Influence of Culture Media on Microbial Fingerprints Using Raman Spectroscopy
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26610516
PubMed Central
PMC4701351
DOI
10.3390/s151129635
PII: s151129635
Knihovny.cz E-zdroje
- Klíčová slova
- Raman spectroscopy, bacteria, culture media, yeasts,
- MeSH
- Bacteria * chemie účinky léků metabolismus MeSH
- kultivační média farmakologie MeSH
- kvasinky * chemie účinky léků metabolismus MeSH
- Ramanova spektroskopie metody MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- kultivační média MeSH
Raman spectroscopy has a broad range of applications across numerous scientific fields, including microbiology. Our work here monitors the influence of culture media on the Raman spectra of clinically important microorganisms (Escherichia coli, Staphylococcus aureus, Staphylococcus epidermidis and Candida albicans). Choosing an adequate medium may enhance the reproducibility of the method as well as simplifying the data processing and the evaluation. We tested four different media per organism depending on the nutritional requirements and clinical usage directly on a Petri dish. Some of the media have a significant influence on the microbial fingerprint (Roosvelt-Park Institute Medium, CHROMagar) and should not be used for the acquisition of Raman spectra. It was found that the most suitable medium for microbiological experiments regarding these organisms was Mueller-Hinton agar.
Zobrazit více v PubMed
Schie I.W., Huser T. Methods and applications of Raman microspectroscopy to single-cell analysis. Appl. Spectrosc. 2013;67:813–828. PubMed
Read D.S., Whiteley A.S. Chemical fixation methods for Raman spectroscopy-based analysis of bacteria. J. Microbiol. Methods. 2015;109:79–83. doi: 10.1016/j.mimet.2014.12.008. PubMed DOI
Maquelin K., Kirschner C., Choo-Smith L.P., Ngo-Thi N.A., van Vreeswijk T., Stammler M., Endtz H.P., Bruining H.A., Naumann D., Puppels G.J. Prospective study of the performance of vibrational spectroscopies for rapid identification of bacterial and fungal pathogens recovered from blood cultures. J. Clin. Microbiol. 2003;41:324–329. doi: 10.1128/JCM.41.1.324-329.2003. PubMed DOI PMC
Afseth N.K., Bloomfield M., Wold J.P., Matousek P.A. Novel approach for subsurface through-skin analysis of salmon using spatially offset raman spectroscopy (SORS) Appl. Spectrosc. 2014;68:255–262. doi: 10.1366/13-07215. PubMed DOI
Notingher I. Raman spectroscopy cell-based biosensors. Sensors. 2007;7:1343–1358. doi: 10.3390/s7081343. DOI
Almarashi J.F.M., Kapel N., Wilkinson T.S., Telle H.H. Raman spectroscopy of bacterial species and strains cultivated under reproducible conditions. Spectrosc. Int. J. 2012;27:361–365. doi: 10.1155/2012/540490. DOI
De Gelder J., de Gussem K., Vandenabeele P., Moens L. Reference database of Raman spectra of biological molecules. J. Raman Spectrosc. 2007;38:1133–1147. doi: 10.1002/jrs.1734. DOI
Martinelli A. Effects of a protic ionic liquid on the reaction pathway during non-aqueous sol-gel synthesis of silica: A Raman spectroscopic investigation. Int. J. Mol. Sci. 2014;15:6488–6503. doi: 10.3390/ijms15046488. PubMed DOI PMC
Brauchle E., Schenke-Leyland K. Raman spectroscopy in biomedicine—Non-invasive in vitro analysis of cells and extracellular matrix components in tissues. Biotechnol. J. 2013;8:288–297. doi: 10.1002/biot.201200163. PubMed DOI PMC
Samek O., Al-Marashi J.F.M., Telle H.H. The potential of Raman spectroscopy for the identification of biofilm formation by Staphylococcus epidermidis. Laser Phys. Lett. 2010;7:378–383. doi: 10.1002/lapl.200910154. DOI
Samek O., Telle H.H., Harris L.G., Bloomfield M., Mack D. Raman spectroscopy for rapid discrimination of Staphylococcus epidermidis clones related to medical device-associated infections. Laser Phys. Lett. 2008;5:465–470. doi: 10.1002/lapl.200810011. DOI
Bernatová S., Samek O., Pilát Z., Šerý M., Ježek J., Jákl P., Šiler M., Krzyžánek V., Zemánek P., Holá V., et al. Following the mechanisms of bacteriostatic versus bactericidal action using Raman spectroscopy. Molecules. 2013;18:13188–13199. doi: 10.3390/molecules181113188. PubMed DOI PMC
