Raman microspectroscopy of individual algal cells: sensing unsaturation of storage lipids in vivo

. 2010 ; 10 (9) : 8635-51. [epub] 20100917

Jazyk angličtina Země Švýcarsko Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid22163676

Algae are becoming a strategic source of fuels, food, feedstocks, and biologically active compounds. This potential has stimulated the development of innovative analytical methods focused on these microorganisms. Algal lipids are among the most promising potential products for fuels as well as for nutrition. The crucial parameter characterizing the algal lipids is the degree of unsaturation of the constituent fatty acids quantified by the iodine value. Here we demonstrate the capacity of the spatially resolved Raman microspectroscopy to determine the effective iodine value in lipid storage bodies of individual living algal cells. The Raman spectra were collected from three selected algal species immobilized in an agarose gel. Prior to immobilization, the algae were cultivated in the stationary phase inducing an overproduction of lipids. We employed the characteristic peaks in the Raman scattering spectra at 1,656 cm(-1) (cis C═C stretching mode) and 1,445 cm(-1) (CH(2) scissoring mode) as the markers defining the ratio of unsaturated-to-saturated carbon-carbon bonds of the fatty acids in the algal lipids. These spectral features were first quantified for pure fatty acids of known iodine value. The resultant calibration curve was then used to calculate the effective iodine value of storage lipids in the living algal cells from their Raman spectra. We demonstrated that the iodine value differs significantly for the three studied algal species. Our spectroscopic estimations of the iodine value were validated using GC-MS measurements and an excellent agreement was found for the Trachydiscus minutus species. A good agreement was also found with the earlier published data on Botryococcus braunii. Thus, we propose that Raman microspectroscopy can become technique of choice in the rapidly expanding field of algal biotechnology.

Zobrazit více v PubMed

Field CB, Behrenfeld MJ, Randerson JT, Falkowski P. Production of the biosphere: integrating terrestrial and oceanic components. Science. 1998;281:237–240. PubMed

Schenk PM, Thomas-Hall SR, Stephens E, Marx UC, Mussgnug JH, Posten C, Kruse O, Hankamer B. Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenerg. Res. 2008;1:20–43.

Gouveia L, Marques AE, da Silva TL, Reis A. Neochloris oleabundans UTEX#1185: A suitable renewable lipid source for biofuel production. J. Ind. Microbiol. Biotechnol. 2009;36:821–826. PubMed

Gouveia L, Oliveira AC. Microalgae as a raw material for biofuels production. J. Ind. Microbiol. Biotechnol. 2009;36:269–274. PubMed

Cooper MS, Hardin WR, Petersen TW, Cattolico RA. Visualizing “green oil” in live algal cells. J. Biosci. Bioeng. 2010;109:198–201. PubMed

Chen W, Zhang C, Song L, Sommerfeld M, Hu Q. A high throughput Nile red method for quantitative measurement of neutral lipids in microalgae. J. Microbiol. Meth. 2009;77:41–47. PubMed

Maquelin K, Kirschner C, Choo-Smith LP, van den Braak N, Endtz HP, Naumann D, Puppels GJ. Identification of medically relevant microorganisms by vibrational spectroscopy. J. Microbiol. Meth. 2002;51:255–271. PubMed

Harz M, Rosch P, Peschke KD, Ronneberger O, Burkhardt H, Popp J. Micro-Raman spectroscopic identification of bacterial cells of the genus Staphylococcus and dependence on their cultivation conditions. Analyst. 2005;130:1543–1550. PubMed

Samek O, Al-Marashi JFM, Telle HH. The potential of Raman spectroscopy for the identification of biofilm formation by Staphylococcus epidermidis. Laser Phys. Lett. 2010;5:378–383.

De Gelder J, De Gussem K, Vandenabeele P, Moens L. Reference database of Raman spectra of biological molecules. J. Raman Spectrosc. 2007;38:1133–1147.

Notingher I. Raman spectroscopy cell-based biosensors. Sensors. 2007;7:1343–1358.

Downes A, Elfick A. Raman spectroscopy and related techniques in biomedicine. Sensors. 2010;10:1871–1889. PubMed PMC

Movasaghi Z, Rehman S, Rehman IU. Raman spectroscopy of biological tissues. Appl. Spectrosc. Rev. 2007;42:493–541.

Heraud P, Beardall J, McNaughton D, Wood BR. In vivo prediction of the nutrient status of individual microalgal cells using Raman microspectroscopy. FEMS Microbiol. Lett. 2007;275:24–30. PubMed

Heraud P, Wood BR, Beardall J, McNaughton D. Effect of pre-processing of Raman spectra on in vivo classification of nutrient status of microalgal cells. J. Chemometrics. 2006;20:193–197.

Huang YY, Beal CM, Cai WW, Ruoff RS, Terentjev EM. Micro-Raman spectroscopy of algae: Composition analysis and fluorescence background behavior. Biotechnol. Bioeng. 2010;105:889–898. PubMed

Řezanka T, Petránková M, Cepák V, Přibyl P, Sigler K, Cajthaml T. Trachydiscus minutus, a new biotechnological source of eicosapentaenoic acid. Folia Microbiol. 2010;55:265–269. PubMed

Tran HL, Hong SJ, Lee CG. Evaluation of extraction methods for recovery of fatty acids from Botryococcus braunii LB572 and Synechocystis sp. PCC 6803. Biotechnol. Bioprocess Eng. 2009;14:187–192.

