MS-DIAL 5 multimodal mass spectrometry data mining unveils lipidome complexities
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
21K18216, 24K02011, 24H00043, 24H00392, 24K21269
MEXT | Japan Society for the Promotion of Science (JSPS)
21wm0325036h0001, JP15dm0207001
Japan Agency for Medical Research and Development (AMED)
JPMJER2101
MEXT | JST | Exploratory Research for Advanced Technology (ERATO)
JPMJND2305
MEXT | JST | National Bioscience Database Center (NBDC)
PubMed
39609386
PubMed Central
PMC11605090
DOI
10.1038/s41467-024-54137-w
PII: 10.1038/s41467-024-54137-w
Knihovny.cz E-zdroje
- MeSH
- data mining * metody MeSH
- fosfatidylcholiny metabolismus chemie MeSH
- HeLa buňky MeSH
- hmotnostní spektrometrie metody MeSH
- lidé MeSH
- lipidomika * metody MeSH
- lipidy chemie analýza MeSH
- metabolomika metody MeSH
- nenasycené mastné kyseliny metabolismus chemie MeSH
- software MeSH
- tandemová hmotnostní spektrometrie metody MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- fosfatidylcholiny MeSH
- lipidy MeSH
- nenasycené mastné kyseliny MeSH
Lipidomics and metabolomics communities comprise various informatics tools; however, software programs handling multimodal mass spectrometry (MS) data with structural annotations guided by the Lipidomics Standards Initiative are limited. Here, we provide MS-DIAL 5 for in-depth lipidome structural elucidation through electron-activated dissociation (EAD)-based tandem MS and determining their molecular localization through MS imaging (MSI) data using a species/tissue-specific lipidome database containing the predicted collision-cross section values. With the optimized EAD settings using 14 eV kinetic energy, the program correctly delineated lipid structures for 96.4% of authentic standards, among which 78.0% had the sn-, OH-, and/or C = C positions correctly assigned at concentrations exceeding 1 μM. We showcased our workflow by annotating the sn- and double-bond positions of eye-specific phosphatidylcholines containing very-long-chain polyunsaturated fatty acids (VLC-PUFAs), characterized as PC n-3-VLC-PUFA/FA. Using MSI data from the eye and n-3-VLC-PUFA-supplemented HeLa cells, we identified glycerol 3-phosphate acyltransferase as an enzyme candidate responsible for incorporating n-3 VLC-PUFAs into the sn1 position of phospholipids in mammalian cells, which was confirmed using EAD-MS/MS and recombinant proteins in a cell-free system. Therefore, the MS-DIAL 5 environment, combined with optimized MS data acquisition methods, facilitates a better understanding of lipid structures and their localization, offering insights into lipid biology.
Department of Medical Biochemistry Oslo University Hospital Sognsvannsveien 20 0372 Oslo Norway
Graduate School of Medical Life Science Yokohama City University Yokohama Japan
Graduate School of Pharmaceutical Sciences Keio University Minato ku Tokyo 105 8512 Japan
Innovative Technology Laboratories AGC Inc 1 1 Suehiro cho Tsurumi ku Yokohama 230 0045 Japan
K K ABSciex Japan Shinagawa Tokyo 140 0001 Japan
RIKEN Center for Brain Science 2 1 Hirosawa Wako Saitama 351 0106 Japan
Shimadzu Corporation 1 Nishinokyo Kuwabara cho Nakagyo ku Kyoto 604 8511 Japan
Zobrazit více v PubMed
Rakusanova, S., Fiehn, O. & Cajka, T. Toward building mass spectrometry-based metabolomics and lipidomics atlases for biological and clinical research. Trac-Trend Anal. Chem.158, 116825 (2023).
