The Use of Raman Spectroscopy to Monitor Metabolic Changes in Stressed Metschnikowia sp. Yeasts

. 2021 Jan 29 ; 9 (2) : . [epub] 20210129

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33572773

Grantová podpora
268305 The Research Council of Norway

Odkazy

PubMed 33572773
PubMed Central PMC7912579
DOI 10.3390/microorganisms9020277
PII: microorganisms9020277
Knihovny.cz E-zdroje

Raman spectroscopy is a universal method designed for the analysis of a wide range of physical, chemical and biological systems or various surfaces. This technique is suitable to monitor various components of cells, tissues or microorganisms. The advantages include very fast non-contact and non-destructive analysis and no or minimal need for sample treatment. The yeasts Metschnikowia can be considered as industrially usable producers of pulcherrimin or single-cell lipids, depending on cultivation conditions and external stress. In the present study, Raman spectroscopy was used as an effective tool to identify both pulcherrimin and lipids in single yeast cells. The analysis of pulcherrimin is very demanding; so far, there is no optimal procedure to analyze or identify this pigment. Based on results, the strong dependence of pulcherrimin production on the ferric ion concentration was found with the highest yield in media containing 0.1 g/L iron. Further, production of lipids in Metschnikowia cells was studied at different temperatures and C:N ratios, using Raman spectroscopy to follow fatty acids composition, under different regimes, by monitoring the iodine number. The results of Raman spectroscopy were comparable with the fatty acid analysis obtained by gas chromatography. This study therefore supported use of Raman spectroscopy for biotechnological applications as a simple tool in the identification and analysis both the pulcherrimin and microbial lipids. This method provides a quick and relatively accurate estimation of targeted metabolites with minimal sample modification and allows to monitor metabolic changes over time of cultivation.

Zobrazit více v PubMed

Schie I.W., Huser T. Methods and applications of Raman microspectroscopy to single-cell analysis. Appl. Spectrosc. 2013;67:813–828. doi: 10.1366/12-06971. PubMed DOI

Notingher I. Raman Spectroscopy Cell-based Biosensors. Sensors. 2007;7:1343–1358. doi: 10.3390/s7081343. DOI

Almarashi J., Kapel N., Wilkinson T.S., Telle H. Raman Spectroscopy of Bacterial Species and Strains Cultivated under Reproducible Conditions. Spectrosc. Int. J. 2012;27:361–365. doi: 10.1155/2012/540490. DOI

De Gelder J., De Gussem K., Vandenabeele P., Moens L. Reference database of Raman spectra of biological molecules. J. Raman Spectrosc. 2007;38:1133–1147. doi: 10.1002/jrs.1734. DOI

Brauchle E., Schenke-Layland K. Raman spectroscopy in biomedicine—Non-invasive in vitro analysis of cells and extracellular matrix components in tissues. Biotechnol. J. 2012;8:288–297. doi: 10.1002/biot.201200163. PubMed DOI PMC

Samek O., Al-Marashi J., Telle H. The potential of Raman spectroscopy for the identification of biofilm formation by Staphylococcus epidermidis. Laser Phys. Lett. 2010;7:378–383. doi: 10.1002/lapl.200910154. DOI

Stuart B. Gas Chromatography. Royal Society of Chemistry; Cambridge, UK: 2003.

Littlewood A.B. Gas Chromatography: Principles, Techniques, and Applications. 2nd ed. Academic Press; New York, NY, USA: 1970.

