MS-DIAL 5 multimodal mass spectrometry data mining unveils lipidome complexities

. 2024 Nov 28 ; 15 (1) : 9903. [epub] 20241128

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid39609386

Grantová podpora
21K18216, 24K02011, 24H00043, 24H00392, 24K21269 MEXT | Japan Society for the Promotion of Science (JSPS)
21wm0325036h0001, JP15dm0207001 Japan Agency for Medical Research and Development (AMED)
JPMJER2101 MEXT | JST | Exploratory Research for Advanced Technology (ERATO)
JPMJND2305 MEXT | JST | National Bioscience Database Center (NBDC)

Odkazy

PubMed 39609386
PubMed Central PMC11605090
DOI 10.1038/s41467-024-54137-w
PII: 10.1038/s41467-024-54137-w
Knihovny.cz E-zdroje

Lipidomics and metabolomics communities comprise various informatics tools; however, software programs handling multimodal mass spectrometry (MS) data with structural annotations guided by the Lipidomics Standards Initiative are limited. Here, we provide MS-DIAL 5 for in-depth lipidome structural elucidation through electron-activated dissociation (EAD)-based tandem MS and determining their molecular localization through MS imaging (MSI) data using a species/tissue-specific lipidome database containing the predicted collision-cross section values. With the optimized EAD settings using 14 eV kinetic energy, the program correctly delineated lipid structures for 96.4% of authentic standards, among which 78.0% had the sn-, OH-, and/or C = C positions correctly assigned at concentrations exceeding 1 μM. We showcased our workflow by annotating the sn- and double-bond positions of eye-specific phosphatidylcholines containing very-long-chain polyunsaturated fatty acids (VLC-PUFAs), characterized as PC n-3-VLC-PUFA/FA. Using MSI data from the eye and n-3-VLC-PUFA-supplemented HeLa cells, we identified glycerol 3-phosphate acyltransferase as an enzyme candidate responsible for incorporating n-3 VLC-PUFAs into the sn1 position of phospholipids in mammalian cells, which was confirmed using EAD-MS/MS and recombinant proteins in a cell-free system. Therefore, the MS-DIAL 5 environment, combined with optimized MS data acquisition methods, facilitates a better understanding of lipid structures and their localization, offering insights into lipid biology.

Department of Applied Biological Science Tokyo University of Agriculture and Technology 3 5 8 Saiwai cho Fuchu Tokyo 183 8509 Japan

Department of Biotechnology and Life Science Tokyo University of Agriculture and Technology 2 24 16 Naka cho Koganei shi Tokyo 184 8588 Japan

Department of Medical Biochemistry Oslo University Hospital Sognsvannsveien 20 0372 Oslo Norway

Faculty of Medicine and Dentistry Palacký University Olomouc Hněvotínská 3 779 00 Olomouc Czech Republic

Graduate School of Medical Life Science Yokohama City University Yokohama Japan

Graduate School of Pharmaceutical Sciences Keio University Minato ku Tokyo 105 8512 Japan

Innovative Technology Laboratories AGC Inc 1 1 Suehiro cho Tsurumi ku Yokohama 230 0045 Japan

Institut de Pharmacologie Moléculaire et Cellulaire Université Côte d'Azur CNRS UMR7275 Inserm U1323 660 Route des Lucioles 06560 Valbonne France

Institute of Global Innovation Research Tokyo University of Agriculture and Technology 2 24 16 Naka cho Koganei shi Tokyo 184 8588 Japan

K K ABSciex Japan Shinagawa Tokyo 140 0001 Japan

Laboratory for Inherited Metabolic Disorders Department of Clinical Biochemistry University Hospital Olomouc Zdravotníků 248 7 779 00 Olomouc Czech Republic

RIKEN Center for Brain Science 2 1 Hirosawa Wako Saitama 351 0106 Japan

RIKEN Center for Integrative Medical Sciences 1 7 22 Suehiro cho Tsurumi ku Yokohama Kanagawa 230 0045 Japan

RIKEN Center for Sustainable Resource Science 1 7 22 Suehiro cho Tsurumi ku Yokohama Kanagawa 230 0045 Japan

Shimadzu Corporation 1 Nishinokyo Kuwabara cho Nakagyo ku Kyoto 604 8511 Japan

Zobrazit více v PubMed

Rakusanova, S., Fiehn, O. & Cajka, T. Toward building mass spectrometry-based metabolomics and lipidomics atlases for biological and clinical research. Trac-Trend Anal. Chem.158, 116825 (2023).

