Use of Waste Substrates for the Lipid Production by Yeasts of the Genus Metschnikowia-Screening Study

. 2021 Nov 04 ; 9 (11) : . [epub] 20211104

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34835421

Grantová podpora
301834 The Research Council of Norway

Odkazy

PubMed 34835421
PubMed Central PMC8620705
DOI 10.3390/microorganisms9112295
PII: microorganisms9112295
Knihovny.cz E-zdroje

Oleogenic yeasts are characterized by the ability to accumulate increased amounts of lipids under certain conditions. These microbial lipids differ in their fatty acid composition, which allows them to be widely used in the biotechnology industry. The interest of biotechnologists is closely linked to the rising prices of fossil fuels in recent years. Their negative environmental impact is caused by significantly increased demand for biodiesel. The composition of microbial lipids is very similar to vegetable oils, which provides great potential for use in the production of biodiesel. In addition, some oleogenic microorganisms are capable of producing lipids with a high proportion of unsaturated fatty acids. The presented paper's main aim was to study the production of lipids and lipid substances by yeasts of the genus Metschnikowia, to cultivate crude waste animal fat to study its utilization by yeasts, and to apply the idea of circular economy in the biotechnology of Metschnikowia yeasts. The work focuses on the influence of various stress factors in the cultivation process, such as reduced temperature or nutritional stress through the use of various waste substrates, together with manipulating the ratio of carbon and nitrogen sources in the medium. Yeast production properties were monitored by several instrumental techniques, including gas chromatography and Raman spectroscopy. The amount of lipids and in particular the fatty acid composition varied depending on the strains studied and the culture conditions used. The ability of yeast to produce significant amounts of unsaturated fatty acids was also demonstrated in the work. The most suitable substrate for lipid production was a medium containing glycerol, where the amount of accumulated lipids in the yeast M. pulcherrima 1232 was up to 36%. In our work, the crude animal fat was used for the production of high-value lipids, which to the best of our knowledge is a new result. Moreover, quantitative screening of lipase enzyme activity cultivated on animal fat substrate on selected yeasts of the genus Metschnikowia was performed. We found that for the yeast utilizing glycerol, animal fat seems to be an excellent source of carbon. Therefore, the yeast conversion of crude processed animal fat to value-added products is a valuable process for the biotechnology and food industry.

Zobrazit více v PubMed

Jin M., Slininger P.J., Dien B.S., Waghmode S., Moser B.R., Orjuela A., da Costa Sousa L., Balan V. Microbial lipid-based lignocellulosic biorefinery: Feasibility and challenges. Trends Biotechnol. 2015;33:43–54. doi: 10.1016/j.tibtech.2014.11.005. PubMed DOI

Santamauro F., Whiffin F.M., Scott R.J., Chuck C.J. Low-cost lipid production by an oleaginous yeast cultured in non-sterile conditions using model waste resources. Biotechnol. Biofuels. 2014;7:34. doi: 10.1186/1754-6834-7-34. PubMed DOI PMC

Sibirny A.A. Biotechnology of Yeasts and Filamentous Fungi. Springer; Berlin/Heidelberg, Germany: 2017.

Love J. Biofuels and Bioenergy. John Wiley; Chichester, UK: 2017. 326p.

Papanikolaou S., Aggelis G. Yarrowia lipolytica: A model microorganisms used for the production of tailor-made lipids. Eur. J. Lipid Sci. Technol. 2010;112:639–654.

Ratledge C. Yeasts, moulds, algae and bacteria as sources of lipid. In: Kamel B.S., Kakuda Y., editors. Technological Advances in Improved and Alternative Sources of Lipids. Blackie Academic and Professional; London, UK: 1994. pp. 235–291.