Li-Chan E. The applications of Raman spectroscopy in food science. Trends Food Sci. Technol. 1996;7:361–370. doi: 10.1016/S0924-2244(96)10037-6. DOI

Bumbrah G.S., Sharma R.M. Raman spectroscopy—Basic principle, instrumentation and selected applications for the characterization of drugs of abuse. Egypt. J. Forensic. Sci. 2016;6:209–215. doi: 10.1016/j.ejfs.2015.06.001. DOI

Kang Y., Choi J.E., Komakech R., Park J.H., Kim D.W., Cho K.M., Kang S.M., Choi S.H., Song K.C., Ryu C.-M., et al. Characterization of a novel yeast species Metschnikowia persimmonesis KCTC 12991BP (KIOM G15050 type strain) isolated from a medicinal plant, Korean persimmon calyx (Diospyros kaki Thumb) AMB Express. 2017;7:199. doi: 10.1186/s13568-017-0503-1. PubMed DOI PMC

Lachance M.-A. Metschnikowia: Half tetrads, a regicide and the fountain of youth. Yeast. 2016;33:563–574. doi: 10.1002/yea.3208. PubMed DOI

Manso T., Nunes C. Metschnikowia andauensis as a new biocontrol agent of fruit postharvest diseases. Postharvest Biol. Technol. 2011;61:64–71. doi: 10.1016/j.postharvbio.2011.02.004. DOI

Kluyver A.J., van der Walt J.P., van Triet A.J. Pulcherrimin, the Pigment of Candida Pulcherrima. Proc. Natl. Acad. Sci. USA. 1953;39:583–593. doi: 10.1073/pnas.39.7.583. PubMed DOI PMC

Macdonald J. Biosynthesis of pulcherriminic acid. Biochem. J. 1965;96:533–538. doi: 10.1042/bj0960533. PubMed DOI PMC

Cook A.H., Slater C.A. Metabolism of “Wild” Yeasts I. The Chemical Nature of Pulcherrimin. J. Inst. Brew. 1954;60:213–217. doi: 10.1002/j.2050-0416.1954.tb06226.x. DOI

Cook A.H., Slater C.A. Pulcherrimin: A synthesis of 1:4-dihydroxy-2:5-dioxopiperazines. J. Chem. Soc. 1956;797:4130–4133. doi: 10.1039/jr9560004130. DOI

Cook A.H., Slater C.A. The structure of pulcherrimin. J. Chem. Soc. 1956;798:4133. doi: 10.1039/jr9560004133. DOI

Van der Walt J.P. On the Yeast Candida Pulcherrima and Its Pigment. Excelsiors Foto-Offset; Delft, The Netherlands: The Hague, The Netherlands: 1952.

Kupfer D.G., Uffen R.L., Canale-Parola E. The role of iron and molecular oxygen in pulcherrimin synthesis by bacteria. Arch. Microbiol. 1967;56:9–21. doi: 10.1007/BF00406050. PubMed DOI

Bonnefond L., Arai T., Sakaguchi Y., Suzuki T., Ishitani R., Nureki O. Structural basis for nonribosomal peptide synthesis by an aminoacyl-tRNA synthetase paralog. Proc. Natl. Acad. Sci. USA. 2011;108:3912–3917. doi: 10.1073/pnas.1019480108. PubMed DOI PMC

Sipiczki M. Metschnikowia Strains Isolated from Botrytized Grapes Antagonize Fungal and Bacterial Growth by Iron Depletion. Appl. Environ. Microbiol. 2006;72:6716–6724. doi: 10.1128/AEM.01275-06. PubMed DOI PMC

Certik M., Shimizu S. Biosynthesis and regulation of microbial poly-unsaturated fatty acid production. J. Biosci. Bioeng. 1999;87:1–14. doi: 10.1016/S1389-1723(99)80001-2. PubMed DOI

Ochsenreither K., Glück C., Stressler T., Fischer L., Syldatk C. Production Strategies and Applications of Microbial Single Cell Oils. Front. Microbiol. 2016;7:1539. doi: 10.3389/fmicb.2016.01539. PubMed DOI PMC

Garay L.A., Boundy-Mills K.L., German J.B. Accumulation of High-Value Lipids in Single-Cell Microorganisms: A Mechanistic Approach and Future Perspectives. J. Agric. Food Chem. 2014;62:2709–2727. doi: 10.1021/jf4042134. PubMed DOI PMC