Liebisch, G. et al. Update on LIPID MAPS classification, nomenclature, and shorthand notation for MS-derived lipid structures. J. Lipid Res.61, 1539–1555 (2020). PubMed PMC
Baba, T., Campbell, J. L., Le Blanc, J. C. Y., Baker, P. R. S. & Ikeda, K. Quantitative structural multiclass lipidomics using differential mobility: electron impact excitation of ions from organics (EIEIO) mass spectrometry. J. Lipid Res.59, 910–919 (2018). PubMed PMC
Shi, H. X. et al. Visible-Light Paterno-Buchi Reaction for Lipidomic Profiling at Detailed Structure Levels. Anal. Chem.95, 5117–5125 (2023). PubMed
Brodbelt, J. S., Morrison, L. J. & Santos, I. Ultraviolet Photodissociation Mass Spectrometry for Analysis of Biological Molecules. Chem. Rev.120, 3328–3380 (2020). PubMed PMC
Menzel, J. P. et al. Ozone-enabled fatty acid discovery reveals unexpected diversity in the human lipidome. Nat. Commun.14, 3940 (2023). PubMed PMC
Uchino, H., Tsugawa, H., Takahashi, H. & Arita, M. Computational mass spectrometry accelerates C = C position-resolved untargeted lipidomics using oxygen attachment dissociation. Commun. Chem.5, 162 (2022). PubMed PMC
Djambazova, K. V. et al. Resolving the Complexity of Spatial Lipidomics Using MALDI TIMS Imaging Mass Spectrometry. Anal. Chem.92, 13290–13297 (2020). PubMed
Ni, Z. X. et al. Guiding the choice of informatics software and tools for lipidomics research applications. Nat. Methods20, 193–204 (2023). PubMed PMC
Tsugawa, H. et al. A lipidome atlas in MS-DIAL 4. Nat. Biotechnol.38, 1159–1163 (2020). PubMed
Li, Y. et al. Spectral entropy outperforms MS/MS dot product similarity for small-molecule compound identification. Nat. Methods18, 1524–1531 (2021). PubMed PMC
Watrous, J. et al. Mass spectral molecular networking of living microbial colonies. P Natl Acad. Sci. USA109, E1743–E1752 (2012). PubMed PMC
Demarque, D. P., Crotti, A. E. M., Vessecchi, R., Lopes, J. L. C. & Lopes, N. P. Fragmentation reactions using electrospray ionization mass spectrometry: an important tool for the structural elucidation and characterization of synthetic and natural products. Nat. Prod. Rep.33, 432–455 (2016). PubMed
Gross, M. L. Charge-Remote Fragmentations - Method, Mechanism and Applications. Int J. Mass Spectrom.118, 137–165 (1992).
Zhang, W. et al. Online photochemical derivatization enables comprehensive mass spectrometric analysis of unsaturated phospholipid isomers. Nat. Commun.10, 79 (2019). PubMed PMC
Marshall, D. L. et al. Mapping Unsaturation in Human Plasma Lipids by Data-Independent Ozone-Induced Dissociation. J. Am. Soc. Mass Spectrom.30, 1621–1630 (2019). PubMed
Ma, X. et al. Identification and quantitation of lipid C=C location isomers: A shotgun lipidomics approach enabled by photochemical reaction. Proc. Natl. Acad. Sci. USA113, 2573–2578 (2016). PubMed PMC
Paine, M. R. L. et al. Mass Spectrometry Imaging with Isomeric Resolution Enabled by Ozone-Induced Dissociation. Angew. Chem. Int Ed. Engl.57, 10530–10534 (2018). PubMed PMC
Michael, J. A. et al. Deep Characterisation of the sn-Isomer Lipidome Using High-Throughput Data-Independent Acquisition and Ozone-Induced Dissociation. Angew. Chem. Int Ed. Engl.63, e202316793 (2024). PubMed
Yeboah, G. K., Lobanova, E. S., Brush, R. S. & Agbaga, M. P. Very long chain fatty acid-containing lipids: a decade of novel insights from the study of ELOVL4. J. Lipid Res.62, 100030 (2021). PubMed PMC
Aveldano, M. I. Phospholipid species containing long and very long polyenoic fatty acids remain with rhodopsin after hexane extraction of photoreceptor membranes. Biochemistry27, 1229–1239 (1988). PubMed
Kuroha, S. et al. Long chain acyl-CoA synthetase 6 facilitates the local distribution of di-docosahexaenoic acid- and ultra-long-chain-PUFA-containing phospholipids in the retina to support normal visual function in mice. Faseb J.37, e23151 (2023). PubMed
Yu, J. et al. Update on glycerol-3-phosphate acyltransferases: the roles in the development of insulin resistance. Nutr. Diab.8, 34 (2018). PubMed PMC
Takeda, H. et al. Production of monoclonal antibodies against GPCR using cell-free synthesized GPCR antigen and biotinylated liposome-based interaction assay. Sci. Rep.-Uk5, 11333 (2015). PubMed PMC
Tsugawa, H. et al. MS-DIAL: data-independent MS/MS deconvolution for comprehensive metabolome analysis. Nat. Methods12, 523–526 (2015). PubMed PMC
Kessner, D., Chambers, M., Burke, R., Agusand, D. & Mallick, P. ProteoWizard: open source software for rapid proteomics tools development. Bioinformatics24, 2534–2536 (2008). PubMed PMC
Meier, F. et al. diaPASEF: parallel accumulation-serial fragmentation combined with data-independent acquisition. Nat. Methods17, 1229–1236 (2020). PubMed
Elapavalore, A. et al. Adding open spectral data to MassBank and PubChem using open source tools to support non-targeted exposomics of mixtures. Environ. Sci.-Proc. Imp.25, 1788–1801 (2023). PubMed PMC
Wang, F. et al. CFM-ID 4.0: More Accurate ESI-MS/MS Spectral Prediction and Compound Identification. Anal. Chem.93, 11692–11700 (2021). PubMed PMC
Tsugawa, H. et al. A cheminformatics approach to characterize metabolomes in stable-isotope-labeled organisms. Nat. Methods16, 295–298 (2019). PubMed
Feunang, Y. D. et al. ClassyFire: automated chemical classification with a comprehensive, computable taxonomy. J. Cheminformatics8, 61 (2016). PubMed PMC
McDonald, J. G. et al. Introducing the Lipidomics Minimal Reporting Checklist. Nat. Metab.4, 1086–1088 (2022). PubMed
Morowvat, M. H., Rasoul-Amini, S. & Ghasemi, Y. as a “new” organism for biodiesel production. Bioresour. Technol.101, 2059–2062 (2010). PubMed
Tanaka, T. et al. Oil Accumulation by the Oleaginous Diatom as Revealed by the Genome and Transcriptome. Plant Cell27, 162–176 (2015). PubMed PMC
Tsugawa, H. et al. A lipidome landscape of aging in mice. Nat. Aging4, 709–726 (2024). PubMed
Tokiyoshi, K. et al. Using Data-Dependent and -Independent Hybrid Acquisitions for Fast Liquid Chromatography-Based Untargeted Lipidomics. Anal. Chem.96, 991–996 (2024). PubMed
Takeda, H. et al. A procedure for solid-phase extractions using metal-oxide-coated silica column in lipidomics. Analy. Chem. 96, 17065–17070 (2024). PubMed
Lee, J. W., Nishiumi, S., Yoshida, M., Fukusaki, E. & Bamba, T. Simultaneous profiling of polar lipids by supercritical fluid chromatography/tandem mass spectrometry with methylation. J. Chromatogr. A1279, 98–107 (2013). PubMed
Wendel, A. A., Cooper, D. E., Ilkayeva, O. R., Muoio, D. M. & Coleman, R. A. Glycerol-3-phosphate acyltransferase (GPAT)-1, but not GPAT4, incorporates newly synthesized fatty acids into triacylglycerol and diminishes fatty acid oxidation. J. Biol. Chem.288, 27299–27306 (2013). PubMed PMC