SUMOylated SNF2PH promotes variant surface glycoprotein expression in bloodstream trypanosomes

. 2019 Dec 05 ; 20 (12) : e48029. [epub] 20191106

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid31693280

Grantová podpora
203134/Z/16/Z Wellcome Trust - United Kingdom
RTI2018-098834-B-I00 Ministerio de Ciencia, Innovación y Universidades - International
Wellcome Trust - United Kingdom
WTI 204697/Z/16/Z Wellcome Trust - United Kingdom
PICT-2016-0465 Argentinian National Agency for Promotion of Scientific and Technological Research - International

SUMOylation is a post-translational modification that positively regulates monoallelic expression of the trypanosome variant surface glycoprotein (VSG). The presence of a highly SUMOylated focus associated with the nuclear body, where the VSG gene is transcribed, further suggests an important role of SUMOylation in regulating VSG expression. Here, we show that SNF2PH, a SUMOylated plant homeodomain (PH)-transcription factor, is upregulated in the bloodstream form of the parasite and enriched at the active VSG telomere. SUMOylation promotes the recruitment of SNF2PH to the VSG promoter, where it is required to maintain RNA polymerase I and thus to regulate VSG transcript levels. Further, ectopic overexpression of SNF2PH in insect forms, but not of a mutant lacking the PH domain, induces the expression of bloodstream stage-specific surface proteins. These data suggest that SNF2PH SUMOylation positively regulates VSG monoallelic transcription, while the PH domain is required for the expression of bloodstream-specific surface proteins. Thus, SNF2PH functions as a positive activator, linking expression of infective form surface proteins and VSG regulation, thereby acting as a major regulator of pathogenicity.

Zobrazit více v PubMed

Cross GAM (1975) Identification, purification and properties of variant‐specific glycoprotein antigens constituting the surface coat of Trypanosoma brucei . Parasitology 71: 393–417 PubMed

Hertz‐Fowler C, Figueiredo LM, Quail MA, Becker M, Jackson A, Bason N, Brooks K, Churcher C, Fahkro S, Goodhead I et al (2008) Telomeric expression sites are highly conserved in Trypanosoma brucei . PLoS One 3: e3527 PubMed PMC

Figueiredo LM, Cross GA, Janzen CJ (2009) Epigenetic regulation in African trypanosomes: a new kid on the block. Nat Rev Microbiol 7: 504–513 PubMed

Duraisingh MT, Horn D (2016) Epigenetic regulation of virulence gene expression in parasitic protozoa. Cell Host Microbe 19: 629–640 PubMed PMC

Cestari I, Stuart K (2018) Transcriptional regulation of telomeric expression sites and antigenic variation in trypanosomes. Curr Genomics 19: 119–132 PubMed PMC

Navarro M, Gull K (2001) A pol I transcriptional body associated with VSG mono‐allelic expression in Trypanosoma brucei . Nature 414: 759–763 PubMed

Navarro M, Penate X, Landeira D (2007) Nuclear architecture underlying gene expression in Trypanosoma brucei . Trends Microbiol 15: 263–270 PubMed

McCulloch R, Navarro M (2016) The protozoan nucleus. Mol Biochem Parasitol 209: 76–87 PubMed

Lopez‐Farfan D, Bart JM, Rojas‐Barros DI, Navarro M (2014) SUMOylation by the E3 ligase TbSIZ1/PIAS1 positively regulates VSG expression in Trypanosoma brucei . PLoS Pathog 10: e1004545 PubMed PMC

Crozier TWM, Tinti M, Wheeler RJ, Ly T, Ferguson MAJ, Lamond AI (2018) Proteomic analysis of the cell cycle of procylic form Trypanosoma brucei . Mol Cell Proteomics 17: 1184–1195 PubMed PMC

Zhao X (2018) SUMO‐mediated regulation of nuclear functions and signaling processes. Mol Cell 71: 409–418 PubMed PMC

Liao S, Wang T, Fan K, Tu X (2010) The small ubiquitin‐like modifier (SUMO) is essential in cell cycle regulation in Trypanosoma brucei. Exp Cell Res 316: 704–715 PubMed

Iribarren PA, Berazategui MA, Cazzulo JJ, Alvarez VE (2015b) Biosynthesis of SUMOylated Proteins in Bacteria Using the Trypanosoma brucei Enzymatic System. PLoS One 10: e0134950 PubMed PMC

Rosonina E, Akhter A, Dou Y, Babu J, Sri Theivakadadcham VS (2017) Regulation of transcription factors by sumoylation. Transcription 8: 220–231 PubMed PMC

Giles KA, Gould CM, Du Q, Skvortsova K, Song JZ, Maddugoda MP, Achinger‐Kawecka J, Stirzaker C, Clark SJ, Taberlay PC (2019) Integrated epigenomic analysis stratifies chromatin remodellers into distinct functional groups. Epigenet Chromatin 12: 12 PubMed PMC

