Algal biomass analysis by laser-based analytical techniques--a review

. 2014 Sep 23 ; 14 (9) : 17725-52. [epub] 20140923

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid25251409

Algal biomass that is represented mainly by commercially grown algal strains has recently found many potential applications in various fields of interest. Its utilization has been found advantageous in the fields of bioremediation, biofuel production and the food industry. This paper reviews recent developments in the analysis of algal biomass with the main focus on the Laser-Induced Breakdown Spectroscopy, Raman spectroscopy, and partly Laser-Ablation Inductively Coupled Plasma techniques. The advantages of the selected laser-based analytical techniques are revealed and their fields of use are discussed in detail.

Zobrazit více v PubMed

I.E.A IEA 2013 Key World Energy Statistics, 2013. [(accessed on 22 October 2013)]. Available online: http://www.iea.org/publications/freepublications/publication/KeyWorld2013_FINAL_WEB.pdf.

U.S. Department of Energy Energy Efficiency and Renewable Energy December 2007. [(accessed on 22 October 2013)]. Available online: http://www.nrel.gov/docs/fy08osti/42168.pdf.

Williams P.J.l.B., Laurens L.M.L. Microalgae as biodiesel & biomass feedstocks: Review & analysis of the biochemistry, energetics & economics. Energy Environ. Sci. 2010;3:554–590.

Sheehan J., Dunahay T., Benemann J., Roessler P. A Look back at the U.S. Department of Energy's Aquatic Species Program-Biodiesel from Algae. A National Laboratory of the U.S. Department of Energy; Golden, CO, USA: 1998.

Hannon M., Gimpel J., Tran M., Rasala B., Mayfield S. Biofuels from algae: Challenges and potential. Biofuels. 2010;1:763–784. PubMed PMC

Demirbas M.F. Biofuel from algae for sustainable development. Appl. Energy. 2011;88:3437–3480.

U.S. Department of Energy, Energy Efficiency & Renewable Energy, 2013. [(accessed on 1 October 2013)]. Available online: http://www1.eere.energy.gov/biomass/pdfs/algalbiofuels.pdf.

Chisti Y. Constraints to commercialization of algal fuels. J. Biotechnol. 2013;167:201–214. PubMed

Elliott L.G., Feehan C., Laurens L.M.L., Pienkos P.T., Darzins A., Posewitz M.C. Establishment of a bioenergy-focused microalgal culture collection. Algal Res. 2012;1:102–113.

Aguirre M., Bassi A., Saxena P. Engineering challenges in biodiesel production from microalgae. Crit. Rev. Biotechnol. 2013;33:293–308. PubMed

Simionato D., Basso S., Giacometti G.M., Morosinotto T. Optimization of light use efficiency for biofuel production in algae. Biophys. Chem. 2013;182:71–78. PubMed

Subhadra B.G. Sustainability of algal biofuel production using integrated renewable energy park (IREP) and algal biorefinery approach. Energy Policy. 2010;38:5892–5901.

Park J.B.K., Craggs R.J., Shilton A.N. Wastewater treatment high rate algal ponds for biofuel production. Biosource Technol. 2011;102:35–42. PubMed

Park J.B.K., Craggs R.J., Shilton A.N. Enhancing biomass energy yield from pilot-scale high rate algal ponds with recycling. Water Res. 2013;47:4422–4432. PubMed

Demirbas A. Use of algae as biofuel sources. Energy Convers. Manag. 2010;51:2738–2749.

Christenson L., Sims R. Production and harvesting of microalgae for wastewater treatment, biofuels, and biproducts. Biotechnol. Adv. 2011;29:686–702. PubMed

Rawat R.R., Kumar Mutanda T., Bux F. Dual role of microalgae: Phycoremediation of domestic wastewater and biomass production for sustainable biofuels production. Appl. Energy. 2011;88:3411–3424.