Bailey GF, Horvat RJ. Raman spectroscopic analysis of the cis/trans isomer composition of edible vegetable oils. J. Am. Oil. Chem. Soc. 1972;49:494–498.

Sadeghi-Jorabchi H, Hendra PJ, Wilson RH, Belton PS. Determination of the total unsaturation in oils and margarines by Fourier Transform Raman spectroscopy. J. Am. Oil. Chem. Soc. 1990;67:483–486.

Ozaki Y, Cho R, Ikegaya K, Muraishi S, Kawauchi K. Potential of near-infrared Fourier Transform Raman spectroscopy in food analysis. Appl. Spectrosc. 1992;46:1503–1507.

Schober S, Mittelbach M. Iodine value and biodiesel: Is limitation still appropriate? Lipid Techn. 2007;19:281–284.

Setlik I. Contamination of algal cultures by heterotrophic microorganisms and its prevention. Ann Rep Algol Trebon. 1966:89–100.

Greenspan P, Mayer EP, Fowler SD. Nile red: A selective fluorescent stain for intracellular lipid droplets. J. Cell Biol. 1995;100:965–973. PubMed PMC

Elsey D, Jameson D, Raleigh B, Cooney MJ. Fluorescent measurement of microalgal neutral lipids. J. Microbiol. Meth. 2007;68:639–642. PubMed

McGinnis KM, Dempster TA, Sommerfeld MR. Characterization of the growth and lipid content of the diatom Chaetoceros muelleri. J. Appl. Phycol. 1997;9:19–24.

Jonas A, Jezek J, Sery M, Zemanek P. Raman microspectrometry of optically trapped micro- and nanoobjects. Proc. SPIE. 2008;7141:714111.

Inoue S. Foundations of confocal scanned imaging in light microscopy. In: Pawley JB, editor. Handbook of Biological Confocal Microscopy. 3rd ed. Springer Science; New York, NY, USA: 2006. pp. 1–19.

Thapper A, Mamedov F, Mokvist F, Hammarström L, Styring S. Defining the far-red limit of photosystem II in Spinach. Plant Cell. 2009;21:2391–2401. PubMed PMC

Brandt NN, Brovko OO, Chikishev AY, Paraschuk OD. Optimization of the rolling-circle filter for Raman background subtraction. Appl. Spectrosc. 2006;60:288–293. PubMed

Ham B, Shelton R, Butler B, Thionville P. Calculating the iodine Value for marine oils fatty acid profiles. J. Am. Oil. Chem. Soc. 1998;75:1445–1446.

Converti A, Casazza AA, Ortiz EY, Perego P, Del Borghi M. Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chem. Eng. Proc. 2009;48:1146–1151.

Liu ZY, Wang GC, Zhou BC. Effect of iron on growth and lipid accumulation in Chlorella vulgaris. Biores. Technol. 2008;99:4717–4722. PubMed

Dayanandaa C, Saradaa R, Ranib MU, Shamalab TR, Ravishankara GA. Autotrophic cultivation of Botryococcus braunii for the production of hydrocarbons and exopolysaccharides in various media. Biomass Bioenerg. 2007;31:87–93.

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Carotenoids dispersed in gypsum rock as a result of algae adaptation to the extreme conditions of the Atacama Desert

. 2024 Oct 13 ; 14 (1) : 23939. [epub] 20241013

Raman Spectroscopy-A Novel Method for Identification and Characterization of Microbes on a Single-Cell Level in Clinical Settings

. 2022 ; 12 () : 866463. [epub] 20220422

Use of Waste Substrates for the Lipid Production by Yeasts of the Genus Metschnikowia-Screening Study

. 2021 Nov 04 ; 9 (11) : . [epub] 20211104

The Use of Raman Spectroscopy to Monitor Metabolic Changes in Stressed Metschnikowia sp. Yeasts

. 2021 Jan 29 ; 9 (2) : . [epub] 20210129

Comparing Biochemical and Raman Microscopy Analyses of Starch, Lipids, Polyphosphate, and Guanine Pools during the Cell Cycle of Desmodesmus quadricauda

. 2021 Jan 03 ; 10 (1) : . [epub] 20210103

Microfluidic Cultivation and Laser Tweezers Raman Spectroscopy of E. coli under Antibiotic Stress

. 2018 May 18 ; 18 (5) : . [epub] 20180518

Rapid identification of staphylococci by Raman spectroscopy

. 2017 Nov 01 ; 7 (1) : 14846. [epub] 20171101

Quantitative Raman Spectroscopy Analysis of Polyhydroxyalkanoates Produced by Cupriavidus necator H16

. 2016 Oct 28 ; 16 (11) : . [epub] 20161028

Influence of Culture Media on Microbial Fingerprints Using Raman Spectroscopy

. 2015 Nov 24 ; 15 (11) : 29635-47. [epub] 20151124

Candida parapsilosis biofilm identification by Raman spectroscopy

. 2014 Dec 22 ; 15 (12) : 23924-35. [epub] 20141222

Algal biomass analysis by laser-based analytical techniques--a review

. 2014 Sep 23 ; 14 (9) : 17725-52. [epub] 20140923

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace