Raman microspectroscopy of individual algal cells: sensing unsaturation of storage lipids in vivo
Jazyk angličtina Země Švýcarsko Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
22163676
PubMed Central
PMC3231231
DOI
10.3390/s100908635
PII: s100908635
Knihovny.cz E-zdroje
- Klíčová slova
- Raman spectroscopy, algal cells, iodine value, lipids,
- MeSH
- analýza jednotlivých buněk metody MeSH
- biopaliva MeSH
- Chlorophyta chemie cytologie MeSH
- jod analýza MeSH
- mikrořasy chemie cytologie MeSH
- plynová chromatografie s hmotnostně spektrometrickou detekcí MeSH
- Ramanova spektroskopie metody MeSH
- reprodukovatelnost výsledků MeSH
- tuky nenasycené chemie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- biopaliva MeSH
- jod MeSH
- tuky nenasycené MeSH
Algae are becoming a strategic source of fuels, food, feedstocks, and biologically active compounds. This potential has stimulated the development of innovative analytical methods focused on these microorganisms. Algal lipids are among the most promising potential products for fuels as well as for nutrition. The crucial parameter characterizing the algal lipids is the degree of unsaturation of the constituent fatty acids quantified by the iodine value. Here we demonstrate the capacity of the spatially resolved Raman microspectroscopy to determine the effective iodine value in lipid storage bodies of individual living algal cells. The Raman spectra were collected from three selected algal species immobilized in an agarose gel. Prior to immobilization, the algae were cultivated in the stationary phase inducing an overproduction of lipids. We employed the characteristic peaks in the Raman scattering spectra at 1,656 cm(-1) (cis C═C stretching mode) and 1,445 cm(-1) (CH(2) scissoring mode) as the markers defining the ratio of unsaturated-to-saturated carbon-carbon bonds of the fatty acids in the algal lipids. These spectral features were first quantified for pure fatty acids of known iodine value. The resultant calibration curve was then used to calculate the effective iodine value of storage lipids in the living algal cells from their Raman spectra. We demonstrated that the iodine value differs significantly for the three studied algal species. Our spectroscopic estimations of the iodine value were validated using GC-MS measurements and an excellent agreement was found for the Trachydiscus minutus species. A good agreement was also found with the earlier published data on Botryococcus braunii. Thus, we propose that Raman microspectroscopy can become technique of choice in the rapidly expanding field of algal biotechnology.
Zobrazit více v PubMed
Field CB, Behrenfeld MJ, Randerson JT, Falkowski P. Production of the biosphere: integrating terrestrial and oceanic components. Science. 1998;281:237–240. PubMed
Schenk PM, Thomas-Hall SR, Stephens E, Marx UC, Mussgnug JH, Posten C, Kruse O, Hankamer B. Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenerg. Res. 2008;1:20–43.
Gouveia L, Marques AE, da Silva TL, Reis A. Neochloris oleabundans UTEX#1185: A suitable renewable lipid source for biofuel production. J. Ind. Microbiol. Biotechnol. 2009;36:821–826. PubMed
Gouveia L, Oliveira AC. Microalgae as a raw material for biofuels production. J. Ind. Microbiol. Biotechnol. 2009;36:269–274. PubMed
Cooper MS, Hardin WR, Petersen TW, Cattolico RA. Visualizing “green oil” in live algal cells. J. Biosci. Bioeng. 2010;109:198–201. PubMed
Chen W, Zhang C, Song L, Sommerfeld M, Hu Q. A high throughput Nile red method for quantitative measurement of neutral lipids in microalgae. J. Microbiol. Meth. 2009;77:41–47. PubMed
Maquelin K, Kirschner C, Choo-Smith LP, van den Braak N, Endtz HP, Naumann D, Puppels GJ. Identification of medically relevant microorganisms by vibrational spectroscopy. J. Microbiol. Meth. 2002;51:255–271. PubMed
Harz M, Rosch P, Peschke KD, Ronneberger O, Burkhardt H, Popp J. Micro-Raman spectroscopic identification of bacterial cells of the genus Staphylococcus and dependence on their cultivation conditions. Analyst. 2005;130:1543–1550. PubMed
Samek O, Al-Marashi JFM, Telle HH. The potential of Raman spectroscopy for the identification of biofilm formation by Staphylococcus epidermidis. Laser Phys. Lett. 2010;5:378–383.
De Gelder J, De Gussem K, Vandenabeele P, Moens L. Reference database of Raman spectra of biological molecules. J. Raman Spectrosc. 2007;38:1133–1147.
Notingher I. Raman spectroscopy cell-based biosensors. Sensors. 2007;7:1343–1358.
Downes A, Elfick A. Raman spectroscopy and related techniques in biomedicine. Sensors. 2010;10:1871–1889. PubMed PMC
Movasaghi Z, Rehman S, Rehman IU. Raman spectroscopy of biological tissues. Appl. Spectrosc. Rev. 2007;42:493–541.
