Use of Waste Substrates for the Lipid Production by Yeasts of the Genus Metschnikowia-Screening Study
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
301834
The Research Council of Norway
PubMed
34835421
PubMed Central
PMC8620705
DOI
10.3390/microorganisms9112295
PII: microorganisms9112295
Knihovny.cz E-zdroje
- Klíčová slova
- Metschnikowia, Raman spectroscopy, animal fat, lipids, stress factors, yeasts,
- Publikační typ
- časopisecké články MeSH
Oleogenic yeasts are characterized by the ability to accumulate increased amounts of lipids under certain conditions. These microbial lipids differ in their fatty acid composition, which allows them to be widely used in the biotechnology industry. The interest of biotechnologists is closely linked to the rising prices of fossil fuels in recent years. Their negative environmental impact is caused by significantly increased demand for biodiesel. The composition of microbial lipids is very similar to vegetable oils, which provides great potential for use in the production of biodiesel. In addition, some oleogenic microorganisms are capable of producing lipids with a high proportion of unsaturated fatty acids. The presented paper's main aim was to study the production of lipids and lipid substances by yeasts of the genus Metschnikowia, to cultivate crude waste animal fat to study its utilization by yeasts, and to apply the idea of circular economy in the biotechnology of Metschnikowia yeasts. The work focuses on the influence of various stress factors in the cultivation process, such as reduced temperature or nutritional stress through the use of various waste substrates, together with manipulating the ratio of carbon and nitrogen sources in the medium. Yeast production properties were monitored by several instrumental techniques, including gas chromatography and Raman spectroscopy. The amount of lipids and in particular the fatty acid composition varied depending on the strains studied and the culture conditions used. The ability of yeast to produce significant amounts of unsaturated fatty acids was also demonstrated in the work. The most suitable substrate for lipid production was a medium containing glycerol, where the amount of accumulated lipids in the yeast M. pulcherrima 1232 was up to 36%. In our work, the crude animal fat was used for the production of high-value lipids, which to the best of our knowledge is a new result. Moreover, quantitative screening of lipase enzyme activity cultivated on animal fat substrate on selected yeasts of the genus Metschnikowia was performed. We found that for the yeast utilizing glycerol, animal fat seems to be an excellent source of carbon. Therefore, the yeast conversion of crude processed animal fat to value-added products is a valuable process for the biotechnology and food industry.
Zobrazit více v PubMed
Jin M., Slininger P.J., Dien B.S., Waghmode S., Moser B.R., Orjuela A., da Costa Sousa L., Balan V. Microbial lipid-based lignocellulosic biorefinery: Feasibility and challenges. Trends Biotechnol. 2015;33:43–54. doi: 10.1016/j.tibtech.2014.11.005. PubMed DOI
Santamauro F., Whiffin F.M., Scott R.J., Chuck C.J. Low-cost lipid production by an oleaginous yeast cultured in non-sterile conditions using model waste resources. Biotechnol. Biofuels. 2014;7:34. doi: 10.1186/1754-6834-7-34. PubMed DOI PMC
Sibirny A.A. Biotechnology of Yeasts and Filamentous Fungi. Springer; Berlin/Heidelberg, Germany: 2017.
Love J. Biofuels and Bioenergy. John Wiley; Chichester, UK: 2017. 326p.
Papanikolaou S., Aggelis G. Yarrowia lipolytica: A model microorganisms used for the production of tailor-made lipids. Eur. J. Lipid Sci. Technol. 2010;112:639–654.
Ratledge C. Yeasts, moulds, algae and bacteria as sources of lipid. In: Kamel B.S., Kakuda Y., editors. Technological Advances in Improved and Alternative Sources of Lipids. Blackie Academic and Professional; London, UK: 1994. pp. 235–291.
