit SCC1 in PubMed DOI PMC

Goldberg, M. W. and Allen, T. D. (1996). The nuclear pore complex and lamina: three-dimensional structures and interactions determined by field emission in-lens scanning electron microscopy. PubMed DOI

Goldberg, M. W., Huttenlauch, I., Hutchison, C. J. and Stick, R. (2008). Filaments made from A- and B-type lamins differ in structure and organization. PubMed DOI

Goos, C., Dejung, M., Janzen, C. J., Butter, F. and Kramer, S. (2017). The nuclear proteome of PubMed DOI PMC

Gruenbaum, Y. and Foisner, R. (2015). Lamins: nuclear intermediate filament proteins with fundamental functions in nuclear mechanics and genome regulation. PubMed DOI

Hirumi, H. and Hirumi, K. (1989). Continuous cultivation of PubMed DOI

Holden, J. M., Koreny, L., Obado, S., Ratushny, A. V., Chen, W.-M., Chiang, J.-H., Kelly, S., Chait, B. T., Aitchison, J. D., Rout, M. P.et al. (2014). Nuclear pore complex evolution: a trypanosome Mlp analogue functions in chromosomal segregation but lacks transcriptional barrier activity. PubMed DOI PMC

Hübner, S., Eam, J. E., Hübner, A. and Jans, D. A. (2006). Laminopathy-inducing lamin A mutants can induce redistribution of lamin binding proteins into nuclear aggregates. PubMed DOI

Ibarra, A. and Hetzer, M. W. (2015). Nuclear pore proteins and the control of genome functions. PubMed DOI PMC

Izumi, M., Vaughan, O. A., Hutchison, C. J. and Gilbert, D. M. (2000). Head and/or CaaX domain deletions of lamin proteins disrupt preformed Lamin A and C but not lamin B structure in mammalian cells. PubMed DOI PMC

Kang, S.-M., Yoon, M.-H. and Park, B.-J. (2018). Laminopathies: mutations on single gene and various human genetic diseases. PubMed DOI PMC

Kelly, S., Reed, J., Kramer, S., Ellis, L., Webb, H., Sunter, J., Salje, J., Marinsek, N., Gull, K., Wickstead, B.et al. (2007). Functional genomics in PubMed DOI PMC

Kim, Y., Zheng, X. and Zheng, Y. (2019). Role of lamins in 3D genome organization and global gene expression. PubMed DOI PMC

Koreny, L. and Field, M. C. (2016). Ancient eukaryotic origin and evolutionary plasticity of nuclear lamina. PubMed DOI PMC

Lehner, C. F., Stick, R., Eppenberger, H. M. and Nigg, E. A. (1987). Differential expression of nuclear lamin proteins during chicken development. PubMed DOI PMC

Liu, J., Rolef Ben-Shahar, T., Riemer, D., Treinin, M., Spann, P., Weber, K., Fire, A. and Gruenbaum, Y. (2000). Essential roles for PubMed DOI PMC

Lueong, S., Merce, C., Fischer, B., Hoheisel, J. D. and Erben, E. D. (2016). Gene expression regulatory networks in PubMed DOI

Lupas, A. N. and Gruber, M. (2005). The structure of α-helical coiled coils. PubMed DOI

Maishman, L., Obado, S. O., Alsford, S., Bart, J.-M., Chen, W.-M., Ratushny, A. V., Navarro, M., Horn, D., Aitchison, J. D., Chait, B. T.et al. (2016). Co-dependence between trypanosome nuclear lamina components in nuclear stability and control of gene expression. PubMed DOI PMC

Makarov, A. A., Zou, J., Houston, D. R., Spanos, C., Solovyova, A. S., Cardenal-Peralta, C., Rappsilber, J. and Schirmer, E. C. (2019). Lamin A molecular compression and sliding as mechanisms behind nucleoskeleton elasticity. PubMed DOI PMC

Mounkes, L. C., Kozlov, S. V., Rottman, J. N. and Stewart, C. L. (2005). Expression of an LMNA-N195K variant of A-type lamins results in cardiac conduction defects and death in mice. PubMed DOI

Muchir, A., Medioni, J., Laluc, M., Massart, C., Arimura, T., van der Kooi, A. J., Desguerre, I., Mayer, M., Ferrer, X., Briault, S.et al. (2004). Nuclear envelope alterations in fibroblasts from patients with muscular dystrophy, cardiomyopathy, and partial lipodystrophy carrying lamin A/C gene mutations. PubMed DOI