Davis T.A., Volesky B., Mucci A. A review of the biochemisty of heavy metal biosorption by brown algae. Water Res. 2003;37:4311–4330. PubMed

Durrieu C., Tran-Minh C. Optical algal biosensor using alkaline phosphatase for determination of heavy metals. Ecotoxicol. Environ. Saf. 2002;51:206–209. PubMed

Campanella L., Cubadda F., Sammanrtino M.P., Saoncella A. An algal biosensor for the monitoring of water toxicity in estaurine environments. Water Res. 2000;35:69–76. PubMed

Perez A.A., Farias S.S., Strobl A.M., Perez L.B., Lopez C.M., Pineiro A., Roses O., Fajardo M.A. Levels of essential and toxic elements in Porphyra columbina and Ulva sp. from San Jorge Gulf, Patagonia Argentina. Sci. Total Environ. 2007;376:51–59. PubMed

Cardozo K.H.M., Guaratini T., Barros M., Falcao V.R., Tonon A.P., Lopes N.P., Campos S., Torres M.A., Souza A.O., Colepicolo P., et al. Metabolites from algae with economical impact. Toxicol. Pharmacol. 2007;146:60–78. PubMed

Singh S., Kate B.N., Banerjee U.C. Bioactive compouds from cyanobacteria and microalgae: An overview. Crit. Rev. Biotechnol. 2005;25:73–95. PubMed

Blunt J.W., Copp B.R., Munro M.H.G., Northcote P.T., Prinsep M.R. Marine natural products. Nat. Prod. Rep. 2005;22:15–61. PubMed

Skjånes K., Rebours C., Lindblad P. Potential for green microalgae to produce hydrogen, pharmaceuticals and other high value products in a combined process. Crit. Rev. Biotechnol. 2013;33:172–215. PubMed PMC

Kim S.K., Thomas N.V., Li X. Anticancer compounds from marine macroalgae and their application as medical foods. Adv. Food Nutr. Res. 2011;64:213–224. PubMed

Kim S.K., Karadeniz F. Anti-HIV activity of extracts and compounds from marine algae. Adv. Food Nutr. Res. 2011;64:255–265. PubMed

Munkel R., Schmid-Staiger U., Werner A., Hirth T. Optimization of outdoor cultivation in flat panel airlift reactors for lipid production by Chlorella vulgaris. Biotechnol. Bioeng. 2013;110:2882–2893. PubMed

IBA, BIQ, Smart Material Houses, 2013. [(accessed on 22 October 2013)]. Available online: http://www.iba-hamburg.de/en/themes-projects/the-building-exhibition-within-the-building-exhibition/smart-material-houses/biq/projekt/biq.html.

Jaboyedoff M., Oppikofer T., Abellán A., Derron M.H., Loye A., Metzger R., Pedrazzini A. Use of LIDAR in landslide investigations: A review. Nat. Hazards. 2012;61:5–28.

Cracknell A.P., Hayes L. Introduction to Remote Sensing. 2nd ed. Taylor and Francis; London, UK: 2007.

Bazzani M., Cecchi G. Algae and mucillagine monitoring by fluorescence LIDAR experiments in field. Adv. Remote Sens. 1995;3:90–101.

Mumola P.B., Kim H.H. Remote sensing of marine plankton by dye laser induced fluorescence. Eng. Ocean Environ. 1972;72:204–207.

Martin F. Monitoring plant metabolism by 13C, 15N and 14N nuclear magnetic resonance spectroscopy. A review of the applications to algae, fungi, and higher plants. Plant Physiol. 1985;23:463–490.

Schneider B. In-vivo nuclear magnetic resonance spectroscopy of low-molecular-weight compounds in plant cells. Planta. 1997;203:1–8.

Ratcliffe R.G. In-vivo NMR studies of higher plants and algae. Adv. Bot. Res. 1994;20:43–123.

Pollesello P., Toffanin R., Murano E., Paoletti S., Rizzo R., Kvam B.J. Lipid extracts from different algal species: 1H- and 13C-NMR spectroscopic studies as a new tool to screen differences in the composition of fatty acids, sterols and carotenoids. J. Appl. Phycol. 1992;4:315–322.

Danielewicz M.A., Anderson L.A., Franz A.K. Triacylglycerol profiling of marine microalgae by mass spectrometry. J. Lipid Res. 2013;52:1–26. PubMed PMC

Vieler A., Wilhelm C., Goss R., Süβ R., Schiller J. The lipid composition of the unicellular green alga Chlamydomonas reinhardtii and the diatom Cyclotella meneghiniana. Chem. Phys. Lipids. 2007;150:143–155. PubMed

Wirth H., von Bergen M., Murugaiyan J., Rösler U., Stokowy T., Binder H. MALDI-typing of infectious algae of the genus Prototheca using SOM portraits. J. Microbiol. Methods. 2012;88:83–97. PubMed

Anastyuk S.D., Shevchenko N.M., Dmitrenok P.S., Zvyagintseva T.N. Structural similarities of fucoidans from brown algae Silvetia babingtonii and Fucus evanescens, determined by tandem MALDI-TOF mass spectrometry. Carbohydr. Res. 2012;358:78–81. PubMed

Samek O., Jonáš A., Pilát Z., Zemánek P., Nedbal L., Tříska J., Kotas P., Trtílek M. Raman microspectroscopy of individual algal cells: Sensing unsaturation of storage lipids in vivo. Sensors. 2010;10:8635–8651. PubMed PMC

Bailey G.F., Horvat R.J. Raman spectroscopic analysis of the cis/trans isomer coposition of edible vegetable oils. J. Am. Oil Chem. Soc. 1972;4:494–498.

Sadeghi-Jorabchi H., Hendra P.J., Wilson R.H., Belton P.S. Determination of the total unsaturation in oils and margarines by Fourier Transform Raman Spectroscopy. J. Am. Oil Chem. Soc. 1990;67:483–486.

Ozaki Y., Cho R., Ikegaya K., Muraishi S., Kawauchi K. Potential of near-infrared Fourier Transform Raman Spectroscopy in food analysis. Appl. Spectrosc. 1992;46:1503–1507.

Schober S., Mittelbach M. Iodine value and biodiesel: Is limitation still appropriate? Lipid Technol. 2007;17:281–284.

Gouveia L., Marques A.E., da Silva T.L., Reis A. Neochloris oleabundans: A suitable renewable lipid source for biofuel production. J. Ind. Microbiol. Biotechnol. 2009;36:821–826. PubMed

Gouveia L., Oliveira A.C. Microalgae as a raw material for biofuels production. J. Ind. Microbiol. Biotechnol. 2009;36:269–274. PubMed

Winefordner J.D., Gornushkin I.B., Correll T., Gibb E., Smith B.W., Omenetto N. Comparing several atomic spectrometric methods to the super stars: Special emphasis on laser induced breakdown spectrometry, LIBS, a future superstar. J. Anal. Atomic Spectrom. 2004;19:1061–1083.

Hetzinger S., Halfar J., Zack T., Gamboa G., Jacob D.E., Kunz B.E., Kronz A., Adey W., Lebednik P.A., Steneck R.S. High-Resolution analysis of trace elements in crustose coralline algae from the North Atlantic and North Pacific by laser ablation ICP-MS. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2011;302:81–94.

Halfar J., Hetzinger S., Adey W., Zack T., Gamboa G., Kunz B., Williams B., Jacob D.E. Coralline algal growth-increment widths archive North Atlantic climate variability. Palaeogeography. 2011;302:71–80.

Chan P., Halfar J., Williams B., Hetzinger S., Steneck R., Zack T., Jacob D.E. Freshening of the Alaska Coastal Current recorded by coralline algal Ba/Ca ratios. J. Geophys. Res. Biogeosc. 2011;116:2005–2012.