Yaman M., Radek R. Identification, distribution and occurrence of the ascomycete Metschnikowia typographi in the great spruce bark beetle, Dendroctonus micans. Folia Microbiol. 2008;53:427–432. doi: 10.1007/s12223-008-0065-3. PubMed DOI
Mendonça-Hagler L.C., Hagler A.N., Kurtzman C.P. Phylogeny of Metschnikowia Species Estimated from Partial rRNA Sequences. Int. J. Syst. Bacteriol. 1993;43:368–373. doi: 10.1099/00207713-43-2-368. PubMed DOI
Němcová A., Gonová D., Samek O., Sipiczki M., Breierová E., Márová I. The Use of Raman Spectroscopy to Monitor Metabolic Changes in Stressed Metschnikowia sp. Yeasts. Microorganisms. 2021;9:277. doi: 10.3390/microorganisms9020277. PubMed DOI PMC
Marova I., Szotkowski M., Vanek M., Rapta M., Byrtusova D., Mikheichyk N., Haronikova A., Certik M., Shapaval V. Utilization of animal fat waste as carbon source by carotenogenic yeasts—A screening study. EuroBiotech J. 2017;1:310–318. doi: 10.24190/ISSN2564-615X/2017/04.08. DOI
Szotkowski M., Byrtusova D., Haronikova A., Vysoka M., Rapta M., Shapaval V., Marova I. Study of Metabolic Adaptation of Red Yeasts to Waste Animal Fat Substrate. Microorganisms. 2019;7:578. doi: 10.3390/microorganisms7110578. PubMed DOI PMC
Brandt N.N., Brovko O.O., Chikishev A.Y., Paraschuk O.D. Optimization of the rolling-circle filter for Raman background subtraction. Appl. Spectrosc. 2006;60:288–293. PubMed
Samek O., Jonáš A., Pilát Z., Zemánek P., Nedbal L., Tříska J., Kotas P., Trtílek M. Raman Microspectroscopy of Individual Algal Cells: Sensing Unsaturation of Storage Lipids in vivo. Sensors. 2010;10:8635–8651. doi: 10.3390/s100908635. PubMed DOI PMC
Garay L.A., Boundy-Mills K.L., German J.B. Accumulation of High-Value Lipids in Single-Cell Microorganisms: A Mechanistic Approach and Future Perspectives. J. Agric. Food Chem. 2014;62:2709–2727. doi: 10.1021/jf4042134. PubMed DOI PMC
Whiffin F., Santomauro F., Chuck C.J. Toward a microbial palm oil substitute: Oleaginous yeasts cultivated on lignocellulose. Biofuels Bioprod. Biorefining. 2016;10:316–334. doi: 10.1002/bbb.1641. DOI
Trzcinski A.P. Biofuels from food waste: Applications of saccharification using fungal solid state fermentation. CRC Press, Taylor & Francis Group; Boca Raton, FL, USA: 2018. 137p.
Canonico L., Ashoor S., Taccari M., Comitini F., Antonucci M., Truzzi C., Scarponi G., Ciani M. Conversion of raw glycerol to microbial lipids by new Metschnikowia and Yarrowia lipolytica strains. Ann. Microbiol. 2016;66:1409–1418. doi: 10.1007/s13213-016-1228-0. DOI
Pan L.X., Yang D.F., Shao L., Li W., Chen G.G., Liang Z.Q. Isolation of the oleaginous yeasts from the soil and studies of their lipid-producing capacities. Food Technol. Biotechnol. 2009;47:215–220.
