plant homeodomain Dotaz Zobrazit nápovědu
The diverse forms of today's dominant vascular plant flora are generated by the sustained proliferative activity of sporophyte meristems at plants' shoot and root tips, a trait known as indeterminacy [1]. Bryophyte sister lineages to the vascular plants lack such indeterminate meristems and have an overall sporophyte form comprising a single small axis that ceases growth in the formation of a reproductive sporangium [1]. Genetic mechanisms regulating indeterminacy are well characterized in flowering plants, involving a feedback loop between class I KNOX genes and cytokinin [2, 3], and class I KNOX expression is a conserved feature of vascular plant meristems [4]. The transition from determinate growth to indeterminacy during evolution was a pre-requisite to vascular plant diversification, but mechanisms enabling the innovation of indeterminacy are unknown [5]. Here, we show that class I KNOX gene activity is necessary and sufficient for axis extension from an intercalary region of determinate moss shoots. As in Arabidopsis, class I KNOX activity can promote cytokinin biosynthesis by an ISOPENTENYL TRANSFERASE gene, PpIPT3. PpIPT3 promotes axis extension, and PpIPT3 and exogenously applied cytokinin can partially compensate for loss of class I KNOX function. By outgroup comparison, the results suggest that a pre-existing KNOX-cytokinin regulatory module was recruited into vascular plant shoot meristems during evolution to promote indeterminacy, thereby enabling the radiation of vascular plant shoot forms.
The RNA-directed DNA methylation (RdDM) pathway can be divided into three phases: 1) small interfering RNA biogenesis, 2) de novo methylation, and 3) chromatin modification. To determine the degree of conservation of this pathway we searched for key genes among land plants. We used OrthoMCL and the OrthoMCL Viridiplantae database to analyze proteomes of species in bryophytes, lycophytes, monilophytes, gymnosperms, and angiosperms. We also analyzed small RNA size categories and, in two gymnosperms, cytosine methylation in ribosomal DNA. Six proteins were restricted to angiosperms, these being NRPD4/NRPE4, RDM1, DMS3 (defective in meristem silencing 3), SHH1 (SAWADEE homeodomain homolog 1), KTF1, and SUVR2, although we failed to find the latter three proteins in Fritillaria persica, a species with a giant genome. Small RNAs of 24 nt in length were abundant only in angiosperms. Phylogenetic analyses of Dicer-like (DCL) proteins showed that DCL2 was restricted to seed plants, although it was absent in Gnetum gnemon and Welwitschia mirabilis. The data suggest that phases (1) and (2) of the RdDM pathway, described for model angiosperms, evolved with angiosperms. The absence of some features of RdDM in F. persica may be associated with its large genome. Phase (3) is probably the most conserved part of the pathway across land plants. DCL2, involved in virus defense and interaction with the canonical RdDM pathway to facilitate methylation of CHH, is absent outside seed plants. Its absence in G. gnemon, and W. mirabilis coupled with distinctive patterns of CHH methylation, suggest a secondary loss of DCL2 following the divergence of Gnetales.
- MeSH
- Arabidopsis genetika MeSH
- chromatin metabolismus MeSH
- cykasy genetika metabolismus MeSH
- cytosin metabolismus MeSH
- DNA řízené RNA-polymerasy metabolismus MeSH
- epigeneze genetická MeSH
- fylogeneze MeSH
- genom rostlinný MeSH
- Magnoliopsida enzymologie genetika metabolismus MeSH
- malá interferující RNA metabolismus MeSH
- malá nekódující RNA chemie MeSH
- metylace DNA * MeSH
- metylace MeSH
- ribonukleasa III klasifikace genetika MeSH
- RNA rostlin chemie metabolismus MeSH
- rostlinné geny * MeSH
- rostlinné proteiny klasifikace genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The cytokinin response factors (CRFs) are a group of related AP2/ERF transcription factors that are transcriptionally induced by cytokinin. Here we explore the role of the CRFs in Arabidopsis thaliana growth and development by analyzing lines with decreased and increased CRF function. While single crf mutations have no appreciable phenotypes, disruption of multiple CRFs results in larger rosettes, delayed leaf senescence, a smaller root apical meristem (RAM), reduced primary and lateral root growth, and, in etiolated seedlings, shorter hypocotyls. In contrast, overexpression of CRFs generally results in the opposite phenotypes. The crf1,2,5,6 quadruple mutant is embryo lethal, indicating that CRF function is essential for embryo development. Disruption of the CRFs results in partially insensitivity to cytokinin in a root elongation assay and affects the basal expression of a significant number of cytokinin-regulated genes, including the type-A ARRs, although it does not impair the cytokinin induction of the type-A ARRs. Genes encoding homeobox transcription factors are mis-expressed in the crf1,3,5,6 mutant, including STIMPY/WOX9 that is required for root and shoot apical meristem maintenance roots and which has previously been linked to cytokinin. These results indicate that the CRF transcription factors play important roles in multiple aspects of plant growth and development, in part through a complex interaction with cytokinin signaling.
- MeSH
- Arabidopsis genetika růst a vývoj fyziologie MeSH
- cytokininy metabolismus MeSH
- exprese genu MeSH
- fenotyp MeSH
- homeodoménové proteiny genetika metabolismus MeSH
- kořeny rostlin genetika růst a vývoj fyziologie MeSH
- meristém genetika růst a vývoj fyziologie MeSH
- mutace MeSH
- proteiny huseníčku genetika metabolismus MeSH
- regulace genové exprese u rostlin MeSH
- regulátory růstu rostlin metabolismus MeSH
- semenáček genetika růst a vývoj fyziologie MeSH
- signální transdukce * MeSH
- transkripční faktory genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
Mutual interactions of the phytohormones, cytokinins and auxin determine root or shoot identity during postembryonic de novo organogenesis in plants. However, our understanding of the role of hormonal metabolism and perception during early stages of cell fate reprogramming is still elusive. Here we show that auxin activates root formation, whereas cytokinins mediate early loss of the root identity, primordia disorganisation and initiation of shoot development. Exogenous and endogenous cytokinins influence the initiation of newly formed organs, as well as the pace of organ development. The process of de novo shoot apical meristem establishment is accompanied by accumulation of endogenous cytokinins, differential regulation of genes for individual cytokinin receptors, strong activation of AHK4-mediated signalling and induction of the shoot-specific homeodomain regulator WUSCHEL. The last is associated with upregulation of isopentenyladenine-type cytokinins, revealing higher shoot-forming potential when compared with trans-zeatin. Moreover, AHK4-controlled cytokinin signalling negatively regulates the root stem cell organiser WUSCHEL RELATED HOMEOBOX 5 in the root quiescent centre. We propose an important role for endogenous cytokinin biosynthesis and AHK4-mediated cytokinin signalling in the control of de novo-induced organ identity.
- MeSH
- Arabidopsis cytologie embryologie genetika MeSH
- cytokininy genetika metabolismus MeSH
- homeodoménové proteiny genetika metabolismus MeSH
- meristém cytologie embryologie MeSH
- organogeneze rostlin fyziologie MeSH
- proteinkinasy genetika metabolismus MeSH
- proteiny huseníčku genetika metabolismus MeSH
- receptory buněčného povrchu genetika metabolismus MeSH
- signální transdukce fyziologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Plant growth depends on stem cell niches in meristems. In the root apical meristem, the quiescent center (QC) cells form a niche together with the surrounding stem cells. Stem cells produce daughter cells that are displaced into a transit-amplifying (TA) domain of the root meristem. TA cells divide several times to provide cells for growth. SHORTROOT (SHR) and SCARECROW (SCR) are key regulators of the stem cell niche. Cytokinin controls TA cell activities in a dose-dependent manner. Although the regulatory programs in each compartment of the root meristem have been identified, it is still unclear how they coordinate one another. Here, we investigate how PHABULOSA (PHB), under the posttranscriptional control of SHR and SCR, regulates TA cell activities. The root meristem and growth defects in shr or scr mutants were significantly recovered in the shr phb or scr phb double mutant, respectively. This rescue in root growth occurs in the absence of a QC. Conversely, when the modified PHB, which is highly resistant to microRNA, was expressed throughout the stele of the wild-type root meristem, root growth became very similar to that observed in the shr; however, the identity of the QC was unaffected. Interestingly, a moderate increase in PHB resulted in a root meristem phenotype similar to that observed following the application of high levels of cytokinin. Our protoplast assay and transgenic approach using ARR10 suggest that the depletion of TA cells by high PHB in the stele occurs via the repression of B-ARR activities. This regulatory mechanism seems to help to maintain the cytokinin homeostasis in the meristem. Taken together, our study suggests that PHB can dynamically regulate TA cell activities in a QC-independent manner, and that the SHR-PHB pathway enables a robust root growth system by coordinating the stem cell niche and TA domain.