Yaman M., Radek R. Identification, distribution and occurrence of the ascomycete Metschnikowia typographi in the great spruce bark beetle, Dendroctonus micans. Folia Microbiol. 2008;53:427–432. doi: 10.1007/s12223-008-0065-3. PubMed DOI

Mendonça-Hagler L.C., Hagler A.N., Kurtzman C.P. Phylogeny of Metschnikowia Species Estimated from Partial rRNA Sequences. Int. J. Syst. Bacteriol. 1993;43:368–373. doi: 10.1099/00207713-43-2-368. PubMed DOI

Němcová A., Gonová D., Samek O., Sipiczki M., Breierová E., Márová I. The Use of Raman Spectroscopy to Monitor Metabolic Changes in Stressed Metschnikowia sp. Yeasts. Microorganisms. 2021;9:277. doi: 10.3390/microorganisms9020277. PubMed DOI PMC

Marova I., Szotkowski M., Vanek M., Rapta M., Byrtusova D., Mikheichyk N., Haronikova A., Certik M., Shapaval V. Utilization of animal fat waste as carbon source by carotenogenic yeasts—A screening study. EuroBiotech J. 2017;1:310–318. doi: 10.24190/ISSN2564-615X/2017/04.08. DOI

Szotkowski M., Byrtusova D., Haronikova A., Vysoka M., Rapta M., Shapaval V., Marova I. Study of Metabolic Adaptation of Red Yeasts to Waste Animal Fat Substrate. Microorganisms. 2019;7:578. doi: 10.3390/microorganisms7110578. PubMed DOI PMC

Brandt N.N., Brovko O.O., Chikishev A.Y., Paraschuk O.D. Optimization of the rolling-circle filter for Raman background subtraction. Appl. Spectrosc. 2006;60:288–293. PubMed

Samek O., Jonáš A., Pilát Z., Zemánek P., Nedbal L., Tříska J., Kotas P., Trtílek M. Raman Microspectroscopy of Individual Algal Cells: Sensing Unsaturation of Storage Lipids in vivo. Sensors. 2010;10:8635–8651. doi: 10.3390/s100908635. PubMed DOI PMC

Garay L.A., Boundy-Mills K.L., German J.B. Accumulation of High-Value Lipids in Single-Cell Microorganisms: A Mechanistic Approach and Future Perspectives. J. Agric. Food Chem. 2014;62:2709–2727. doi: 10.1021/jf4042134. PubMed DOI PMC

Whiffin F., Santomauro F., Chuck C.J. Toward a microbial palm oil substitute: Oleaginous yeasts cultivated on lignocellulose. Biofuels Bioprod. Biorefining. 2016;10:316–334. doi: 10.1002/bbb.1641. DOI

Trzcinski A.P. Biofuels from food waste: Applications of saccharification using fungal solid state fermentation. CRC Press, Taylor & Francis Group; Boca Raton, FL, USA: 2018. 137p.

Canonico L., Ashoor S., Taccari M., Comitini F., Antonucci M., Truzzi C., Scarponi G., Ciani M. Conversion of raw glycerol to microbial lipids by new Metschnikowia and Yarrowia lipolytica strains. Ann. Microbiol. 2016;66:1409–1418. doi: 10.1007/s13213-016-1228-0. DOI

Pan L.X., Yang D.F., Shao L., Li W., Chen G.G., Liang Z.Q. Isolation of the oleaginous yeasts from the soil and studies of their lipid-producing capacities. Food Technol. Biotechnol. 2009;47:215–220.

Taccari M., Canonico L., Comitini F., Mannazzu I., Ciani M. Screening of yeasts for growth on crude glycerol and optimization of biomass production. Bioresour. Technol. 2012;110:488–495. doi: 10.1016/j.biortech.2012.01.109. PubMed DOI

Garlapati V.K., Shankar U., Budhiraja A. Bioconversion technologies of crude glycerol to value added industrial85 products. Biotechnol. Rep. 2016;9:9–14. doi: 10.1016/j.btre.2015.11.002. PubMed DOI PMC

Binhayeeding N., Klomklao S., Sangkharak K. Utilization of Waste Glycerol from Biodiesel Process as a Substrate for Mono-, Di-, and Triacylglycerol Production. Energy Procedia. 2017;138:895–900. doi: 10.1016/j.egypro.2017.10.130. DOI

Baladincz P., Hancsók J. Fuel from waste animal fats. Chem. Eng. J. 2015;282:152–160. doi: 10.1016/j.cej.2015.04.003. DOI

Adewale P., Dumont M.J., Ngadi M. Recent trends of biodiesel production from animal fat wastes and associated production techniques. Renew. Sustain. Energy Rev. 2015;45:574–588. doi: 10.1016/j.rser.2015.02.039. DOI