Gamboa G., Halfar J., Hetzinger S., Adey W., Zack T., Kunz B., Jacob D.E. Mg/Ca ratios in coralline algae record NW Atlantic temperature variations and NAO relationships. J. Geophys. Res. Oceans. 2010;115 doi: 10.1029/2010JC006262. DOI

Hetzinger S., Halfar J., Zack T., Mecking J.V., Kunz B.E., Jacob D.E., Adey W.H. Coralline algal Barium as indicator for 20th century northwestern North Atlantic surface ocean freshwater variability. Sci. Rep. 2013;3:1–8. PubMed PMC

Hetzinger S., Halfar J., Kronz A., Steneck S., Walter A., Lebednik P.A., Schöne B.R. High-resolution Mg/Ca rations in a coralline red algae as a proxy for Bering Sea temperature variations from 1902 to 1967. Soc. Sediment. Geol. 2009;24:406–412.

Hahn D.W., Omenetto N. Laser-Induced Breakdown Spectroscopy (LIBS), Part II: Review of instrumental and methodogical approaches to material analysis and applications to different fields. Appl. Spectrosc. 2012;66:347–419. PubMed

Wiens R.C., Sharma S.K., Thomson J., Misra A., Lucey P.G. Joint analysis by LIBS and Raman spectroscopy at stand-off distances. Spectroschim. Acta Part A. 2005;61:2324–2334. PubMed

Giakoumaki A., Osticioli I., Anglos D. Spectroscopic analysis using a hybrid LIBS-Raman system. Appl. Phys. A. 2006;83:537–541.

Hoehse M., Mory D., Florek S., Weritz F., Gornushkin I., Panne U. A combined laser-induced breakdown and Raman spectroscopy Echelle system for elemental and molecular microanalysis. Spectrochim. Acta Part B. 2009;64:1219–1227.

Pořízka P., Prochazka D., Pilát Z., Krajcarová L., Kaiser J., Malina R., Novotný J., Zemánek P., Ježek J., Šerý M., et al. Application of laser-induced breakdown spectroscopy to the analysis of algal biomass for industrial biotechnology. Spectrochim. Acta Part B. 2012;74–75:169–176.

Martens H., Naes T. Multivariate Calibration. John Wiley & Sons Ltd.; Chichester, UK: 1989.

Barker M., Rayens W. Partial least squares for discrimination. J. Chemom. 2003;17:166–173.

Cremers D.A., Radziemski L.J. Handbook of Laser-Induced Breakdown Spectroscopy. John Wiley & Sons, Ltd; New York, NY, USA: 2006.

Miziolek A.W., Palleschi V., Schechter I. Laser-Induced Breakdown Spectroscopy (LIBS): Fundamentals and Applications. Cambridge University Press; Cambridge, UK: 2006.

Noll R. Laser-Induced Breakdown Spectroscopy: Fundamentals and Applications. Springer-Verlag; Berlin/Heidelberg, Germany: 2012.

Hahn D.W., Omenetto N. Laser-Induced breakdown spectroscopy (LIBS), Part I: Review of basic diagnostics and plasma-particle interactions: Still-Challenging issues within the analytical plasma community. Appl. Spectrosc. 2010;64:335–366. PubMed

Aragón C., Aguilera J.A. Characterization of laser induced plasma by optical emission spectroscopy: A review of experiments and methods. Spectrochim. Acta Part B. 2008;63:893–916.

López-Moreno C., Palanco S., Laserna J.J. Remote laser-induced plasma spectrometry for elemental analysis of samples of environmental interest. J. Anal. Atomic Spectrom. 2004;19:1479–1484.

Fortes F.J., Laserna J.J. The development of fieldable laser-induced breakdown spectrometer: No limits on the horizon. Spectrochim. Acta Part B. 2010;65:975–990.