- MeSH
- Arabidopsis genetika růst a vývoj MeSH
- buněčné dělení genetika MeSH
- cytokininy genetika metabolismus MeSH
- DNA vazebné proteiny genetika MeSH
- fenotyp MeSH
- geneticky modifikované rostliny růst a vývoj MeSH
- homeodoménové proteiny biosyntéza genetika MeSH
- homeostáza MeSH
- kořeny rostlin genetika růst a vývoj MeSH
- meristém genetika růst a vývoj MeSH
- nika kmenových buněk genetika MeSH
- proteiny huseníčku biosyntéza genetika metabolismus MeSH
- regulace genové exprese u rostlin MeSH
- transkripční faktory genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
In plants, genome duplication followed by genome diversification and selection is recognized as a major evolutionary process. Rapid epigenetic and genetic changes that affect the transcription of parental genes are frequently observed after polyploidization. The pattern of alternative splicing is also frequently altered, yet the related molecular processes remain largely unresolved. Here, we study the inheritance and expression of parental variants of three floral organ identity genes in allotetraploid tobacco. DEFICIENS and GLOBOSA are B-class genes, and AGAMOUS is a C-class gene. Parental variants of these genes were found to be maintained in the tobacco genome, and the respective mRNAs were present in flower buds in comparable amounts. However, among five tobacco cultivars, we identified two in which the majority of paternal GLOBOSA pre-mRNA transcripts undergo exon 3 skipping, producing an mRNA with a premature termination codon. At the DNA level, we identified a G-A transition at the very last position of exon 3 in both cultivars. Although alternative splicing resulted in a dramatic decrease in full-length paternal GLOBOSA mRNA, no phenotypic effect was observed. Our finding likely serves as an example of the initiation of homoeolog diversification in a relatively young polyploid genome.
- MeSH
- alternativní sestřih genetika MeSH
- bodová mutace genetika MeSH
- exony genetika MeSH
- genetická transkripce * MeSH
- homeodoménové proteiny biosyntéza genetika MeSH
- nukleotidy genetika MeSH
- polyploidie MeSH
- prekurzory RNA genetika MeSH
- regulace genové exprese u rostlin MeSH
- rostlinné proteiny biosyntéza genetika MeSH
- tabák genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
In higher plants, cell cycle activation in the meristems at germination is essential for the initiation of post-embryonic development. We previously identified the signaling pathways of homeobox transcription factor STIMPY and metabolic sugars as two interacting branches of the regulatory network that is responsible for activating meristematic tissue proliferation in Arabidopsis. In this study, we found that CYCP2;1 is both a direct target of STIMPY transcriptional activation and an early responder to sugar signals. Genetic and molecular studies show that CYCP2;1 physically interacts with three of the five mitotic CDKs in Arabidopsis, and is required for the G2 to M transition during meristem activation. Taken together, our results suggest that CYCP2;1 acts as a permissive control of cell cycle progression during seedling establishment by directly linking genetic control and nutritional cues with the activity of the core cell cycle machinery.
- MeSH
- aktivace transkripce MeSH
- Arabidopsis embryologie MeSH
- buněčné dělení genetika MeSH
- cyklin-dependentní kinasy biosyntéza MeSH
- cykliny biosyntéza genetika metabolismus MeSH
- homeodoménové proteiny genetika MeSH
- meristém cytologie embryologie MeSH
- proliferace buněk MeSH
- proteiny huseníčku biosyntéza genetika metabolismus MeSH
- regulace genové exprese u rostlin MeSH
- rostlinné geny MeSH
- sacharosa farmakologie MeSH
- semenáček genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
Naturally-occurring mixtures of phytochemicals present in plant foods are proposed to possess tumor-suppressive activities. In this work, we aimed to evaluate the antitumor effects of Thymus vulgaris L. in in vivo and in vitro mammary carcinoma models. Dried T. vulgaris (as haulm) was continuously administered at two concentrations of 0.1% and 1% in the diet in a chemically-induced rat mammary carcinomas model and a syngeneic 4T1 mouse model. After autopsy, histopathological and molecular analyses of rodent mammary carcinomas were performed. In addition, in vitro evaluations using MCF-7 and MDA-MB-231 cells were carried out. In mice, T. vulgaris at both doses reduced the volume of 4T1 tumors by 85% (0.1%) and 84% (1%) compared to the control, respectively. Moreover, treated tumors showed a substantial decrease in necrosis/tumor area ratio and mitotic activity index. In the rat model, T. vulgaris (1%) decreased the tumor frequency by 53% compared to the control. Analysis of the mechanisms of anticancer action included well-described and validated diagnostic and prognostic markers that are used in both clinical approach and preclinical research. In this regard, the analyses of treated rat carcinoma cells showed a CD44 and ALDH1A1 expression decrease and Bax expression increase. Malondialdehyde (MDA) levels and VEGFR-2 expression were decreased in rat carcinomas in both the T. vulgaris treated groups. Regarding the evaluations of epigenetic changes in rat tumors, we found a decrease in the lysine methylation status of H3K4me3 in both treated groups (H3K9m3, H4K20m3, and H4K16ac were not changed); up-regulations of miR22, miR34a, and miR210 expressions (only at higher doses); and significant reductions in the methylation status of four gene promoters-ATM serin/threonine kinase, also known as the NPAT gene (ATM); Ras-association domain family 1, isoform A (RASSF1); phosphatase and tensin homolog (PTEN); and tissue inhibitor of metalloproteinase-3 (TIMP3) (the paired-like homeodomain transcription factor (PITX2) promoter was not changed). In vitro study revealed the antiproliferative and proapoptotic effects of essential oils of T. vulgaris in MCF-7 and MDA-MB-231 cells (analyses of 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) (MTS); 5-bromo-20-deoxyuridine (BrdU); cell cycle; annexin V/PI; caspase-3/7; Bcl-2; PARP; and mitochondrial membrane potential). T. vulgaris L. demonstrated significant chemopreventive and therapeutic activities against experimental breast carcinoma.