Muchir, A., van Engelen, B. G., Lammens, M., Mislow, J. M., McNally, E., Schwartz, K. and Bonne, G. (2003). Nuclear envelope alterations in fibroblasts from LGMD1B patients carrying nonsense Y259X heterozygous or homozygous mutation in lamin A/C gene. PubMed DOI

Mugnier, M. R., Cross, G. A. M. and Papavasiliou, F. N. (2015). The PubMed DOI PMC

Mugo, E. and Clayton, C. (2017). Expression of the RNA-binding protein RBP10 promotes the bloodstream-form differentiation state in PubMed DOI PMC

Müller, L. S. M., Cosentino, R. O., Förstner, K. U., Guizetti, J., Wedel, C., Kaplan, N., Janzen, C. J., Arampatzi, P., Vogel, J., Steinbiss, S.et al. (2018). Genome organization and DNA accessibility control antigenic variation in trypanosomes. PubMed DOI PMC

Naetar, N., Ferraioli, S. and Foisner, R. (2017). Lamins in the nuclear interior – life outside the lamina. PubMed DOI

Ngô, H., Tschudi, C., Gull, K. and Ullu, E. (1998). Double-stranded RNA induces mRNA degradation in PubMed DOI PMC

Nmezi, B., Xu, J., Fu, R., Armiger, T. J., Rodriguez-Bey, G., Powell, J. S., Ma, H., Sullivan, M., Tu, Y., Chen, N. Y.et al. (2019). Concentric organization of A- and B-type lamins predicts their distinct roles in the spatial organization and stability of the nuclear lamina. PubMed DOI PMC

Obado, S. O., Brillantes, M., Uryu, K., Zhang, W., Ketaren, N. E., Chait, B. T., Field, M. C. and Rout, M. P. (2016). Interactome mapping reveals the evolutionary history of the nuclear pore complex. PubMed DOI PMC

Oberholzer, M., Morand, S., Kunz, S. and Seebeck, T. (2006). A vector series for rapid PCR-mediated C-terminal in situ tagging of PubMed DOI

Ogbadoyi, E., Ersfeld, K., Robinson, D., Sherwin, T. and Gull, K. (2000). Architecture of the PubMed DOI

Pinger, J., Chowdhury, S. and Papavasiliou, F. N. (2017). Variant surface glycoprotein density defines an immune evasion threshold for African trypanosomes undergoing antigenic variation. PubMed DOI PMC

Radwanska, M., Vereecke, N., Deleeuw, V., Pinto, J. and Magez, S. (2018). Salivarian Trypanosomosis: a review of parasites involved, their global distribution and their interaction with the innate and adaptive mammalian host immune system. PubMed DOI PMC

Redmond, S., Vadivelu, J. and Field, M. C. (2003). RNAit: an automated web-based tool for the selection of RNAi targets in PubMed DOI

Rober, R. A., Weber, K. and Osborn, M. (1989). Differential timing of nuclear lamin A/C expression in the various organs of the mouse embryo and the young animal: a developmental study. PubMed DOI

Roditi, I., Schwartz, H., Pearson, T. W., Beecroft, R. P., Liu, M. K., Richardson, J. P., Bühring, H. J., Pleiss, J., Bülow, R. and Williams, R. O. (1989). Procyclin gene expression and loss of the variant surface glycoprotein during differentiation of PubMed DOI PMC

Saura, A., Iribarren, P. A., Rojas-Barros, D., Bart, J. M., López-Farfán, D., Andrés-León, E., Vidal-Cobo, I., Boehm, C., Alvarez, V. E.et al. (2019). SUMOylated SNF2PH promotes variant surface glycoprotein expression in bloodstream trypanosomes. PubMed DOI PMC

Schumann Burkard, G., Jutzi, P. and Roditi, I. (2011). Genome-wide RNAi screens in bloodstream form trypanosomes identify drug transporters. PubMed DOI

Shimi, T., Pfleghaar, K., Kojima, S.-i., Pack, C.-G., Solovei, I., Goldman, A. E., Adam, S. A., Shumaker, D. K., Kinjo, M., Cremer, T.et al. (2008). The A- and B-type nuclear lamin networks: microdomains involved in chromatin organization and transcription. PubMed DOI PMC

Shimi, T., Kittisopikul, M., Tran, J., Goldman, A. E., Adam, S. A., Zheng, Y., Jaqaman, K. and Goldman, R. D. (2015). Structural organization of nuclear lamins A, C, B1 and B2 revealed by superresolution microscopy. PubMed DOI PMC