Gaudiuso R., Dell'Aglio M., de Pascale O., Senesi G.S., de Giacomo A. Laser induced breakdown spectroscopy for elemental analysis in environmental, culturar heritage and space applications: A review of methods and results. Sensors. 2010;10:7434–7468. PubMed PMC

Harmon R.S., Russo R.E., Hark R.R. Application of laser-induced breakdown spectroscopy for geochemical and environmental analysis: A comprehensive review. Spectrochim. Acta Part B. 2013;87:11–26.

Michel A.P.M. Review: Application of single-shot laser-induced breakdown spectroscopy. Spectrochim. Acta Part B. 2010;65:185–191.

Santos D., Jr., Nunes L.C., de Carvalho G.G.A., da Silva Gomes M., de Souza P.F., de Oliveira Leme F., Cofani dos Santos L.G., Krug F.J. Laser-Induced breakdown spectroscopy for analysis of plant materials: A review. Spectrochim. Acta Part B. 2012;71:3–13.

Kaiser J., Novotný K., Martin M.Z., Hrdlička A., Malina R., Hartl M., Adam V., Kizek R. Trace element analysis by laser-induced breakdown spectroscopy—Biological applications. Surf. Sci. Rep. 2012;67:233–243.

Rehse S.J., Salimnia H., Miziolek A.W. Laser-Induced breakdown spectroscopy (LIBS): An overview of recent progress and future potential for biomedical applications. J. Med. Eng. Technol. 2012;36:77–89. PubMed

Gurevich E.L., Hergenröder R. Femtosecond laser-induced breakdown spectroscopy: Physics, applications, and perspectives. Appl. Spectrosc. 2007;61:233–242. PubMed

Garcimuno M., Pace D.M.D., Bertuccelli G. Laser-Induced breakdown spectroscopy for quantitative analysis of copper in algae. Opt. Laser Technol. 2013;47:26–30.

Niu L., Cho H.H., Song K., Cha H., Kim Y., Lee Y.I. Direct determination of stroncium in marine algae samples by laser-induced breakdown spectrometry. Appl. Spectrosc. 2002;56:1511–1515.

Aguirre M.A., Legnaioli S., Almodóvar F., Hidalgo M., Palleschi V., Canals A. Elemental analysis by surface-enhanced Laser-Induced Breakdown Spectroscopy combined with liquid-liquid microexcitation. Spectrochim. Acta Part B. 2013;79:88–93.

Nakamura S., Ito Y., Sone K. Determination of an iron suspension in water by laser-induced breakdown spectroscopy with two sequential laser pulses. Anal. Chem. 1996;68:2981–2986. PubMed

Ito Y., Ueki O., Nakamura S. Determination of colloidal iron in water by laser-induced breakdown spectroscopy. Anal. Chim. Acta. 1995;299:401–405.

Samek O., Beddows D.C., Kaiser J., Kukhlevsky S.V., Liska M., Telle H.H., Whitehouse A.J. Application of laser-induced breakdown spectroscopy to in situ analysis of liquid samples. Opt. Eng. 2000;39:2248–2262.

Rai V.N., Yueh F.Y., Singh J.P. Study of laser-induced breakdown emission from liquid under double-pulse excitation. Appl. Opt. 2003;42:2094–2101. PubMed

Feng Y., Yang J., Fan J., Yao G., Ji X., Zhang X., Zheng X., Cui Z. Investigation of laser-induced breakdown spectroscopy of a liquid jet. Appl. Opt. 2010;49:70–74.

Cheri M.S., Tavassoli S.H. Quantitative analysis of toxic metals lead and cadmium in water jet by laser-induced breakdown spectroscopy. Appl. Opt. 2011;50:1227–1233. PubMed

Debras-Guédon J., Liodec N. De l'utilisation du faisceauissu d'un amplificateur á ondes lumineuses par émissioninduite par rayonnement (laser á rubis), comme source énergétique pour l'excitation des spectres d'émission des éléments. Comptes Rendus Hebdomadaires des séances de l'Académie des Sci. 1963;257:3336–3339.

Samuels A.C., DeLucia F.C., Jr., McNesby K.L., Miziolek A.W. Laser-Induced breakdown spectroscopy of bacterial spores, molds, pollens, and protein: Initial studies of discrimination potential. Appl. Opt. 2003;42:6205–6209. PubMed

Baudelet M., Guyon L., Yu J., Wolf J.P., Amodeo T., Fréjafon E., Laloi P. Femtosecond time-resolved laser-induced breakdown spectroscopy for detection and identification of bacteria: A comparison to the nanosecond regime. J. Appl. Phys. 2006;99:84701–84709.

Doucet F.R., Faustino P.J., Sabsabi M., Lyon R.C. Quantitative molecular analysis with molecular bands emission using laser-induced breakdown spectroscopy and chemometrics. J. Anal. At. Spectrom. 2008;23:694–701.

Kongbonga Y.G.M., Ghalila H., Onana M.B., Lakhdar Z.B. Classification of vegetable oils based on their concentration of saturated fatty acids using laser induced breakdown spectroscopy (LIBS) Food Chem. 2013;147:327–331. PubMed

Locke R.J., Morris J.B., Forch B.E., Miziolek A.W. Ultraviolet laser microplasma-gas chromatography detector:detection of species-specific fragment emission. Appl. Opt. 1990;29:4987–4991. PubMed

St-Onge L., Sing R., Béchard S., Sabsabi M. Carbon emission following 1.064 μm laser ablation of graphite and organic samples in ambient air. Appl. Phys. A. 1999;69:913–916.

Morel S., Leone N., Adam P., Amouroux J. Detection of bacteria by time-resolved laser-induced breakdown spectroscopy. Appl. Opt. 2003;42:6184–6191. PubMed

Guyon L., Baudelet M., Yu J., Wolf J.P., Amodeo T., Fréjafon E., Laloi P. Laser-Induced breakdown spectroscopy analysis of bacteria: What femtosecond lasers make possible. Chem. Phys. 2007;2007:193–195.

Berman L., Wolf P.J. Laser-Induced breakdown spectroscopy of liquids: Aqueous solutions of nickel and chlorinated hydrocarbons. Appl. Spectrosc. 1998;52:438–443.

Rodenas de la Rocha S., Sanchez-Muniz F.J., Gomez-Juaristi M., Larrea Marin M.T. Trace elements determination in edible seaweeds by an optimized and validated ICP-MS method. J. Food Compos. Anal. 2009;22:330–336.

Larrea Marin M.T., Pomares-Alfonso M.S., Gomez-Juaristi M., Sanchez-Muniz F.J., Rodenas de la Rocha S. Validation of an ICP-OES method for macro and trace element determination in Laminaria and Porphyra seaweeds from four different countries. J. Food Compos. Anal. 2010;23:814–820.

Moreda-Pineiro J., Alonso-Rodriguez E., Lopez-Mahia P., Muniategui-Lorenzo S., Prada-Rodriguez D., Moreda-Pineiro A., Bermejo-Barrera P. Development of a new sample pre-treatment procedure based on pressurized liquid extraction for the determination of metals in edible seaweed. Anal. Chim. Acta. 2007;598:95–102. PubMed

Subba Rao P.V., Mantri V.A., Ganesan K. Mineral composition of edible seaweed Porphyra vietnamensis. Food Chem. 2007;102:215–218.

Pena-Harfal C., Moreda-Pineiro A., Bermejo-Barrera A., Bermejo-Barrera P., Pinochet-Cancino H., Gregori-Henriquez I. Speeding up enzymatic hydrolysis procedures for the multi-element determination in edible seaweed. Anal. Chim. Acta. 2005;548:183–191.

Michalak I., Chojnacka K. Multielemental analysis of macroalgae from Baltic Sea by ICP-OES to monitoring environmental pollution and assess their potential uses. Int. J. Environ. Anal. Chem. 2009;89:583–596.

Van Netten C., Hoption Cann S.A., Morley D.R., van Netten J.P. Elemental and radioactive analysis of commercially available seaweed. Sci. Total Environ. 2000;255:169–175. PubMed

West G.B., Brown J.H., Enquist B.J. A general model for ontogenetic growth. Nature. 2001;413:628–631. PubMed

Čižmár T., Brzobohatý O., Dholakia K., Zemánek P. The holographic optical micro-manipulation system based on counter-propagating beams. Laser Phys. Lett. 2011;8:50–56.

Vlasova I.M., Saletsky A.M. Investigation of denaturation of human serum albumin under action of cethyltrimethylammonium bromide by raman spectroscopy. Laser Phys. 2011;21:239–244.

Gen D.E., Chernyshov K.B., Prokhorov K.A., Nikolaeva G.Y., Sagitova E.A., Pashinin P.P., Kovalchuk A.A., Klyamkina A.N., Nedorezova P.M., Optov V.A., et al. Polarized Raman study of random copolymers of propylene with olefins. Laser Phys. 2010;20:1354–1367.

Lademan J., Caspers P.J., van der Pol A., Richter H., Patzelt A., Zastrow L., Darvin M., Sterry W., Fluhr J.W. In vivo Raman spectroscopy detects increased epidermal antioxidative potential with topically applied carotenoids. Laser Phys. Lett. 2009;6:76–79.

Sturm M., Schlösser M., Lewis R.J., Bornschein B., Drexlin G., Telle H.H. Monitoring of all hydrogen isotopologues at tritium laboratory Karlsruhe using Raman spectroscopy. Laser Phys. 2010;20:493–507.

Samek O., Al-Marashi J.F.M., Telle H.H. The potential of Raman spectroscopy for the identification of biofilm formation by Staphylococcus epidermidis. Laser Phys. Lett. 2010;7:378–383.

Samek O., Zemánek P., Jonáš A., Telle H.H. Characterization of oil-producing microalgae using Raman spectroscopy. Laser Phys. Lett. 2011;8:701–709.

Jonáš A., Zemánek P. Light at work: The use of optical forces for particle manipulation, sorting, and analysis. Electrophoresis. 2008;29:4813–4851. PubMed

Petrov D.V. Raman. spectroscopy of optically trapped particles. J. Opt. 2007;9:139–156.

Pilát Z., Ježek J., Šerý M., Trtílek M., Nedbal L., Zemánek P. Optical trapping of microalgae at 735–1064 nm: Photodamage assessment. J. Photochem. Photobiol. B Biol. 2013;121:27–31. PubMed

Kundu P.P., Narayana C. Raman based imaging in biological application—A perspective. J. Med. Allied Sci. 2012;2:41–48.

Matousek P., Stone N. Emerging concepts in deep Raman spectroscopy of biological tissue. Analyst. 2009;134:1058–1066. PubMed

Downes A., Elfick A. Raman spectroscopy and related techniques in biomedicine. Sensors. 2010;10:1871–1889. PubMed PMC

Movasaghi Z., Rehman S., Rehman I.U. Raman spectroscopy of biological tissues. Appl. Spectrosc. 2007;42:493–541.

Notingher I. Raman spectroscopy cell-based biosensors. Sensors. 2007;7:1343–1358.

Parab N.D.T., Tomar V. Raman spectroscopy of algae: A review. J. Nanomed. Nanotechnol. 2012;3:131–138.

Samek O., Zemánek P., Bernatová S., Pilát Z., Telle H.H. Following lipids in the food chain: Determination of the iodine value using Raman micro-spectroscopy. Spectrosc. Eur. 2012;24:22–25.

Brahma S.K., Hargraves P.E., Howard W.F., Jr., Nelson W.H. A Resonance raman method for the rapid detection and indentification of algae in water. Appl. Spectrosc. 1983;37:55–58.