Liebisch, G. et al. Update on LIPID MAPS classification, nomenclature, and shorthand notation for MS-derived lipid structures. J. Lipid Res.61, 1539–1555 (2020). PubMed PMC

Baba, T., Campbell, J. L., Le Blanc, J. C. Y., Baker, P. R. S. & Ikeda, K. Quantitative structural multiclass lipidomics using differential mobility: electron impact excitation of ions from organics (EIEIO) mass spectrometry. J. Lipid Res.59, 910–919 (2018). PubMed PMC

Shi, H. X. et al. Visible-Light Paterno-Buchi Reaction for Lipidomic Profiling at Detailed Structure Levels. Anal. Chem.95, 5117–5125 (2023). PubMed

Brodbelt, J. S., Morrison, L. J. & Santos, I. Ultraviolet Photodissociation Mass Spectrometry for Analysis of Biological Molecules. Chem. Rev.120, 3328–3380 (2020). PubMed PMC

Menzel, J. P. et al. Ozone-enabled fatty acid discovery reveals unexpected diversity in the human lipidome. Nat. Commun.14, 3940 (2023). PubMed PMC

Uchino, H., Tsugawa, H., Takahashi, H. & Arita, M. Computational mass spectrometry accelerates C = C position-resolved untargeted lipidomics using oxygen attachment dissociation. Commun. Chem.5, 162 (2022). PubMed PMC

Djambazova, K. V. et al. Resolving the Complexity of Spatial Lipidomics Using MALDI TIMS Imaging Mass Spectrometry. Anal. Chem.92, 13290–13297 (2020). PubMed

Ni, Z. X. et al. Guiding the choice of informatics software and tools for lipidomics research applications. Nat. Methods20, 193–204 (2023). PubMed PMC

Tsugawa, H. et al. A lipidome atlas in MS-DIAL 4. Nat. Biotechnol.38, 1159–1163 (2020). PubMed

Li, Y. et al. Spectral entropy outperforms MS/MS dot product similarity for small-molecule compound identification. Nat. Methods18, 1524–1531 (2021). PubMed PMC

Watrous, J. et al. Mass spectral molecular networking of living microbial colonies. P Natl Acad. Sci. USA109, E1743–E1752 (2012). PubMed PMC

Demarque, D. P., Crotti, A. E. M., Vessecchi, R., Lopes, J. L. C. & Lopes, N. P. Fragmentation reactions using electrospray ionization mass spectrometry: an important tool for the structural elucidation and characterization of synthetic and natural products. Nat. Prod. Rep.33, 432–455 (2016). PubMed

Gross, M. L. Charge-Remote Fragmentations - Method, Mechanism and Applications. Int J. Mass Spectrom.118, 137–165 (1992).

Zhang, W. et al. Online photochemical derivatization enables comprehensive mass spectrometric analysis of unsaturated phospholipid isomers. Nat. Commun.10, 79 (2019). PubMed PMC

Marshall, D. L. et al. Mapping Unsaturation in Human Plasma Lipids by Data-Independent Ozone-Induced Dissociation. J. Am. Soc. Mass Spectrom.30, 1621–1630 (2019). PubMed

Ma, X. et al. Identification and quantitation of lipid C=C location isomers: A shotgun lipidomics approach enabled by photochemical reaction. Proc. Natl. Acad. Sci. USA113, 2573–2578 (2016). PubMed PMC

Paine, M. R. L. et al. Mass Spectrometry Imaging with Isomeric Resolution Enabled by Ozone-Induced Dissociation. Angew. Chem. Int Ed. Engl.57, 10530–10534 (2018). PubMed PMC

Michael, J. A. et al. Deep Characterisation of the sn-Isomer Lipidome Using High-Throughput Data-Independent Acquisition and Ozone-Induced Dissociation. Angew. Chem. Int Ed. Engl.63, e202316793 (2024). PubMed

Yeboah, G. K., Lobanova, E. S., Brush, R. S. & Agbaga, M. P. Very long chain fatty acid-containing lipids: a decade of novel insights from the study of ELOVL4. J. Lipid Res.62, 100030 (2021). PubMed PMC

Aveldano, M. I. Phospholipid species containing long and very long polyenoic fatty acids remain with rhodopsin after hexane extraction of photoreceptor membranes. Biochemistry27, 1229–1239 (1988). PubMed

Kuroha, S. et al. Long chain acyl-CoA synthetase 6 facilitates the local distribution of di-docosahexaenoic acid- and ultra-long-chain-PUFA-containing phospholipids in the retina to support normal visual function in mice. Faseb J.37, e23151 (2023). PubMed

Yu, J. et al. Update on glycerol-3-phosphate acyltransferases: the roles in the development of insulin resistance. Nutr. Diab.8, 34 (2018). PubMed PMC

Takeda, H. et al. Production of monoclonal antibodies against GPCR using cell-free synthesized GPCR antigen and biotinylated liposome-based interaction assay. Sci. Rep.-Uk5, 11333 (2015). PubMed PMC

Tsugawa, H. et al. MS-DIAL: data-independent MS/MS deconvolution for comprehensive metabolome analysis. Nat. Methods12, 523–526 (2015). PubMed PMC

Kessner, D., Chambers, M., Burke, R., Agusand, D. & Mallick, P. ProteoWizard: open source software for rapid proteomics tools development. Bioinformatics24, 2534–2536 (2008). PubMed PMC

Meier, F. et al. diaPASEF: parallel accumulation-serial fragmentation combined with data-independent acquisition. Nat. Methods17, 1229–1236 (2020). PubMed

Elapavalore, A. et al. Adding open spectral data to MassBank and PubChem using open source tools to support non-targeted exposomics of mixtures. Environ. Sci.-Proc. Imp.25, 1788–1801 (2023). PubMed PMC

Wang, F. et al. CFM-ID 4.0: More Accurate ESI-MS/MS Spectral Prediction and Compound Identification. Anal. Chem.93, 11692–11700 (2021). PubMed PMC

Tsugawa, H. et al. A cheminformatics approach to characterize metabolomes in stable-isotope-labeled organisms. Nat. Methods16, 295–298 (2019). PubMed

Feunang, Y. D. et al. ClassyFire: automated chemical classification with a comprehensive, computable taxonomy. J. Cheminformatics8, 61 (2016). PubMed PMC

McDonald, J. G. et al. Introducing the Lipidomics Minimal Reporting Checklist. Nat. Metab.4, 1086–1088 (2022). PubMed

Morowvat, M. H., Rasoul-Amini, S. & Ghasemi, Y. as a “new” organism for biodiesel production. Bioresour. Technol.101, 2059–2062 (2010). PubMed

Tanaka, T. et al. Oil Accumulation by the Oleaginous Diatom as Revealed by the Genome and Transcriptome. Plant Cell27, 162–176 (2015). PubMed PMC

Tsugawa, H. et al. A lipidome landscape of aging in mice. Nat. Aging4, 709–726 (2024). PubMed

Tokiyoshi, K. et al. Using Data-Dependent and -Independent Hybrid Acquisitions for Fast Liquid Chromatography-Based Untargeted Lipidomics. Anal. Chem.96, 991–996 (2024). PubMed

Takeda, H. et al. A procedure for solid-phase extractions using metal-oxide-coated silica column in lipidomics. Analy. Chem. 96, 17065–17070 (2024). PubMed

Lee, J. W., Nishiumi, S., Yoshida, M., Fukusaki, E. & Bamba, T. Simultaneous profiling of polar lipids by supercritical fluid chromatography/tandem mass spectrometry with methylation. J. Chromatogr. A1279, 98–107 (2013). PubMed

Wendel, A. A., Cooper, D. E., Ilkayeva, O. R., Muoio, D. M. & Coleman, R. A. Glycerol-3-phosphate acyltransferase (GPAT)-1, but not GPAT4, incorporates newly synthesized fatty acids into triacylglycerol and diminishes fatty acid oxidation. J. Biol. Chem.288, 27299–27306 (2013). PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...