Heraud P, Beardall J, McNaughton D, Wood BR. In vivo prediction of the nutrient status of individual microalgal cells using Raman microspectroscopy. FEMS Microbiol. Lett. 2007;275:24–30. PubMed
Heraud P, Wood BR, Beardall J, McNaughton D. Effect of pre-processing of Raman spectra on in vivo classification of nutrient status of microalgal cells. J. Chemometrics. 2006;20:193–197.
Huang YY, Beal CM, Cai WW, Ruoff RS, Terentjev EM. Micro-Raman spectroscopy of algae: Composition analysis and fluorescence background behavior. Biotechnol. Bioeng. 2010;105:889–898. PubMed
Řezanka T, Petránková M, Cepák V, Přibyl P, Sigler K, Cajthaml T. Trachydiscus minutus, a new biotechnological source of eicosapentaenoic acid. Folia Microbiol. 2010;55:265–269. PubMed
Tran HL, Hong SJ, Lee CG. Evaluation of extraction methods for recovery of fatty acids from Botryococcus braunii LB572 and Synechocystis sp. PCC 6803. Biotechnol. Bioprocess Eng. 2009;14:187–192.
Bailey GF, Horvat RJ. Raman spectroscopic analysis of the cis/trans isomer composition of edible vegetable oils. J. Am. Oil. Chem. Soc. 1972;49:494–498.
Sadeghi-Jorabchi H, Hendra PJ, Wilson RH, Belton PS. Determination of the total unsaturation in oils and margarines by Fourier Transform Raman spectroscopy. J. Am. Oil. Chem. Soc. 1990;67:483–486.
Ozaki Y, Cho R, Ikegaya K, Muraishi S, Kawauchi K. Potential of near-infrared Fourier Transform Raman spectroscopy in food analysis. Appl. Spectrosc. 1992;46:1503–1507.
Schober S, Mittelbach M. Iodine value and biodiesel: Is limitation still appropriate? Lipid Techn. 2007;19:281–284.
Setlik I. Contamination of algal cultures by heterotrophic microorganisms and its prevention. Ann Rep Algol Trebon. 1966:89–100.
Greenspan P, Mayer EP, Fowler SD. Nile red: A selective fluorescent stain for intracellular lipid droplets. J. Cell Biol. 1995;100:965–973. PubMed PMC
Elsey D, Jameson D, Raleigh B, Cooney MJ. Fluorescent measurement of microalgal neutral lipids. J. Microbiol. Meth. 2007;68:639–642. PubMed
McGinnis KM, Dempster TA, Sommerfeld MR. Characterization of the growth and lipid content of the diatom Chaetoceros muelleri. J. Appl. Phycol. 1997;9:19–24.
Jonas A, Jezek J, Sery M, Zemanek P. Raman microspectrometry of optically trapped micro- and nanoobjects. Proc. SPIE. 2008;7141:714111.
Inoue S. Foundations of confocal scanned imaging in light microscopy. In: Pawley JB, editor. Handbook of Biological Confocal Microscopy. 3rd ed. Springer Science; New York, NY, USA: 2006. pp. 1–19.
Thapper A, Mamedov F, Mokvist F, Hammarström L, Styring S. Defining the far-red limit of photosystem II in Spinach. Plant Cell. 2009;21:2391–2401. PubMed PMC
Brandt NN, Brovko OO, Chikishev AY, Paraschuk OD. Optimization of the rolling-circle filter for Raman background subtraction. Appl. Spectrosc. 2006;60:288–293. PubMed
Ham B, Shelton R, Butler B, Thionville P. Calculating the iodine Value for marine oils fatty acid profiles. J. Am. Oil. Chem. Soc. 1998;75:1445–1446.
Converti A, Casazza AA, Ortiz EY, Perego P, Del Borghi M. Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chem. Eng. Proc. 2009;48:1146–1151.
Liu ZY, Wang GC, Zhou BC. Effect of iron on growth and lipid accumulation in Chlorella vulgaris. Biores. Technol. 2008;99:4717–4722. PubMed
Dayanandaa C, Saradaa R, Ranib MU, Shamalab TR, Ravishankara GA. Autotrophic cultivation of Botryococcus braunii for the production of hydrocarbons and exopolysaccharides in various media. Biomass Bioenerg. 2007;31:87–93.
The Use of Raman Spectroscopy to Monitor Metabolic Changes in Stressed Metschnikowia sp. Yeasts
Microfluidic Cultivation and Laser Tweezers Raman Spectroscopy of E. coli under Antibiotic Stress
Rapid identification of staphylococci by Raman spectroscopy
Influence of Culture Media on Microbial Fingerprints Using Raman Spectroscopy
Candida parapsilosis biofilm identification by Raman spectroscopy
Algal biomass analysis by laser-based analytical techniques--a review