Woodgate S.L., van der Veen J.T. Fats and Oils—Animal Based. In: Clark S., Jung S., Lamsal B., editors. Food Processing: Principles and Applications. John Wiley & Sons; Chichester, UK: 2014. pp. 481–499. DOI

Radha P., Prabhu K., Jayakumar A., AbilashKarthik S., Ramani K. Biochemical and kinetic evaluation of lipase and biosurfactant assisted ex novo synthesis of microbial oil for biodiesel production by Yarrowia lipolytica utilizing chicken tallow. Process Biochem. 2020;95:17–29. doi: 10.1016/j.procbio.2020.05.009. DOI

Papanikolaou S., Chevalot I., Komaitis M., Marc I., Aggelis G. Single cell oil production by Yarrowia lipolytica growing on an industrial derivative of animal fat in batch cultures. Appl. Microbiol. Biotechnol. 2002;58:308–312. doi: 10.1007/s00253-001-0897-0. PubMed DOI

Kluyver A.J., van der Walt J.P., van Triet A.J. Proceedings of the National Academy of Sciences of the United States of America. Volume 39. National Academy of Sciences; Washington, DC, USA: 1953. Pulcherrimin, The Pigment of Candida Pulcherrima; pp. 583–593. PubMed PMC

Tan T., Zhang M., Wang B., Ying C., Deng L. Screening of high lipase producing Candida sp. and production of lipase by fermentation. Process Biochem. 2003;39:459–465. doi: 10.1016/S0032-9592(03)00091-8. DOI

Prasad M.N., Shih K. Environmental Materials and Waste: Resource Recovery and Pollution Prevention. Elsevier; Waltham, MA, USA: 2016.

Adebayo F.O., Obiekezie S.O. Microorganisms in Waste Management. Res. J. Sci. Technol. 2018;10:28–39. doi: 10.5958/2349-2988.2018.00005.0. DOI

Stoytcheva M., Montero G., Zlatev R., A Leon J., Gochev V. Analytical Methods for Lipases Activity Determination: A Review. Curr. Anal. Chem. 2012;8:400–407. doi: 10.2174/157341112801264879. DOI

Destain J., Roblain D., Thonart P. Improvement of lipase production from Yarrowia lipolytica. Biotechnol. Lett. 1997;19:105–108. doi: 10.1023/A:1018339709368. DOI

Fabiszewska A.U., Stolarzewicz I.A., Zamojska W.M., Białecka-Florjańczyk E. Carbon source impact on Yarrowia lipolytica KKP 379 lipase production. Appl. Biochem. Microbiol. 2014;50:404–410. doi: 10.1134/S000368381404005X. DOI

Fabiszewska A.U., Kotyrba D., Nowak D. Assortment of carbon sources in medium for Yarrowia lipolytica lipase production: A statistical appriach. Ann. Microbiol. 2015;65:1495–1503. doi: 10.1007/s13213-014-0988-7. PubMed DOI PMC

Goh P.S., Ismail A.F., Matsuura T., Oatley-Radcliffe D. Membrane Characterization. Elsevier; Amsterdam, The Netherlands: 2017. Raman Spectroscopy; pp. 31–46. DOI

Schulz H. Modern Techniques for Food Authentication. 2nd ed. Elsevier; Burlington, Vermont, USA: 2018. Spectroscopic Technique: Raman Spectroscopy; pp. 139–191. DOI

Beales N. Adaptation of Microorganisms to Cold Temperatures, Weak Acid Preserva-tives, Low pH, and Osmotic Stress: A Review. Compr. Rev. Food Sci. Food Safety. 2004;3:1–20. doi: 10.1111/j.1541-4337.2004.tb00057.x. PubMed DOI

Muniraj I.K., Uthandi S.K., Zhenhu H.U., Xiao L., Zhan X. Microbial lipid production from renewable and waste materials for second-generation biodiesel feedstock. Environ. Technol. Rev. 2015;4:1–16. doi: 10.1080/21622515.2015.1018340. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Conversion of Mixed Waste Food Substrates by Carotenogenic Yeasts of Rhodotorula sp. Genus

. 2023 Apr 13 ; 11 (4) : . [epub] 20230413

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...