Clapier CR, Iwasa J, Cairns BR, Peterson CL (2017) Mechanisms of action and regulation of ATP‐dependent chromatin‐remodelling complexes. Nat Rev Mol Cell Biol 18: 407 PubMed PMC

Yan L, Wu H, Li X, Gao N, Chen Z (2019) Structures of the ISWI‐nucleosome complex reveal a conserved mechanism of chromatin remodeling. Nat Struct Mol Biol 26: 258–266 PubMed

Marchler‐Bauer A, Bo Y, Han L, He J, Lanczycki CJ, Lu S, Chitsaz F, Derbyshire MK, Geer RC, Gonzales NR et al (2017) CDD/SPARCLE: functional classification of proteins via subfamily domain architectures. Nucleic Acids Res 45: D200–D203 PubMed PMC

Mouriz A, López‐González L, Jarillo JA, Piñeiro M (2015) PHDs govern plant development. Plant Signal Behav 10: e993253 PubMed PMC

Musselman CA, Kutateladze TG (2011) Handpicking epigenetic marks with PHD fingers. Nucleic Acids Res 39: 9061–9071 PubMed PMC

Wysocka J, Swigut T, Xiao H, Milne TA, Kwon SY, Landry J, Kauer M, Tackett AJ, Chait BT, Badenhorst P et al (2006) A PHD finger of NURF couples histone H3 lysine 4 trimethylation with chromatin remodelling. Nature 442: 86 PubMed

Shi X, Hong T, Walter KL, Ewalt M, Michishita E, Hung T, Carney D, Pena P, Lan F, Kaadige MR et al (2006) ING2 PHD domain links histone H3 lysine 4 methylation to active gene repression. Nature 442: 96–99 PubMed PMC

Sanchez R, Zhou M‐M (2011) The PHD finger: a versatile epigenome reader. Trends Biochem Sci 36: 364–372 PubMed PMC

Landeira D, Bart JM, Van Tyne D, Navarro M (2009) Cohesin regulates VSG monoallelic expression in trypanosomes. J Cell Biol 186: 243–254 PubMed PMC

Iribarren PA, Berazategui MA, Bayona JC, Almeida IC, Cazzulo JJ, Alvarez VE (2015a) Different proteomic strategies to identify genuine Small Ubiquitin‐like MOdifier targets and their modification sites in Trypanosoma brucei procyclic forms. Cell Microbiol 17: 1413–1422 PubMed

Lai AY, Wade PA (2011) Cancer biology and NuRD: a multifaceted chromatin remodelling complex. Nat Rev Cancer 11: 588–596 PubMed PMC

Cairns BR (2009) The logic of chromatin architecture and remodelling at promoters. Nature 461: 193–198 PubMed

Muller LSM, Cosentino RO, Forstner KU, Guizetti J, Wedel C, Kaplan N, Janzen CJ, Arampatzi P, Vogel J, Steinbiss S et al (2018) Genome organization and DNA accessibility control antigenic variation in trypanosomes. Nature 563: 121–125 PubMed PMC

Van Bortle K, Nichols MH, Li L, Ong C‐T, Takenaka N, Qin ZS, Corces VG (2014) Insulator function and topological domain border strength scale with architectural protein occupancy. Genome Biol 15: R82 PubMed PMC

Jensen BC, Booster N, Vidadala RSR, Maly DJ, Parsons M (2016) A novel protein kinase is essential in bloodstream Trypanosoma brucei . Int J Parasitol 46: 479–483 PubMed PMC

Nguyen TN, Nguyen BN, Lee JH, Panigrahi AK, Gunzl A (2012) Characterization of a novel class I transcription factor A (CITFA) subunit that is indispensable for transcription by the multifunctional RNA polymerase I of Trypanosoma brucei . Eukaryot Cell 11: 1573–1581 PubMed PMC

Nguyen TN, Muller LS, Park SH, Siegel TN, Gunzl A (2014) Promoter occupancy of the basal class I transcription factor A differs strongly between active and silent VSG expression sites in Trypanosoma brucei . Nucleic Acids Res 42: 3164–3176 PubMed PMC

Queiroz R, Benz C, Fellenberg K, Hoheisel JD, Clayton C (2009) Transcriptome analysis of differentiating trypanosomes reveals the existence of multiple post‐transcriptional regulons. BMC Genom 10: 495 PubMed PMC

Barquilla A, Saldivia M, Diaz R, Bart JM, Vidal I, Calvo E, Hall MN, Navarro M (2012) Third target of rapamycin complex negatively regulates development of quiescence in Trypanosoma brucei . Proc Natl Acad Sci USA 109: 14399–14404 PubMed PMC

