Rapid Identification of Pathogens Causing Bloodstream Infections by Raman Spectroscopy and Raman Tweezers
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
37078868
PubMed Central
PMC10269886
DOI
10.1128/spectrum.00028-23
Knihovny.cz E-zdroje
- Klíčová slova
- Candida, Raman spectroscopy, Raman tweezers, bacteria, bloodstream infections, diagnostics, sepsis,
- MeSH
- algoritmy MeSH
- lidé MeSH
- optická pinzeta MeSH
- pilotní projekty MeSH
- Ramanova spektroskopie * metody MeSH
- sepse * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The search for the "Holy Grail" in clinical diagnostic microbiology-a reliable, accurate, low-cost, real-time, easy-to-use method-has brought up several methods with the potential to meet these criteria. One is Raman spectroscopy, an optical, nondestructive method based on the inelastic scattering of monochromatic light. The current study focuses on the possible use of Raman spectroscopy for identifying microbes causing severe, often life-threatening bloodstream infections. We included 305 microbial strains of 28 species acting as causative agents of bloodstream infections. Raman spectroscopy identified the strains from grown colonies, with 2.8% and 7% incorrectly identified strains using the support vector machine algorithm based on centered and uncentred principal-component analyses, respectively. We combined Raman spectroscopy with optical tweezers to speed up the process and captured and analyzed microbes directly from spiked human serum. The pilot study suggests that it is possible to capture individual microbial cells from human serum and characterize them by Raman spectroscopy with notable differences among different species. IMPORTANCE Bloodstream infections are among the most common causes of hospitalizations and are often life-threatening. To establish an effective therapy for a patient, the timely identification of the causative agent and characterization of its antimicrobial susceptibility and resistance profiles are essential. Therefore, our multidisciplinary team of microbiologists and physicists presents a method that reliably, rapidly, and inexpensively identifies pathogens causing bloodstream infections-Raman spectroscopy. We believe that it might become a valuable diagnostic tool in the future. Combined with optical trapping, it offers a new approach where the microorganisms are individually trapped in a noncontact way by optical tweezers and investigated by Raman spectroscopy directly in a liquid sample. Together with the automatic processing of measured Raman spectra and comparison with a database of microorganisms, it makes the whole identification process almost real time.
Institute of Scientific Instruments of the Czech Academy of Sciences Brno Czech Republic
National Centre for Biomolecular Research Faculty of Science Masaryk University Brno Czech Republic
Zobrazit více v PubMed
Čermák P, Kolář M, Látal T. 2004. Frequency of Gram-negative bacterial pathogens in bloodstream infections and their resistance to antibiotics in the Czech Republic. Int J Antimicrob Agents 23:401–404. doi:10.1016/j.ijantimicag.2003.07.021. PubMed DOI
Gahlot R, Nigam C, Kumar V, Yadav G, Anupurba S. 2014. Catheter-related bloodstream infections. Int J Crit Illn Inj Sci 4:162–167. doi:10.4103/2229-5151.134184. PubMed DOI PMC
Buetti N, Marschall J, Atkinson A, Kronenberg A, Swiss Centre for Antibiotic Resistance (ANRESIS) . 2016. National bloodstream infection surveillance in Switzerland 2008–2014: different patterns and trends for university and community hospitals. Infect Control Hosp Epidemiol 37:1060–1067. doi:10.1017/ice.2016.137. PubMed DOI
de Kraker MEA, Jarlier V, Monen JCM, Heuer OE, van de Sande N, Grundmann H. 2013. The changing epidemiology of bacteraemias in Europe: trends from the European Antimicrobial Resistance Surveillance System. Clin Microbiol Infect 19:860–868. doi:10.1111/1469-0691.12028. PubMed DOI
Pfaller MA, Diekema DJ, Jones RN, Sader HS, Fluit AC, Hollis RJ, Messer SA, SENTRY Participant Group . 2001. International surveillance of bloodstream infections due to Candida species: frequency of occurrence and in vitro susceptibilities to fluconazole, ravuconazole, and voriconazole of isolates collected from 1997 through 1999 in the SENTRY antimicrobial surveillance program. J Clin Microbiol 39:3254–3259. doi:10.1128/JCM.39.9.3254-3259.2001. PubMed DOI PMC
Lin G-L, McGinley JP, Drysdale SB, Pollard AJ. 2018. Epidemiology and immune pathogenesis of viral sepsis. Front Immunol 9:2147. doi:10.3389/fimmu.2018.02147. PubMed DOI PMC
Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, Bellomo R, Bernard GR, Chiche J-D, Coopersmith CM, Hotchkiss RS, Levy MM, Marshall JC, Martin GS, Opal SM, Rubenfeld GD, van der Poll T, Vincent J-L, Angus DC. 2016. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA 315:801–810. doi:10.1001/jama.2016.0287. PubMed DOI PMC
López-Cortés LE, de Cueto M, Rodríguez-Baño J. 2017. How should we best treat patients with bloodstream infections? Future Microbiol 12:927–930. doi:10.2217/fmb-2017-0118. PubMed DOI
Idelevich EA, Schüle I, Grünastel B, Wüllenweber J, Peters G, Becker K. 2014. Rapid identification of microorganisms from positive blood cultures by MALDI-TOF mass spectrometry subsequent to very short-term incubation on solid medium. Clin Microbiol Infect 20:1001–1006. doi:10.1111/1469-0691.12640. PubMed DOI
Kirn TJ, Weinstein MP. 2013. Update on blood cultures: how to obtain, process, report, and interpret. Clin Microbiol Infect 19:513–520. doi:10.1111/1469-0691.12180. PubMed DOI
Croxatto A, Prod’hom G, Greub G. 2012. Applications of MALDI-TOF mass spectrometry in clinical diagnostic microbiology. FEMS Microbiol Rev 36:380–407. doi:10.1111/j.1574-6976.2011.00298.x. PubMed DOI
Klein S, Zimmermann S, Köhler C, Mischnik A, Alle W, Bode KA. 2012. Integration of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry in blood culture diagnostics: a fast and effective approach. J Med Microbiol 61:323–331. doi:10.1099/jmm.0.035550-0. PubMed DOI
Wieser A, Schneider L, Jung J, Schubert S. 2012. MALDI-TOF MS in microbiological diagnostics—identification of microorganisms and beyond (mini review). Appl Microbiol Biotechnol 93:965–974. doi:10.1007/s00253-011-3783-4. PubMed DOI
Jakovljev A, Bergh K. 2015. Development of a rapid and simplified protocol for direct bacterial identification from positive blood cultures by using matrix assisted laser desorption ionization time-of-flight mass spectrometry. BMC Microbiol 15:258. doi:10.1186/s12866-015-0594-2. PubMed DOI PMC
Riederer K, Cruz K, Shemes S, Szpunar S, Fishbain JT. 2015. MALDI-TOF identification of Gram-negative bacteria directly from blood culture bottles containing charcoal: Sepsityper kits versus centrifugation-filtration method. Diagn Microbiol Infect Dis 82:105–108. doi:10.1016/j.diagmicrobio.2015.03.003. PubMed DOI
Gray TJ, Thomas L, Olma T, Iredell JR, Chen SC-A. 2013. Rapid identification of Gram-negative organisms from blood culture bottles using a modified extraction method and MALDI-TOF mass spectrometry. Diagn Microbiol Infect Dis 77:110–112. doi:10.1016/j.diagmicrobio.2013.06.016. PubMed DOI
Meex C, Neuville F, Descy J, Huynen P, Hayette M-P, De Mol P, Melin P. 2012. Direct identification of bacteria from BacT/ALERT anaerobic positive blood cultures by MALDI-TOF MS: MALDI Sepsityper kit versus an in-house saponin method for bacterial extraction. J Med Microbiol 61:1511–1516. doi:10.1099/jmm.0.044750-0. PubMed DOI
Hoyos-Mallecot Y, Riazzo C, Miranda-Casas C, Rojo-Martín MD, Gutiérrez-Fernández J, Navarro-Marí JM. 2014. Rapid detection and identification of strains carrying carbapenemases directly from positive blood cultures using MALDI-TOF MS. J Microbiol Methods 105:98–101. doi:10.1016/j.mimet.2014.07.016. PubMed DOI
Peri AM, Harris PNA, Paterson DL. 2022. Culture-independent detection systems for bloodstream infection. Clin Microbiol Infect 28:195–201. doi:10.1016/j.cmi.2021.09.039. PubMed DOI
Bergholt MS, Hassing S. 2009. Quantification of C-reactive protein in human blood plasma using near-infrared Raman spectroscopy. Analyst 134:2123–2127. doi:10.1039/b903089a. PubMed DOI
Neugebauer U, Trenkmann S, Bocklitz T, Schmerler D, Kiehntopf M, Popp J. 2014. Fast differentiation of SIRS and sepsis from blood plasma of ICU patients using Raman spectroscopy: spectroscopic differentiation of SIRS and sepsis from blood plasma. J Biophoton 7:232–240. doi:10.1002/jbio.201400010. PubMed DOI
Qi D, Berger AJ. 2007. Chemical concentration measurement in blood serum and urine samples using liquid-core optical fiber Raman spectroscopy. Appl Opt 46:1726–1734. doi:10.1364/AO.46.001726. PubMed DOI
Poon KWC, Lyng FM, Knief P, Howe O, Meade AD, Curtin JF, Byrne HJ, Vaughan J. 2012. Quantitative reagent-free detection of fibrinogen levels in human blood plasma using Raman spectroscopy. Analyst 137:1807–1814. doi:10.1039/c2an35042d. PubMed DOI
Harvey TJ, Faria EC, Henderson A, Gazi E, Ward AD, Clarke NW, Brown MD, Snook RD, Gardner P. 2008. Spectral discrimination of live prostate and bladder cancer cell lines using Raman optical tweezers. J Biomed Opt 13:e064004. doi:10.1117/1.2999609. PubMed DOI
Chan JW, Taylor DS, Lane SM, Zwerdling T, Tuscano J, Huser T. 2008. Nondestructive identification of individual leukemia cells by laser trapping Raman spectroscopy. Anal Chem 80:2180–2187. doi:10.1021/ac7022348. PubMed DOI
Dochow S, Beleites C, Henkel T, Mayer G, Albert J, Clement J, Krafft C, Popp J. 2013. Quartz microfluidic chip for tumour cell identification by Raman spectroscopy in combination with optical traps. Anal Bioanal Chem 405:2743–2746. doi:10.1007/s00216-013-6726-3. PubMed DOI
Rebrošová K, Šiler M, Samek O, Růžička F, Bernatová S, Ježek J, Zemánek P, Holá V. 2017. Differentiation between Staphylococcus aureus and Staphylococcus epidermidis strains using Raman spectroscopy. Future Microbiol 12:881–890. doi:10.2217/fmb-2016-0224. PubMed DOI
Rebrošová K, Šiler M, Samek O, Růžička F, Bernatová S, Holá V, Ježek J, Zemánek P, Sokolová J, Petráš P. 2017. Rapid identification of staphylococci by Raman spectroscopy. Sci Rep 7:14846. doi:10.1038/s41598-017-13940-w. PubMed DOI PMC
Schie IW, Huser T. 2013. Methods and applications of Raman microspectroscopy to single-cell analysis. Appl Spectrosc 67:813–828. doi:10.1366/12-06971. PubMed DOI
Read DS, Whiteley AS. 2015. Chemical fixation methods for Raman spectroscopy-based analysis of bacteria. J Microbiol Methods 109:79–83. doi:10.1016/j.mimet.2014.12.008. PubMed DOI
Maquelin K, Kirschner C, Choo-Smith L-P, Ngo-Thi NA, van Vreeswijk T, Stämmler M, Endtz HP, Bruining HA, Naumann D, Puppels GJ. 2003. Prospective study of the performance of vibrational spectroscopies for rapid identification of bacterial and fungal pathogens recovered from blood cultures. J Clin Microbiol 41:324–329. doi:10.1128/JCM.41.1.324-329.2003. PubMed DOI PMC
Almarashi JFM, Kapel N, Wilkinson TS, Telle HH. 2012. Raman spectroscopy of bacterial species and strains cultivated under reproducible conditions. Spectrosc Int J 27:361–365. doi:10.1155/2012/540490. DOI
Samek O, Telle HH, Harris LG, Bloomfield M, Mack D. 2008. Raman spectroscopy for rapid discrimination of Staphylococcus epidermidis clones related to medical device-associated infections. Laser Phys Lett 5:465–470. doi:10.1002/lapl.200810011. DOI
Tien N, Chen H-C, Gau S-L, Lin T-H, Lin H-S, You B-J, Tsai P-C, Chen I-R, Tsai M-F, Wang I-K, Chen C-J, Chang C-T. 2016. Diagnosis of bacterial pathogens in the dialysate of peritoneal dialysis patients with peritonitis using surface-enhanced Raman spectroscopy. Clin Chim Acta 461:69–75. doi:10.1016/j.cca.2016.07.026. PubMed DOI
Neugebauer U, Rösch P, Popp J. 2015. Raman spectroscopy towards clinical application: drug monitoring and pathogen identification. Int J Antimicrob Agents 46:S35–S39. doi:10.1016/j.ijantimicag.2015.10.014. PubMed DOI
Pahlow S, Meisel S, Cialla-May D, Weber K, Rösch P, Popp J. 2015. Isolation and identification of bacteria by means of Raman spectroscopy. Adv Drug Deliv Rev 89:105–120. doi:10.1016/j.addr.2015.04.006. PubMed DOI
Kastanos E, Kyriakides A, Hadjigeorgiou K, Pitris C. 2012. A novel method for bacterial UTI diagnosis using Raman spectroscopy. Int J Spectrosc 2012:195317. doi:10.1155/2012/195317. DOI
M Y, Chawla K, Bankapur A, Acharya M, D’Souza JS, Chidangil S. 2019. A micro-Raman and chemometric study of urinary tract infection-causing bacterial pathogens in mixed cultures. Anal Bioanal Chem 411:3165–3177. doi:10.1007/s00216-019-01784-4. PubMed DOI
Bernatová S, Rebrošová K, Pilát Z, Šerý M, Gjevik A, Samek O, Ježek J, Šiler M, Kizovský M, Klementová T, Holá V, Růžička F, Zemánek P. 2021. Rapid detection of antibiotic sensitivity of Staphylococcus aureus by Raman tweezers. Eur Phys J Plus 136:233. doi:10.1140/epjp/s13360-021-01152-1. DOI
Pilát Z, Bernatová S, Ježek J, Kirchhoff J, Tannert A, Neugebauer U, Samek O, Zemánek P. 2018. Microfluidic cultivation and laser tweezers Raman spectroscopy of E. coli under antibiotic stress. Sensors (Basel) 18:1623. doi:10.3390/s18051623. PubMed DOI PMC
Wulf MWH, Willemse-Erix D, Verduin CM, Puppels G, van Belkum A, Maquelin K. 2012. The use of Raman spectroscopy in the epidemiology of methicillin-resistant Staphylococcus aureus of human- and animal-related clonal lineages. Clin Microbiol Infect 18:147–152. doi:10.1111/j.1469-0691.2011.03517.x. PubMed DOI
Rebrošová K, Šiler M, Samek O, Růžička F, Bernatová S, Ježek J, Zemánek P, Holá V. 2019. Identification of ability to form biofilm in Candida parapsilosis and Staphylococcus epidermidis by Raman spectroscopy. Future Microbiol 14:509–517. doi:10.2217/fmb-2018-0297. PubMed DOI
Samek O, Mlynariková K, Bernatová S, Ježek J, Krzyžánek V, Šiler M, Zemánek P, Růžička F, Holá V, Mahelová M. 2014. Candida parapsilosis biofilm identification by Raman spectroscopy. Int J Mol Sci 15:23924–23935. doi:10.3390/ijms151223924. PubMed DOI PMC
Sandt C, Smith-Palmer T, Pink J, Brennan L, Pink D. 2007. Confocal Raman microspectroscopy as a tool for studying the chemical heterogeneities of biofilms in situ: biofilm Raman microspectroscopy. J Appl Microbiol 103:1808–1820. doi:10.1111/j.1365-2672.2007.03413.x. PubMed DOI
Singh GP, Volpe G, Creely CM, Grötsch H, Geli IM, Petrov D. 2006. The lag phase and G1 phase of a single yeast cell monitored by Raman microspectroscopy. J Raman Spectrosc 37:858–864. doi:10.1002/jrs.1520. DOI
Huang S, Chen D, Pelczar PL, Vepachedu VR, Setlow P, Li Y. 2007. Levels of Ca2+-dipicolinic acid in individual bacillus spores determined using microfluidic Raman tweezers. J Bacteriol 189:4681–4687. doi:10.1128/JB.00282-07. PubMed DOI PMC
Cui L, Li H-Z, Yang K, Zhu L-J, Xu F, Zhu Y-G. 2021. Raman biosensor and molecular tools for integrated monitoring of pathogens and antimicrobial resistance in wastewater. Trends Analyt Chem 143:116415. doi:10.1016/j.trac.2021.116415. DOI
Rebrošová K, Bernatová S, Šiler M, Uhlirova M, Samek O, Ježek J, Holá V, Růžička F, Zemanek P. 2022. Raman spectroscopy—a tool for rapid differentiation among microbes causing urinary tract infections. Anal Chim Acta 1191:339292. doi:10.1016/j.aca.2021.339292. PubMed DOI
Verma SP, Philippot JR, Bonnet B, Sainte-Marie J, Moschetto Y, Wallach DFH. 1984. Resonance Raman spectra of beta-carotene in native and modified low-density lipoprotein. Biochem Biophys Res Commun 122:867–875. doi:10.1016/s0006-291x(84)80114-x. PubMed DOI
Pistiki A, Monecke S, Shen H, Ryabchykov O, Bocklitz TW, Rösch P, Ehricht R, Popp J. 2022. Comparison of different label-free Raman spectroscopy approaches for the discrimination of clinical MRSA and MSSA isolates. Microbiol Spectr 10:e00763-22. doi:10.1128/spectrum.00763-22. PubMed DOI PMC
Liu W, Tang J-W, Lyu J-W, Wang J-J, Pan Y-C, Shi X-Y, Liu Q-H, Zhang X, Gu B, Wang L. 2022. Discrimination between carbapenem-resistant and carbapenem-sensitive Klebsiella pneumoniae strains through computational analysis of surface-enhanced Raman spectra: a pilot study. Microbiol Spectr 10:e02409-21. doi:10.1128/spectrum.02409-21. PubMed DOI PMC
Pruss A, Kwiatkowski P, Łopusiewicz Ł, Masiuk H, Sobolewski P, Fijałkowski K, Sienkiewicz M, Smolak A, Giedrys-Kalemba S, Dołęgowska B. 2021. Evaluation of chemical changes in laboratory-induced colistin-resistant Klebsiella pneumoniae. Int J Mol Sci 22:7104. doi:10.3390/ijms22137104. PubMed DOI PMC
Strola SA, Marcoux PR, Schultz E, Perenon R, Simon A-C, Espagnon I, Allier CP, Dinten J-M. 2014. Differentiating the growth phases of single bacteria using Raman spectroscopy Proceedings SPIE 8939, Biomedical Vibrational Spectroscopy VI: Advances in Research and Industry.
Fawcett T. 2006. An introduction to ROC analysis. Pattern Recognit Lett 27:861–874. doi:10.1016/j.patrec.2005.10.010. DOI
Taleb I, Thiéfin G, Gobinet C, Untereiner V, Bernard-Chabert B, Heurgué A, Truntzer C, Hillon P, Manfait M, Ducoroy P, Sockalingum GD. 2013. Diagnosis of hepatocellular carcinoma in cirrhotic patients: a proof-of-concept study using serum micro-Raman spectroscopy. Analyst 138:4006–4014. doi:10.1039/c3an00245d. PubMed DOI
Bernatová S, Samek O, Pilát Z, Šerý M, Ježek J, Jákl P, Šiler M, Krzyžánek V, Zemánek P, Holá V, Dvořáčková M, Růžička F. 2013. Following the mechanisms of bacteriostatic versus bactericidal action using Raman spectroscopy. Molecules 18:13188–13199. doi:10.3390/molecules181113188. PubMed DOI PMC
Bashir S, Nawaz H, Majeed MI, Mohsin M, Abdullah S, Ali S, Rashid N, Kashif M, Batool F, Abubakar M, Ahmad S, Abdulraheem A. 2021. Rapid and sensitive discrimination among carbapenem resistant and susceptible E. coli strains using surface enhanced Raman spectroscopy combined with chemometric tools. Photodiagnosis Photodyn Ther 34:102280. doi:10.1016/j.pdpdt.2021.102280. PubMed DOI
Bashir S, Nawaz H, Irfan Majeed M, Mohsin M, Nawaz A, Rashid N, Batool F, Akbar S, Abubakar M, Ahmad S, Ali S, Kashif M. 2021. Surface-enhanced Raman spectroscopy for the identification of tigecycline-resistant E. coli strains. Spectrochim Acta A Mol Biomol Spectrosc 258:119831. doi:10.1016/j.saa.2021.119831. PubMed DOI
Kloß S, Rösch P, Pfister W, Kiehntopf M, Popp J. 2015. Toward culture-free Raman spectroscopic identification of pathogens in ascitic fluid. Anal Chem 87:937–943. doi:10.1021/ac503373r. PubMed DOI
Kloß S, Lorenz B, Dees S, Labugger I, Rösch P, Popp J. 2015. Destruction-free procedure for the isolation of bacteria from sputum samples for Raman spectroscopic analysis. Anal Bioanal Chem 407:8333–8341. doi:10.1007/s00216-015-8743-x. PubMed DOI
Ember K, Daoust F, Mahfoud M, Dallaire F, Ahmad EZ, Tran T, Plante A, Diop M-K, Nguyen T, St-Georges-Robillard A, Ksantini N, Lanthier J, Filiatrault A, Sheehy G, Beaudoin G, Quach C, Trudel D, Leblond F. 2022. Saliva-based detection of COVID-19 infection in a real-world setting using reagent-free Raman spectroscopy and machine learning. J Biomed Opt 27:e025002. doi:10.1117/1.JBO.27.2.025002. PubMed DOI PMC
Schröder U-C, Ramoji A, Glaser U, Sachse S, Leiterer C, Csaki A, Hübner U, Fritzsche W, Pfister W, Bauer M, Popp J, Neugebauer U. 2013. Combined dielectrophoresis-Raman setup for the classification of pathogens recovered from the urinary tract. Anal Chem 85:10717–10724. doi:10.1021/ac4021616. PubMed DOI
Wichmann C, Rösch P, Popp J. 2021. Isolation of bacteria from artificial bronchoalveolar lavage fluid using density gradient centrifugation and their accessibility by Raman spectroscopy. Anal Bioanal Chem 413:5193–5200. doi:10.1007/s00216-021-03488-0. PubMed DOI PMC
Zyubin A, Lavrova A, Manicheva O, Dogonadze M, Samusev I. 2018. Dataset of single Mycobacterium tuberculosis bacteria cells with different antibiotic susceptibility obtained by Raman spectroscopy. Data Brief 21:2430–2434. doi:10.1016/j.dib.2018.11.095. PubMed DOI PMC
Kemmler M, Rodner E, Rösch P, Popp J, Denzler J. 2013. Automatic identification of novel bacteria using Raman spectroscopy and Gaussian processes. Anal Chim Acta 794:29–37. doi:10.1016/j.aca.2013.07.051. PubMed DOI
Yan S, Wang S, Qiu J, Li M, Li D, Xu D, Li D, Liu Q. 2021. Raman spectroscopy combined with machine learning for rapid detection of food-borne pathogens at the single-cell level. Talanta 226:122195. doi:10.1016/j.talanta.2021.122195. PubMed DOI
Yu S, Li H, Li X, Fu YV, Liu F. 2020. Classification of pathogens by Raman spectroscopy combined with generative adversarial networks. Sci Total Environ 726:138477. doi:10.1016/j.scitotenv.2020.138477. PubMed DOI
Rösch P, Schmitt M, Kiefer W, Popp J. 2003. The identification of microorganisms by micro-Raman spectroscopy. J Mol Struct 661–662:363–369. doi:10.1016/j.molstruc.2003.06.004. DOI
Kusić D, Kampe B, Rösch P, Popp J. 2014. Identification of water pathogens by Raman microspectroscopy. Water Res 48:179–189. doi:10.1016/j.watres.2013.09.030. PubMed DOI
Bruker Daltonik. 2012. Bruker Guide to MALDI Sample Preparation, ed 2, pp 1–19.
Mlynáriková K, Samek O, Bernatová S, Růžička F, Ježek J, Hároniková A, Šiler M, Zemánek P, Holá V. 2015. Influence of culture media on microbial fingerprints using Raman spectroscopy. Sensors (Basel) 15:29635–29647. doi:10.3390/s151129635. PubMed DOI PMC
Brandt NN, Brovko OO, Chikishev AY, Paraschuk OD. 2006. Optimization of the rolling-circle filter for Raman background subtraction. Appl Spectrosc 60:288–293. doi:10.1366/000370206776342553. PubMed DOI
Altman NS. 1992. An introduction to Kernel and nearest-neighbor nonparametric regression. Am Stat 46:175–185. doi:10.2307/2685209. DOI
Sattlecker M, Bessant C, Smith J, Stone N. 2010. Investigation of support vector machines and Raman spectroscopy for lymph node diagnostics. Analyst 135:895–901. doi:10.1039/b920229c. PubMed DOI