-
Je něco špatně v tomto záznamu ?
A KNOX-Cytokinin Regulatory Module Predates the Origin of Indeterminate Vascular Plants
Y. Coudert, O. Novák, CJ. Harrison,
Jazyk angličtina Země Velká Británie
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
BB/L02248/1
Biotechnology and Biological Sciences Research Council - United Kingdom
NLK
Cell Press Free Archives
od 1995-01-01 do Před 1 rokem
Free Medical Journals
od 1995 do Před 1 rokem
Elsevier Open Access Journals
od 1995-01-01 do 2023-06-19
Elsevier Open Archive Journals
od 1995-01-01 do Před 1 rokem
- MeSH
- biologická evoluce MeSH
- cytokininy genetika metabolismus MeSH
- homeodoménové proteiny genetika metabolismus MeSH
- mechy genetika metabolismus MeSH
- molekulární evoluce * MeSH
- rostlinné proteiny genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The diverse forms of today's dominant vascular plant flora are generated by the sustained proliferative activity of sporophyte meristems at plants' shoot and root tips, a trait known as indeterminacy [1]. Bryophyte sister lineages to the vascular plants lack such indeterminate meristems and have an overall sporophyte form comprising a single small axis that ceases growth in the formation of a reproductive sporangium [1]. Genetic mechanisms regulating indeterminacy are well characterized in flowering plants, involving a feedback loop between class I KNOX genes and cytokinin [2, 3], and class I KNOX expression is a conserved feature of vascular plant meristems [4]. The transition from determinate growth to indeterminacy during evolution was a pre-requisite to vascular plant diversification, but mechanisms enabling the innovation of indeterminacy are unknown [5]. Here, we show that class I KNOX gene activity is necessary and sufficient for axis extension from an intercalary region of determinate moss shoots. As in Arabidopsis, class I KNOX activity can promote cytokinin biosynthesis by an ISOPENTENYL TRANSFERASE gene, PpIPT3. PpIPT3 promotes axis extension, and PpIPT3 and exogenously applied cytokinin can partially compensate for loss of class I KNOX function. By outgroup comparison, the results suggest that a pre-existing KNOX-cytokinin regulatory module was recruited into vascular plant shoot meristems during evolution to promote indeterminacy, thereby enabling the radiation of vascular plant shoot forms.
Plant Sciences Department University of Cambridge Downing Street Cambridge CB2 3EA UK
School of Biological Sciences University of Bristol 24 Tyndall Avenue Bristol BS8 1TQ UK
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc20025716
- 003
- CZ-PrNML
- 005
- 20201222154045.0
- 007
- ta
- 008
- 201125s2019 xxk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.cub.2019.06.083 $2 doi
- 035 __
- $a (PubMed)31378615
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxk
- 100 1_
- $a Coudert, Yoan $u Plant Sciences Department, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK; School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK; Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, 69342 Lyon, France.
- 245 12
- $a A KNOX-Cytokinin Regulatory Module Predates the Origin of Indeterminate Vascular Plants / $c Y. Coudert, O. Novák, CJ. Harrison,
- 520 9_
- $a The diverse forms of today's dominant vascular plant flora are generated by the sustained proliferative activity of sporophyte meristems at plants' shoot and root tips, a trait known as indeterminacy [1]. Bryophyte sister lineages to the vascular plants lack such indeterminate meristems and have an overall sporophyte form comprising a single small axis that ceases growth in the formation of a reproductive sporangium [1]. Genetic mechanisms regulating indeterminacy are well characterized in flowering plants, involving a feedback loop between class I KNOX genes and cytokinin [2, 3], and class I KNOX expression is a conserved feature of vascular plant meristems [4]. The transition from determinate growth to indeterminacy during evolution was a pre-requisite to vascular plant diversification, but mechanisms enabling the innovation of indeterminacy are unknown [5]. Here, we show that class I KNOX gene activity is necessary and sufficient for axis extension from an intercalary region of determinate moss shoots. As in Arabidopsis, class I KNOX activity can promote cytokinin biosynthesis by an ISOPENTENYL TRANSFERASE gene, PpIPT3. PpIPT3 promotes axis extension, and PpIPT3 and exogenously applied cytokinin can partially compensate for loss of class I KNOX function. By outgroup comparison, the results suggest that a pre-existing KNOX-cytokinin regulatory module was recruited into vascular plant shoot meristems during evolution to promote indeterminacy, thereby enabling the radiation of vascular plant shoot forms.
- 650 _2
- $a biologická evoluce $7 D005075
- 650 _2
- $a mechy $x genetika $x metabolismus $7 D019068
- 650 _2
- $a cytokininy $x genetika $x metabolismus $7 D003583
- 650 12
- $a molekulární evoluce $7 D019143
- 650 _2
- $a homeodoménové proteiny $x genetika $x metabolismus $7 D018398
- 650 _2
- $a rostlinné proteiny $x genetika $x metabolismus $7 D010940
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Novák, Ondřej $u Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science of Palacký University and Institute of Experimental Botany CAS, Šlechtitelů 27, 78371 Olomouc, Czech Republic.
- 700 1_
- $a Harrison, C Jill $u Plant Sciences Department, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK; School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK. Electronic address: jill.harrison@bristol.ac.uk.
- 773 0_
- $w MED00006482 $t Current biology : CB $x 1879-0445 $g Roč. 29, č. 16 (2019), s. 2743-2750.e5
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/31378615 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20201125 $b ABA008
- 991 __
- $a 20201222154040 $b ABA008
- 999 __
- $a ok $b bmc $g 1599861 $s 1116402
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2019 $b 29 $c 16 $d 2743-2750.e5 $e 20190801 $i 1879-0445 $m Current biology $n Curr Biol $x MED00006482
- GRA __
- $a BB/L02248/1 $p Biotechnology and Biological Sciences Research Council $2 United Kingdom
- LZP __
- $a Pubmed-20201125