Heraud P., Wood B.R., Beardall J., McNaughton D. Effects of pre-processing of Raman spectra on in vivo classification of nutrient status of microalgal cells. J. Chemom. 2006;20:193–197.

Huang Y.Y., Beal C.M., Cai W.W., Ruoff R.S., Terentjev E.M. Micro-Raman spectroscopy of algae: Composition analysis and fluorescence backgroud behavior. Biotechnol. Bioeng. 2010;105:889–898. PubMed

Weiss T.L., Chun H.J., Okada S., Vitha S., Holzenburg A., Laane J., Devarenne T.P. Raman spectroscopy analysis of botryococcene hydrocarbons from the green microalga Botryococcus braunii. J. Biol. Chem. 2010;285:32458–32466. PubMed PMC

Wu H., Volponi J.V., Oliver A.E., Parikh A.N., Simmons B.A., Singh S. In vivo lipidomics using single-cell Raman spectroscopy. Proc. Natl. Acad. Sci. USA. 2011;108:3809–3814. PubMed PMC

Heraud P., Beardall J., McNaughton D., Wood B.R. In vivo prediction of the nutrient status of individual microalgal cells using Raman microspectroscopy. FEMS Microbiol. Lett. 2007;275:24–30. PubMed

Pilát Z., Bernátová S., Ježek J., Šerý M., Samek O., Zemánek P., Nedbal L., Trtílek M. Raman microspectroscopy of algal lipid bodies: Beta-Carotene quantification. J. Appl. Phycol. 2012;24:541–546.

Zbikowski R., Szefer P., Latala A. Comparison of green algae Cladophora sp. and Enteromorpha sp. as potential biomonitors of chemical elements in the southern Baltic. Sci. Total Environ. 2007;387:320–337. PubMed

Heraud P., Stojkovic S., Beardall J., McNaughton D., Wood B.R. Intercolonial variability in macromolecular composition in p-starved and p-replete scedesmus populations revealed by infrared microspectroscopy. J. Phycol. 2008;44:1335–1339. PubMed

Laurens L.M.L., Wolfrum E.J. Feasibility of spectroscopic characterization of algal lipids: Chemometric correlation of NIR and FTIR spectra with exogenous lipids in algal biomass. Bioenergy Res. 2011;4:22–35.

Salomonsen T., Jensen H.M., Stenbæk D., Engelsen S.B. Chemometric prediction of alginate monomer composition: A comparative spectroscopic study using IR, Raman, NIR and NMR. Carbohydr. Polym. 2008;72:730–739.

Multari R.A., Cremers D.A., Dupre J.M., Gustafson J.E. The use of laser-induced breakdown spectroscopy for distinguishing between bacterial pathogen species and strains. Appl. Spectrosc. 2010;64:750–759. PubMed PMC

Kim T., Specht Z.G., Vary P.S., Lin C.T. Spectral fingerprints of bacterial strains by laser-induced breakdown spectroscopy. J. Phys. Chem. B. 2004;108:5477–5482.

Diedrich J., Rehse S.J., Palchaudhuri S. Pathogenic Escherichia coli strain discrimination using laser-induced breakdown spectroscopy. J. Appl. Phys. 2007;102:014702–014708.

Rehse S.J., Jeyasingham N., Diedrich J., Palchaudhuri S. A membrane basis for bacterial identification and discrimination using laser-induced breakdown spectroscopy. J. Appl. Phys. 2009;105:1–13.

SOM Toolbox team, Helsinki University of Technology. Mar 23, 2005. [(accessed on 1 November 2013)]. Available online: http://www.cis.hut.fi/somtoolbox/

Ollila A.M., Lasue J., Newson H.E., Multari R.A., Wiens R.C., Clegg S.M. Comparison of two partial least squares-discriminant analysis algorithms for identifying geological samples with the ChemCam laser-induced breakdown spectroscopy instrument. Appl. Opt. 2012;51:130–142. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...