Leung KF, Riley F, Carrington M, Field MC (2011) Ubiquitylation as a general mechanism for internalisation of trans‐membrane domain surface proteins in trypanosomes. Eukaryot Cell 10: 916–931 PubMed PMC

Schulz D, Mugnier MR, Paulsen EM, Kim HS, Chung CW, Tough DF, Rioja I, Prinjha RK, Papavasiliou FN, Debler EW (2015) Bromodomain proteins contribute to maintenance of bloodstream form stage identity in the African Trypanosome. PLoS Biol 13: e1002316 PubMed PMC

Figueiredo LM, Janzen CJ, Cross GAM (2008) A histone methyltransferase modulates antigenic variation in African Trypanosomes. PLoS Biol 6: e161 PubMed PMC

Dubois KN, Alsford S, Holden JM, Buisson J, Swiderski M, Bart JM, Ratushny AV, Wan Y, Bastin P, Barry JD et al (2012) NUP‐1 is a large coiled‐coil nucleoskeletal protein in trypanosomes with lamin‐like functions. PLoS Biol 10: e1001287 PubMed PMC

Watson AA, Mahajan P, Mertens HD, Deery MJ, Zhang W, Pham P, Du X, Bartke T, Zhang W, Edlich C et al (2012) The PHD and chromo domains regulate the ATPase activity of the human chromatin remodeler CHD4. J Mol Biol 422: 3–17 PubMed PMC

Denninger V, Fullbrook A, Bessat M, Ersfeld K, Rudenko G (2010) The FACT subunit TbSpt16 is involved in cell cycle specific control of VSG expression sites in Trypanosoma brucei . Mol Microbiol 78: 459–474 PubMed PMC

Valenciano AL, Ramsey AC, Mackey ZB (2015) Deviating the level of proliferating cell nuclear antigen in Trypanosoma brucei elicits distinct mechanisms for inhibiting proliferation and cell cycle progression. Cell Cycle 14: 674–688 PubMed PMC

Saldivia M, Ceballos‐Perez G, Bart JM, Navarro M (2016) The AMPKalpha1 pathway positively regulates the developmental transition from proliferation to quiescence in Trypanosoma brucei . Cell Rep 17: 660–670 PubMed PMC

Silvester E, McWilliam KR, Matthews KR (2017) The cytological events and molecular control of life cycle development of trypanosoma brucei in the mammalian bloodstream. Pathogens 6: E29 PubMed PMC

Zimmermann H, Subota I, Batram C, Kramer S, Janzen CJ, Jones NG, Engstler M (2017) A quorum sensing‐independent path to stumpy development in Trypanosoma brucei . PLoS Pathog 13: e1006324 PubMed PMC

Donze D, Adams CR, Rine J, Kamakaka RT (1999) The boundaries of the silenced HMR domain in Saccharomyces cerevisiae . Genes Dev 13: 698–708 PubMed PMC

Dhillon N, Raab J, Guzzo J, Szyjka SJ, Gangadharan S, Aparicio OM, Andrews B, Kamakaka RT (2009) DNA polymerase ε, acetylases and remodellers cooperate to form a specialized chromatin structure at a tRNA insulator. EMBO J 28: 2583–2600 PubMed PMC

Ebersole T, Kim JH, Samoshkin A, Kouprina N, Pavlicek A, White RJ, Larionov V (2011) tRNA genes protect a reporter gene from epigenetic silencing in mouse cells. Cell Cycle 10: 2779–2791 PubMed PMC

Raab JR, Chiu J, Zhu J, Katzman S, Kurukuti S, Wade PA, Haussler D, Kamakaka RT (2012) Human tRNA genes function as chromatin insulators. EMBO J 31: 330–350 PubMed PMC

Gurudatta BV, Yang J, Van Bortle K, Donlin‐Asp PG, Corces VG (2013) Dynamic changes in the genomic localization of DNA replication‐related element binding factor during the cell cycle. Cell Cycle 12: 1605–1615 PubMed PMC

Penate X, Lopez‐Farfan D, Landeira D, Wentland A, Vidal I, Navarro M (2009) RNA pol II subunit RPB7 is required for RNA pol I‐mediated transcription in Trypanosoma brucei . EMBO Rep 10: 252–257 PubMed PMC

Andres‐Leon E, Nunez‐Torres R, Rojas AM (2016) miARma‐Seq: a comprehensive tool for miRNA, mRNA and circRNA analysis. Sci Rep 6: 25749 PubMed PMC

Obado SO, Field MC, Chait BT, Rout MP (2016) High‐Efficiency Isolation of Nuclear Envelope Protein Complexes from Trypanosomes. Methods Mol Biol 1411: 67–80 PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

A hub-and-spoke nuclear lamina architecture in trypanosomes

. 2021 Jun 15 ; 134 (12) : . [epub] 20210621

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...