Taccari M., Canonico L., Comitini F., Mannazzu I., Ciani M. Screening of yeasts for growth on crude glycerol and optimization of biomass production. Bioresour. Technol. 2012;110:488–495. doi: 10.1016/j.biortech.2012.01.109. PubMed DOI
Garlapati V.K., Shankar U., Budhiraja A. Bioconversion technologies of crude glycerol to value added industrial85 products. Biotechnol. Rep. 2016;9:9–14. doi: 10.1016/j.btre.2015.11.002. PubMed DOI PMC
Binhayeeding N., Klomklao S., Sangkharak K. Utilization of Waste Glycerol from Biodiesel Process as a Substrate for Mono-, Di-, and Triacylglycerol Production. Energy Procedia. 2017;138:895–900. doi: 10.1016/j.egypro.2017.10.130. DOI
Baladincz P., Hancsók J. Fuel from waste animal fats. Chem. Eng. J. 2015;282:152–160. doi: 10.1016/j.cej.2015.04.003. DOI
Adewale P., Dumont M.J., Ngadi M. Recent trends of biodiesel production from animal fat wastes and associated production techniques. Renew. Sustain. Energy Rev. 2015;45:574–588. doi: 10.1016/j.rser.2015.02.039. DOI
Woodgate S.L., van der Veen J.T. Fats and Oils—Animal Based. In: Clark S., Jung S., Lamsal B., editors. Food Processing: Principles and Applications. John Wiley & Sons; Chichester, UK: 2014. pp. 481–499. DOI
Radha P., Prabhu K., Jayakumar A., AbilashKarthik S., Ramani K. Biochemical and kinetic evaluation of lipase and biosurfactant assisted ex novo synthesis of microbial oil for biodiesel production by Yarrowia lipolytica utilizing chicken tallow. Process Biochem. 2020;95:17–29. doi: 10.1016/j.procbio.2020.05.009. DOI
Papanikolaou S., Chevalot I., Komaitis M., Marc I., Aggelis G. Single cell oil production by Yarrowia lipolytica growing on an industrial derivative of animal fat in batch cultures. Appl. Microbiol. Biotechnol. 2002;58:308–312. doi: 10.1007/s00253-001-0897-0. PubMed DOI
Kluyver A.J., van der Walt J.P., van Triet A.J. Proceedings of the National Academy of Sciences of the United States of America. Volume 39. National Academy of Sciences; Washington, DC, USA: 1953. Pulcherrimin, The Pigment of Candida Pulcherrima; pp. 583–593. PubMed PMC
Tan T., Zhang M., Wang B., Ying C., Deng L. Screening of high lipase producing Candida sp. and production of lipase by fermentation. Process Biochem. 2003;39:459–465. doi: 10.1016/S0032-9592(03)00091-8. DOI
Prasad M.N., Shih K. Environmental Materials and Waste: Resource Recovery and Pollution Prevention. Elsevier; Waltham, MA, USA: 2016.
Adebayo F.O., Obiekezie S.O. Microorganisms in Waste Management. Res. J. Sci. Technol. 2018;10:28–39. doi: 10.5958/2349-2988.2018.00005.0. DOI
Stoytcheva M., Montero G., Zlatev R., A Leon J., Gochev V. Analytical Methods for Lipases Activity Determination: A Review. Curr. Anal. Chem. 2012;8:400–407. doi: 10.2174/157341112801264879. DOI
Destain J., Roblain D., Thonart P. Improvement of lipase production from Yarrowia lipolytica. Biotechnol. Lett. 1997;19:105–108. doi: 10.1023/A:1018339709368. DOI
Fabiszewska A.U., Stolarzewicz I.A., Zamojska W.M., Białecka-Florjańczyk E. Carbon source impact on Yarrowia lipolytica KKP 379 lipase production. Appl. Biochem. Microbiol. 2014;50:404–410. doi: 10.1134/S000368381404005X. DOI
Fabiszewska A.U., Kotyrba D., Nowak D. Assortment of carbon sources in medium for Yarrowia lipolytica lipase production: A statistical appriach. Ann. Microbiol. 2015;65:1495–1503. doi: 10.1007/s13213-014-0988-7. PubMed DOI PMC
Goh P.S., Ismail A.F., Matsuura T., Oatley-Radcliffe D. Membrane Characterization. Elsevier; Amsterdam, The Netherlands: 2017. Raman Spectroscopy; pp. 31–46. DOI
Schulz H. Modern Techniques for Food Authentication. 2nd ed. Elsevier; Burlington, Vermont, USA: 2018. Spectroscopic Technique: Raman Spectroscopy; pp. 139–191. DOI
Beales N. Adaptation of Microorganisms to Cold Temperatures, Weak Acid Preserva-tives, Low pH, and Osmotic Stress: A Review. Compr. Rev. Food Sci. Food Safety. 2004;3:1–20. doi: 10.1111/j.1541-4337.2004.tb00057.x. PubMed DOI
Muniraj I.K., Uthandi S.K., Zhenhu H.U., Xiao L., Zhan X. Microbial lipid production from renewable and waste materials for second-generation biodiesel feedstock. Environ. Technol. Rev. 2015;4:1–16. doi: 10.1080/21622515.2015.1018340. DOI