- MeSH
- epigeneze genetická účinky léků MeSH
- fytoterapie MeSH
- krysa rodu rattus MeSH
- lidé MeSH
- MFC-7 buňky MeSH
- myši MeSH
- nádorové buněčné linie MeSH
- nádory prsu farmakoterapie MeSH
- oleje prchavé aplikace a dávkování farmakologie MeSH
- oleje rostlin aplikace a dávkování farmakologie MeSH
- proliferace buněk účinky léků MeSH
- regulace genové exprese u nádorů účinky léků MeSH
- Thymus (rostlina) chemie MeSH
- viabilita buněk MeSH
- vztah mezi dávkou a účinkem léčiva MeSH
- xenogenní modely - testy antitumorózní aktivity MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- lidé MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Antenna protein aggregation is one of the principal mechanisms considered effective in protecting phototrophs against high light damage. Commonly, it is induced, in vitro, by decreasing detergent concentration and pH of a solution of purified antennas; the resulting reduction in fluorescence emission is considered to be representative of non-photochemical quenching in vivo. However, little is known about the actual size and organization of antenna particles formed by this means, and hence the physiological relevance of this experimental approach is questionable. Here, a quasi-single molecule method, fluorescence correlation spectroscopy (FCS), was applied during in vitro quenching of LHCII trimers from higher plants for a parallel estimation of particle size, fluorescence, and antenna cluster homogeneity in a single measurement. FCS revealed that, below detergent critical micelle concentration, low pH promoted the formation of large protein oligomers of sizes up to micrometers, and therefore is apparently incompatible with thylakoid membranes. In contrast, LHCII clusters formed at high pH were smaller and homogenous, and yet still capable of efficient quenching. The results altogether set the physiological validity limits of in vitro quenching experiments. Our data also support the idea that the small, moderately quenching LHCII oligomers found at high pH could be relevant with respect to non-photochemical quenching in vivo.
- MeSH
- chlorofyl chemie genetika účinky záření MeSH
- fluorescence MeSH
- fluorescenční spektrometrie MeSH
- fotosyntéza genetika MeSH
- fotosystém II - proteinový komplex genetika účinky záření MeSH
- fototrofní procesy genetika MeSH
- homeodoménový protein Antennapedia chemie genetika MeSH
- koncentrace vodíkových iontů MeSH
- proteinové agregáty genetika MeSH
- shluková analýza MeSH
- světlo škodlivé účinky MeSH
- světlosběrné proteinové komplexy chemie genetika MeSH
- tylakoidy chemie genetika účinky záření MeSH
- zeaxanthiny genetika MeSH
- Publikační typ
- časopisecké články MeSH
SUMOylation is a post-translational modification that positively regulates monoallelic expression of the trypanosome variant surface glycoprotein (VSG). The presence of a highly SUMOylated focus associated with the nuclear body, where the VSG gene is transcribed, further suggests an important role of SUMOylation in regulating VSG expression. Here, we show that SNF2PH, a SUMOylated plant homeodomain (PH)-transcription factor, is upregulated in the bloodstream form of the parasite and enriched at the active VSG telomere. SUMOylation promotes the recruitment of SNF2PH to the VSG promoter, where it is required to maintain RNA polymerase I and thus to regulate VSG transcript levels. Further, ectopic overexpression of SNF2PH in insect forms, but not of a mutant lacking the PH domain, induces the expression of bloodstream stage-specific surface proteins. These data suggest that SNF2PH SUMOylation positively regulates VSG monoallelic transcription, while the PH domain is required for the expression of bloodstream-specific surface proteins. Thus, SNF2PH functions as a positive activator, linking expression of infective form surface proteins and VSG regulation, thereby acting as a major regulator of pathogenicity.
- MeSH
- epigeneze genetická MeSH
- glykoproteiny genetika metabolismus MeSH
- protozoální proteiny genetika metabolismus MeSH
- restrukturace chromatinu MeSH
- RNA-polymerasa I metabolismus MeSH
- sumoylace * MeSH
- transkripční faktory genetika metabolismus MeSH
- Trypanosoma brucei brucei genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH