Influence of Culture Media on Microbial Fingerprints Using Raman Spectroscopy

. 2015 Nov 24 ; 15 (11) : 29635-47. [epub] 20151124

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid26610516

Raman spectroscopy has a broad range of applications across numerous scientific fields, including microbiology. Our work here monitors the influence of culture media on the Raman spectra of clinically important microorganisms (Escherichia coli, Staphylococcus aureus, Staphylococcus epidermidis and Candida albicans). Choosing an adequate medium may enhance the reproducibility of the method as well as simplifying the data processing and the evaluation. We tested four different media per organism depending on the nutritional requirements and clinical usage directly on a Petri dish. Some of the media have a significant influence on the microbial fingerprint (Roosvelt-Park Institute Medium, CHROMagar) and should not be used for the acquisition of Raman spectra. It was found that the most suitable medium for microbiological experiments regarding these organisms was Mueller-Hinton agar.

Zobrazit více v PubMed

Schie I.W., Huser T. Methods and applications of Raman microspectroscopy to single-cell analysis. Appl. Spectrosc. 2013;67:813–828. PubMed

Read D.S., Whiteley A.S. Chemical fixation methods for Raman spectroscopy-based analysis of bacteria. J. Microbiol. Methods. 2015;109:79–83. doi: 10.1016/j.mimet.2014.12.008. PubMed DOI

Maquelin K., Kirschner C., Choo-Smith L.P., Ngo-Thi N.A., van Vreeswijk T., Stammler M., Endtz H.P., Bruining H.A., Naumann D., Puppels G.J. Prospective study of the performance of vibrational spectroscopies for rapid identification of bacterial and fungal pathogens recovered from blood cultures. J. Clin. Microbiol. 2003;41:324–329. doi: 10.1128/JCM.41.1.324-329.2003. PubMed DOI PMC

Afseth N.K., Bloomfield M., Wold J.P., Matousek P.A. Novel approach for subsurface through-skin analysis of salmon using spatially offset raman spectroscopy (SORS) Appl. Spectrosc. 2014;68:255–262. doi: 10.1366/13-07215. PubMed DOI

Notingher I. Raman spectroscopy cell-based biosensors. Sensors. 2007;7:1343–1358. doi: 10.3390/s7081343. DOI

Almarashi J.F.M., Kapel N., Wilkinson T.S., Telle H.H. Raman spectroscopy of bacterial species and strains cultivated under reproducible conditions. Spectrosc. Int. J. 2012;27:361–365. doi: 10.1155/2012/540490. DOI

De Gelder J., de Gussem K., Vandenabeele P., Moens L. Reference database of Raman spectra of biological molecules. J. Raman Spectrosc. 2007;38:1133–1147. doi: 10.1002/jrs.1734. DOI

Martinelli A. Effects of a protic ionic liquid on the reaction pathway during non-aqueous sol-gel synthesis of silica: A Raman spectroscopic investigation. Int. J. Mol. Sci. 2014;15:6488–6503. doi: 10.3390/ijms15046488. PubMed DOI PMC

Brauchle E., Schenke-Leyland K. Raman spectroscopy in biomedicine—Non-invasive in vitro analysis of cells and extracellular matrix components in tissues. Biotechnol. J. 2013;8:288–297. doi: 10.1002/biot.201200163. PubMed DOI PMC

Samek O., Al-Marashi J.F.M., Telle H.H. The potential of Raman spectroscopy for the identification of biofilm formation by Staphylococcus epidermidis. Laser Phys. Lett. 2010;7:378–383. doi: 10.1002/lapl.200910154. DOI

Samek O., Telle H.H., Harris L.G., Bloomfield M., Mack D. Raman spectroscopy for rapid discrimination of Staphylococcus epidermidis clones related to medical device-associated infections. Laser Phys. Lett. 2008;5:465–470. doi: 10.1002/lapl.200810011. DOI

Bernatová S., Samek O., Pilát Z., Šerý M., Ježek J., Jákl P., Šiler M., Krzyžánek V., Zemánek P., Holá V., et al. Following the mechanisms of bacteriostatic versus bactericidal action using Raman spectroscopy. Molecules. 2013;18:13188–13199. doi: 10.3390/molecules181113188. PubMed DOI PMC

Samek O., Jonáš A., Pilát Z., Zemánek P., Nedbal L., Tříska J., Kotas P., Trtílek M. Raman microspectroscopy of individual algal cells: Sensing unsaturation of storage lipids in vivo. Sensors. 2010;10:8635–8651. doi: 10.3390/s100908635. PubMed DOI PMC

Sandt C., Smith-Palmer T., Pink J., Brennan L., Pink D. Confocal Raman microspectroscopy as a tool for studying the chemical heterogeneities of biofilms in situ. J. Appl. Microbiol. 2007;103:1808–1820. doi: 10.1111/j.1365-2672.2007.03413.x. PubMed DOI

Choo-Smith L.P., Marquelin K., van Vreeswijk T., Bruining H.A., Puppels G.J., Ngo Thi N.A., Kirchner C., Naumann D., Ami D., Villa A.M., et al. Investigating microbial (Micro)colony heterogeneity by vibrational spectroscopy. Appl. Environ. Microbiol. 2001;67:1461–1469. doi: 10.1128/AEM.67.4.1461-1469.2001. PubMed DOI PMC

Samek O., Mlynariková K., Bernatová S., Ježek J., Krzyžánek V., Šiler M., Zemánek P., Růžička F., Holá V., Mahelová M. Candida parapsilosis Biofilm Identification by Raman Spectroscopy. Int. J. Mol. Sci. 2014;15:23924–23935. doi: 10.3390/ijms151223924. PubMed DOI PMC

Maquelin K., Choo-Smith L.P., van Vreeswijk T., Endtz H.P., Smith B., Bennett R., Bruining H.A., Puppels G.J. Raman Spectroscopic Method for Identification of Clinically Relevant Microorganisms Growing on Solid Culture Medium. Anal. Chem. 2000;72:12–19. doi: 10.1021/ac991011h. PubMed DOI

Maquelin K., Choo-Smith L.P., Endtz H.P., Bruining H.A., Puppels G.J. Rapid identification of Candida species by confocal Raman microspectroscopy. J. Clin. Microbiol. 2002;40:594–600. doi: 10.1128/JCM.40.2.594-600.2002. PubMed DOI PMC

Almarashi J.F.M., Kapel N., Wilkinson T.S., Telle H.H. Advances in Biomedical Spectroscopy. IOS Press; Amsterdam, The Netherlands: 2013. Raman spectroscopy of bacterial species and strains cultivated under reproducible conditions.

Espagnon I., Ostrovskii D., Mathey R., Dupoy M., Joly P.L., Novelli-Rousseau A., Pinston F., Gal O., Mallard F., Leroux D.F. Direct identification of clinically relevant bacterial and yeast microcolonies and macrocolonies on solid culture media by Raman spectroscopy. J. Biomed. Opt. 2014;19 doi: 10.1117/1.JBO.19.2.027004. PubMed DOI

Wulf M.W.H., Willemse-Erix D., Verduin C.M., Puppels G., van Belkum A., Maquelin K. The use of Raman spectroscopy in the epidemiology of methicillin-resistant Staphylococcus aureus of human- and animal-related clonal lineages. Clin. Microbiol. Infect. 2012;18:147–152. doi: 10.1111/j.1469-0691.2011.03517.x. PubMed DOI

Mathey R., Dupoy M., Espagnon I., Leroux D., Mallard F., Novelli-Rousseau A. Viability of 3 h grown bacterial micro-colonies after direct Raman identification. J. Microbiol. Methods. 2015;109:67–73. doi: 10.1016/j.mimet.2014.12.002. PubMed DOI

Schuster K.C., Urlaub E., Gapes J.R. Single-cell analysis of bacteria by Raman microscopy: Spectral information on the chemical composition of cells and on the heterogeneity in a culture. J. Microbiol. Methods. 2000;42:29–38. doi: 10.1016/S0167-7012(00)00169-X. PubMed DOI

Vandenbergh M.F., Verbrugh H.A. Carriage of Staphylococcus aureus: Epidemiology and clinical relevance. J. Lab. Clin. Med. 1999;133:525–534. doi: 10.1016/S0022-2143(99)90181-6. PubMed DOI

Piette A., Verschraegen G. Role of coagulase-negative staphylococci in human disease. Vet. Microbiol. 2009;134:45–54. doi: 10.1016/j.vetmic.2008.09.009. PubMed DOI

Kocianova S., Vuong C., Yao Y., Voyich J.M., Fischer E.R., DeLeo F.R., Otto M. Key role of poly-g-DL-glutamic acid in immune evasion and virulence of Staphylococcus epidermidis. J. Clin. Investig. 2005;115:688–694. doi: 10.1172/JCI200523523. PubMed DOI PMC

Lindberg E., Adlerberth I., Matricardi P., Bonanno C., Tripodi S., Panetta V., Hesselmar B., Saalman R., Åberg N., Wold A.E. Effect of lifestyle factors on Staphylococcus aureus gut colonization in Swedish and Italian infants. Clin. Microbiol. Infect. 2011;17:1209–1215. doi: 10.1111/j.1469-0691.2010.03426.x. PubMed DOI

Van den Berg S., Bonarius H.P.J., van Kessel K.P.M., Elsinga G.S., Kooi N., Westra H., Bosma T., van der Kooi-Pol M.M., Koedijk D.G.A.M., Groen H., et al. A human monoclonal antibody targeting the conserved staphylococcal antigen IsaA protects mice against Staphylococcus aureus bacteremia. Int. J. Med. Microbiol. 2015;305:55–64. doi: 10.1016/j.ijmm.2014.11.002. PubMed DOI

Cosgrove S.E. The relationship between antimicrobial resistance and patient outcomes: Mortality, length of hospital stay, and health care costs. Clin. Infect. Dis. 2006;42(Suppl. S2):S82–S89. doi: 10.1086/499406. PubMed DOI

McCann M.T., Gilmore B.F., Gorman S.P. Staphylococcus epidermidis device-related infections: Pathogenesis and clinical management. J. Pharm. Pharmacol. 2008;60:1551–1571. doi: 10.1211/jpp.60.12.0001. PubMed DOI

Verhoef J., Fleer A. Staphylococcus epidermidis endocarditis and Staphylococcus epidermidis infection in an intensive care unit. Scand. J. Infect. Dis. Suppl. 1983;41:56–64. PubMed

Jansen B., Hartmann C., Schaumacher-Pedreau F., Peters G. Late onset endopthalmitis associated with intraocular lens: A case of molecularly proved S. epidermidis aetiology. Br. J. Ophthalmol. 1991;75:440–441. doi: 10.1136/bjo.75.7.440. PubMed DOI PMC

Warren J.W. Catheter-associated urinary tract infection. Int. J. Antimicrob. Agents. 2001;17:299–303. doi: 10.1016/S0924-8579(00)00359-9. PubMed DOI

Rupp M.E., Archer G.L. Coagulase-negative staphylococci: Pathogens associated with medical progress. Clin. Infect. Dis. 1994;19:231–245. doi: 10.1093/clinids/19.2.231. PubMed DOI

Rupp M.E., Hamer K.E. Effect of subinhibitory concentrations of vancomycin, cefazolin, ofloxacin, L-ofloxacin and D-ofloxacin on adherence to intravascular catheters and biofilm formation by Staphylococcus epidermidis. J. Antimicrob. Chemother. 1998;41:155–161. doi: 10.1093/jac/41.2.155. PubMed DOI

Gallo J., Kolar M., Novotny R., Rihakova P., Ticha V.V. Pathogenesis of prosthesis-related infection. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech. Repub. 2003;147:27–35. doi: 10.5507/bp.2003.004. PubMed DOI

Ip D., Yam S.K., Chen C.K. Implications of the changing pattern of bacterial infections following total joint replacements. J. Orthop. Surg. 2005;13:125–130. PubMed

Riley L.W. Pandemic lineages of extraintestinal pathogenic Escherichia coli. Clin. Microbiol. Infect. 2014;20:380–390. doi: 10.1111/1469-0691.12646. PubMed DOI

Trofa D., Gácser A., Nosanchuk J.D. Candida parapsilosis, an emerging fungal pathogen. Clin. Microbiol. Rev. 2008;21:606–625. doi: 10.1128/CMR.00013-08. PubMed DOI PMC

Hattori H., Iwataa T., Nakagawa Y., Kawamoto F., Tomitaa Y., Kikuchi A., Kanbe T. Genotype analysis of Candida albicans isolates obtained from different body locations of patientswith superficial candidiasis using PCRs targeting 25S rDNA and ALT repeat sequences of the RPS. J. Dermatol. Sci. 2006;42:31–46. doi: 10.1016/j.jdermsci.2005.12.003. PubMed DOI

Lim C.S.Y., Rosli R., Seow H.F., Chong P.P. Candida and invasive candidiasis: Back to basics. Eur. J. Clin. Microbiol. Infect. Dis. 2012;31:21–31. doi: 10.1007/s10096-011-1273-3. PubMed DOI

Machová E., Fiačanová L., Čížová A., Korcová J. Mannoproteins from yeast and hyphal form of Candida albicans considerably differ in mannan and protein content. Carbohydr. Res. 2015;408:12–17. doi: 10.1016/j.carres.2015.03.001. PubMed DOI

Yan L., Yang C., Tang J. Disruption of the intestinal mucosal barrier in Candida albicans infections. Microbiol. Res. 2013;168:389–395. doi: 10.1016/j.micres.2013.02.008. PubMed DOI

Chandra J., Kuhn D.M., Mukherjee P.K., Hoyer L.L., McCormick T., Ghannoum M.A. Biofilm formation by the fungal pathogen Candida albicans: Development, architecture, and drug resistance. J. Bacteriol. 2001;183:5385–5394. doi: 10.1128/JB.183.18.5385-5394.2001. PubMed DOI PMC

Renishaws EasyConfocal Raman Method. Technology Note from the Spectroscopy Products Division. Renishaw PLC; Wotton-under-Edge, UK: 2003. SPD/TN/076; Issue 1.2.

De Maesschalck R., Jouan-Rimbaud D., Massart D.L. The Mahalanobis distance. Chemometr. Intell. Lab. 2000;50:1–18. doi: 10.1016/S0169-7439(99)00047-7. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Nanometals incorporation into active and biodegradable chitosan films

. 2024 Apr 15 ; 10 (7) : e28430. [epub] 20240326

Identification of staphyloxanthin and derivates in yellow-pigmented Staphylococcus capitis subsp. capitis

. 2023 ; 14 () : 1272734. [epub] 20230929

Aspergillus niger as a cell factory for the production of pyomelanin, a molecule with UV-C radiation shielding activity

. 2023 ; 14 () : 1233740. [epub] 20230720

Rapid Identification of Pathogens Causing Bloodstream Infections by Raman Spectroscopy and Raman Tweezers

. 2023 Jun 15 ; 11 (3) : e0002823. [epub] 20230420

Lecithin as an Effective Modifier of the Transport Properties of Variously Crosslinked Hydrogels

. 2023 Apr 27 ; 9 (5) : . [epub] 20230427

Raman Spectroscopy-A Novel Method for Identification and Characterization of Microbes on a Single-Cell Level in Clinical Settings

. 2022 ; 12 () : 866463. [epub] 20220422

Incorporation of Natural Blueberry, Red Grapes and Parsley Extract By-Products into the Production of Chitosan Edible Films

. 2021 Oct 01 ; 13 (19) : . [epub] 20211001

Microfluidic Cultivation and Laser Tweezers Raman Spectroscopy of E. coli under Antibiotic Stress

. 2018 May 18 ; 18 (5) : . [epub] 20180518

Rapid identification of staphylococci by Raman spectroscopy

. 2017 Nov 01 ; 7 (1) : 14846. [epub] 20171101

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...