Siddam, A. D., Gautier-Courteille, C., Perez-Campos, L., Anand, D., Kakrana, A., Dang, C. A., Legagneux, V., Méreau, A., Viet, J., Gross, J. M.et al. (2018). The RNA binding protein Celf1 post-transcriptionally regulates p27Kip1 and Dnase2b to control fiber cell nuclear degradation in lens development. PubMed DOI PMC

Simon, D. N. and Wilson, K. L. (2013). Partners and post-translational modifications of nuclear lamins. PubMed DOI PMC

Stijlemans, B., Caljon, G., Van Den Abbeele, J., Van Ginderachter, J. A., Magez, S. and De Trez, C. (2016). Immune evasion strategies of PubMed DOI PMC

Strawn, L. A., Shen, T., Shulga, N., Goldfarb, D. S. and Wente, S. R. (2004). Minimal nuclear pore complexes define FG repeat domains essential for transport. PubMed DOI

Stuurman, N., Delbecque, J. P., Callaerts, P. and Aebi, U. (1999). Ectopic overexpression of Drosophila lamin C is stage-specific lethal. PubMed DOI

Swift, J. and Discher, D. E. (2014). The nuclear lamina is mechano-responsive to ECM elasticity in mature tissue. PubMed DOI PMC

Sylvius, N., Hathaway, A., Boudreau, E., Gupta, P., Labib, S., Bolongo, P. M., Rippstein, P., McBride, H., Bilinska, Z. T. and Tesson, F. (2008). Specific contribution of lamin A and lamin C in the development of laminopathies. PubMed DOI PMC

Turgay, Y., Eibauer, M., Goldman, A. E., Shimi, T., Khayat, M., Ben-Harush, K., Dubrovsky-Gaupp, A., Sapra, K. T., Goldman, R. D. and Medalia, O. (2017). The molecular architecture of lamins in somatic cells. PubMed DOI PMC

Tyanova, S., Temu, T., Sinitcyn, P., Carlson, A., Hein, M. Y., Geiger, T., Mann, M. and Cox, J. (2016). The Perseus computational platform for comprehensive analysis of (prote)omics data. PubMed DOI

Verstraeten, V. L. R. M., Broers, J. L. V., Ramaekers, F. C. S. and van Steensel, M. A. M. (2007). The nuclear envelope, a key structure in cellular integrity and gene expression. PubMed DOI

Vidak, S., Georgiou, K., Fichtinger, P., Naetar, N., Dechat, T. and Foisner, R. (2018). Nucleoplasmic lamins define growth-regulating functions of lamina-associated polypeptide 2α in progeria cells. PubMed DOI PMC

Vizcaíno, J. A., Csordas, A., del-Toro, N., Dianes, J. A., Griss, J., Lavidas, I., Mayer, G., Perez-Riverol, Y., Reisinger, F., Ternent, T.et al. (2016). 2016 update of the PRIDE database and its related tools. PubMed DOI PMC

Wirtz, E., Leal, S., Ochatt, C. and Cross, G. A. M. (1999). A tightly regulated inducible expression system for conditional gene knock-outs and dominant-negative genetics in PubMed DOI

Woodward, R. and Gull, K. (1990). Timing of nuclear and kinetoplast DNA replication and early morphological events in the cell cycle of PubMed DOI

Wu, Z., Jin, Z., Zhang, X., Shen, N., Wang, J., Zhao, Y. and Mei, L. (2016). Nup62, associated with spindle microtubule rather than spindle matrix, is involved in chromosome alignment and spindle assembly during mitosis. PubMed DOI

Yang, L., Munck, M., Swaminathan, K., Kapinos, L. E., Noegel, A. A. and Neumann, S. (2013). Mutations in LMNA Modulate the Lamin A - Nesprin-2 interaction and cause LINC complex alterations. PubMed DOI PMC

Yatskevich, S., Rhodes, J. and Nasmyth, K. (2019). Organization of chromosomal DNA by SMC complexes. PubMed DOI

Zahr, H. C. and Jaalouk, D. E. (2018). Exploring the crosstalk between LMNA and splicing machinery gene mutations in dilated cardiomyopathy. PubMed DOI PMC

Zheng, X., Hu, J., Yue, S., Kristiani, L., Kim, M., Sauria, M., Taylor, J., Kim, Y. and Zheng, Y. (2018). Lamins organize the global three-dimensional genome from the nuclear periphery. PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...