Samek O., Jonáš A., Pilát Z., Zemánek P., Nedbal L., Tříska J., Kotas P., Trtílek M. Raman microspectroscopy of individual algal cells: Sensing unsaturation of storage lipids in vivo. Sensors. 2010;10:8635–8651. doi: 10.3390/s100908635. PubMed DOI PMC
Sandt C., Smith-Palmer T., Pink J., Brennan L., Pink D. Confocal Raman microspectroscopy as a tool for studying the chemical heterogeneities of biofilms in situ. J. Appl. Microbiol. 2007;103:1808–1820. doi: 10.1111/j.1365-2672.2007.03413.x. PubMed DOI
Choo-Smith L.P., Marquelin K., van Vreeswijk T., Bruining H.A., Puppels G.J., Ngo Thi N.A., Kirchner C., Naumann D., Ami D., Villa A.M., et al. Investigating microbial (Micro)colony heterogeneity by vibrational spectroscopy. Appl. Environ. Microbiol. 2001;67:1461–1469. doi: 10.1128/AEM.67.4.1461-1469.2001. PubMed DOI PMC
Samek O., Mlynariková K., Bernatová S., Ježek J., Krzyžánek V., Šiler M., Zemánek P., Růžička F., Holá V., Mahelová M. Candida parapsilosis Biofilm Identification by Raman Spectroscopy. Int. J. Mol. Sci. 2014;15:23924–23935. doi: 10.3390/ijms151223924. PubMed DOI PMC
Maquelin K., Choo-Smith L.P., van Vreeswijk T., Endtz H.P., Smith B., Bennett R., Bruining H.A., Puppels G.J. Raman Spectroscopic Method for Identification of Clinically Relevant Microorganisms Growing on Solid Culture Medium. Anal. Chem. 2000;72:12–19. doi: 10.1021/ac991011h. PubMed DOI
Maquelin K., Choo-Smith L.P., Endtz H.P., Bruining H.A., Puppels G.J. Rapid identification of Candida species by confocal Raman microspectroscopy. J. Clin. Microbiol. 2002;40:594–600. doi: 10.1128/JCM.40.2.594-600.2002. PubMed DOI PMC
Almarashi J.F.M., Kapel N., Wilkinson T.S., Telle H.H. Advances in Biomedical Spectroscopy. IOS Press; Amsterdam, The Netherlands: 2013. Raman spectroscopy of bacterial species and strains cultivated under reproducible conditions.
Espagnon I., Ostrovskii D., Mathey R., Dupoy M., Joly P.L., Novelli-Rousseau A., Pinston F., Gal O., Mallard F., Leroux D.F. Direct identification of clinically relevant bacterial and yeast microcolonies and macrocolonies on solid culture media by Raman spectroscopy. J. Biomed. Opt. 2014;19 doi: 10.1117/1.JBO.19.2.027004. PubMed DOI
Wulf M.W.H., Willemse-Erix D., Verduin C.M., Puppels G., van Belkum A., Maquelin K. The use of Raman spectroscopy in the epidemiology of methicillin-resistant Staphylococcus aureus of human- and animal-related clonal lineages. Clin. Microbiol. Infect. 2012;18:147–152. doi: 10.1111/j.1469-0691.2011.03517.x. PubMed DOI
Mathey R., Dupoy M., Espagnon I., Leroux D., Mallard F., Novelli-Rousseau A. Viability of 3 h grown bacterial micro-colonies after direct Raman identification. J. Microbiol. Methods. 2015;109:67–73. doi: 10.1016/j.mimet.2014.12.002. PubMed DOI
Schuster K.C., Urlaub E., Gapes J.R. Single-cell analysis of bacteria by Raman microscopy: Spectral information on the chemical composition of cells and on the heterogeneity in a culture. J. Microbiol. Methods. 2000;42:29–38. doi: 10.1016/S0167-7012(00)00169-X. PubMed DOI
Vandenbergh M.F., Verbrugh H.A. Carriage of Staphylococcus aureus: Epidemiology and clinical relevance. J. Lab. Clin. Med. 1999;133:525–534. doi: 10.1016/S0022-2143(99)90181-6. PubMed DOI
Piette A., Verschraegen G. Role of coagulase-negative staphylococci in human disease. Vet. Microbiol. 2009;134:45–54. doi: 10.1016/j.vetmic.2008.09.009. PubMed DOI
Kocianova S., Vuong C., Yao Y., Voyich J.M., Fischer E.R., DeLeo F.R., Otto M. Key role of poly-g-DL-glutamic acid in immune evasion and virulence of Staphylococcus epidermidis. J. Clin. Investig. 2005;115:688–694. doi: 10.1172/JCI200523523. PubMed DOI PMC
Lindberg E., Adlerberth I., Matricardi P., Bonanno C., Tripodi S., Panetta V., Hesselmar B., Saalman R., Åberg N., Wold A.E. Effect of lifestyle factors on Staphylococcus aureus gut colonization in Swedish and Italian infants. Clin. Microbiol. Infect. 2011;17:1209–1215. doi: 10.1111/j.1469-0691.2010.03426.x. PubMed DOI
Van den Berg S., Bonarius H.P.J., van Kessel K.P.M., Elsinga G.S., Kooi N., Westra H., Bosma T., van der Kooi-Pol M.M., Koedijk D.G.A.M., Groen H., et al. A human monoclonal antibody targeting the conserved staphylococcal antigen IsaA protects mice against Staphylococcus aureus bacteremia. Int. J. Med. Microbiol. 2015;305:55–64. doi: 10.1016/j.ijmm.2014.11.002. PubMed DOI
Cosgrove S.E. The relationship between antimicrobial resistance and patient outcomes: Mortality, length of hospital stay, and health care costs. Clin. Infect. Dis. 2006;42(Suppl. S2):S82–S89. doi: 10.1086/499406. PubMed DOI
McCann M.T., Gilmore B.F., Gorman S.P. Staphylococcus epidermidis device-related infections: Pathogenesis and clinical management. J. Pharm. Pharmacol. 2008;60:1551–1571. doi: 10.1211/jpp.60.12.0001. PubMed DOI
Verhoef J., Fleer A. Staphylococcus epidermidis endocarditis and Staphylococcus epidermidis infection in an intensive care unit. Scand. J. Infect. Dis. Suppl. 1983;41:56–64. PubMed
Jansen B., Hartmann C., Schaumacher-Pedreau F., Peters G. Late onset endopthalmitis associated with intraocular lens: A case of molecularly proved S. epidermidis aetiology. Br. J. Ophthalmol. 1991;75:440–441. doi: 10.1136/bjo.75.7.440. PubMed DOI PMC
Warren J.W. Catheter-associated urinary tract infection. Int. J. Antimicrob. Agents. 2001;17:299–303. doi: 10.1016/S0924-8579(00)00359-9. PubMed DOI
Rupp M.E., Archer G.L. Coagulase-negative staphylococci: Pathogens associated with medical progress. Clin. Infect. Dis. 1994;19:231–245. doi: 10.1093/clinids/19.2.231. PubMed DOI
Rupp M.E., Hamer K.E. Effect of subinhibitory concentrations of vancomycin, cefazolin, ofloxacin, L-ofloxacin and D-ofloxacin on adherence to intravascular catheters and biofilm formation by Staphylococcus epidermidis. J. Antimicrob. Chemother. 1998;41:155–161. doi: 10.1093/jac/41.2.155. PubMed DOI
Gallo J., Kolar M., Novotny R., Rihakova P., Ticha V.V. Pathogenesis of prosthesis-related infection. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech. Repub. 2003;147:27–35. doi: 10.5507/bp.2003.004. PubMed DOI
Ip D., Yam S.K., Chen C.K. Implications of the changing pattern of bacterial infections following total joint replacements. J. Orthop. Surg. 2005;13:125–130. PubMed
Riley L.W. Pandemic lineages of extraintestinal pathogenic Escherichia coli. Clin. Microbiol. Infect. 2014;20:380–390. doi: 10.1111/1469-0691.12646. PubMed DOI
Trofa D., Gácser A., Nosanchuk J.D. Candida parapsilosis, an emerging fungal pathogen. Clin. Microbiol. Rev. 2008;21:606–625. doi: 10.1128/CMR.00013-08. PubMed DOI PMC
Hattori H., Iwataa T., Nakagawa Y., Kawamoto F., Tomitaa Y., Kikuchi A., Kanbe T. Genotype analysis of Candida albicans isolates obtained from different body locations of patientswith superficial candidiasis using PCRs targeting 25S rDNA and ALT repeat sequences of the RPS. J. Dermatol. Sci. 2006;42:31–46. doi: 10.1016/j.jdermsci.2005.12.003. PubMed DOI
Lim C.S.Y., Rosli R., Seow H.F., Chong P.P. Candida and invasive candidiasis: Back to basics. Eur. J. Clin. Microbiol. Infect. Dis. 2012;31:21–31. doi: 10.1007/s10096-011-1273-3. PubMed DOI
Machová E., Fiačanová L., Čížová A., Korcová J. Mannoproteins from yeast and hyphal form of Candida albicans considerably differ in mannan and protein content. Carbohydr. Res. 2015;408:12–17. doi: 10.1016/j.carres.2015.03.001. PubMed DOI
Yan L., Yang C., Tang J. Disruption of the intestinal mucosal barrier in Candida albicans infections. Microbiol. Res. 2013;168:389–395. doi: 10.1016/j.micres.2013.02.008. PubMed DOI
Chandra J., Kuhn D.M., Mukherjee P.K., Hoyer L.L., McCormick T., Ghannoum M.A. Biofilm formation by the fungal pathogen Candida albicans: Development, architecture, and drug resistance. J. Bacteriol. 2001;183:5385–5394. doi: 10.1128/JB.183.18.5385-5394.2001. PubMed DOI PMC
Renishaws EasyConfocal Raman Method. Technology Note from the Spectroscopy Products Division. Renishaw PLC; Wotton-under-Edge, UK: 2003. SPD/TN/076; Issue 1.2.
De Maesschalck R., Jouan-Rimbaud D., Massart D.L. The Mahalanobis distance. Chemometr. Intell. Lab. 2000;50:1–18. doi: 10.1016/S0169-7439(99)00047-7. DOI
Nanometals incorporation into active and biodegradable chitosan films
Lecithin as an Effective Modifier of the Transport Properties of Variously Crosslinked Hydrogels
Microfluidic Cultivation and Laser Tweezers Raman Spectroscopy of E. coli under Antibiotic Stress