Papanikolaou S., Aggelis G. Yarrowia lipolytica: A model microorganism used for the production of tailor-made lipids. Eur. J. Lipid. Sci. Technol. 2010;112:639–654. doi: 10.1002/ejlt.200900197. DOI

Maina S., Pateraki C., Kopsahelis N., Paramithiotis S., Drosinos E.H., Papanikolaou S., Koutinas A. Microbial oil production from various carbon sources by newly isolated oleaginous yeasts. Eng. Life Sci. 2017;17:333–344. doi: 10.1002/elsc.201500153. PubMed DOI PMC

Folch J., Lees M., Stanley G.S. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 1957;226:497–509. doi: 10.1016/S0021-9258(18)64849-5. PubMed DOI

Szotkowski M., Byrtusová D., Haronikova A., Vysoka M., Rapta M., Shapaval V., Marova I. Study of Metabolic Adaptation of Red Yeasts to Waste Animal Fat Substrate. Microorganisms. 2019;7:578. doi: 10.3390/microorganisms7110578. PubMed DOI PMC

Brandt N.N., Brovko O.O., Chikishev A.Y., Paraschuk O.D. Optimization of the Rolling-Circle Filter for Raman Background Subtraction. Appl. Spectrosc. 2006;60:288–293. doi: 10.1366/000370206776342553. PubMed DOI

Samek O., Jonáš A., Pilát Z., Zemánek P., Nedbal L., Triska J., Kotas P., Trtilek M. Raman Microspectroscopy of Individual Algal Cells: Sensing Unsaturation of Storage Lipids in vivo. Sensors. 2010;10:8635–8651. doi: 10.3390/s100908635. PubMed DOI PMC

TÜRKEL S., Ener B. Isolation and Characterization of New Metschnikowia pulcherrima Strains as Producers of the Antimicrobial Pigment Pulcherrimin. Z. Naturforsch. C. 2009;64:405–410. doi: 10.1515/znc-2009-5-618. PubMed DOI

Macdonald J.C. The Structure of Pulcherriminic Acid. Can. J. Chem. 1963;41:165–172. doi: 10.1139/v63-021. DOI

Zdaniauskienėa A., Charkovaa T., Ignatjeva I., Melvydasb V., Garjonytėa R., Matulaitienėa I., Talaikisc M., Niaura G. Shell-isolated nanoparticle-enhanced Raman spectroscopy for characterization of living yeast cells. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020;240:118560. doi: 10.1016/j.saa.2020.118560. PubMed DOI

Vicente J., Ruiz J., Belda I., Benito-Vázquez I., Marquina D., Calderón F., Santos A., Benito S. The Genus Metschnikowia in Enology. Microorganisms. 2020;8:1038. doi: 10.3390/microorganisms8071038. PubMed DOI PMC

Sipiczki M. Metschnikowia pulcherrima and Related Pulcherrimin-Producing Yeasts: Fuzzy Species Boundaries and Complex Antimicrobial Antagonism. Microorganisms. 2020;8:1029. doi: 10.3390/microorganisms8071029. PubMed DOI PMC

Santamauro F., Whiffin F.M., Scott R.J., Chuck C.J., Antonucci M., Truzzi C., Scarponi G., Ciani M. Low-cost lipid production by an oleaginous yeast cultured in non-sterile conditions using model waste resources. Biotechnol. Biofuels. 2014;7:34. doi: 10.1186/1754-6834-7-34. PubMed DOI PMC

Canonico L., Ashoor S., Taccari M., Comitini F., Antonucci M., Truzzi C., Scarponi G., Ciani M. Conversion of raw glycerol to microbial lipids by new Metschnikowia and Yarrowia lipolytica strains. Ann. Microbiol. 2016;66:1409–1418. doi: 10.1007/s13213-016-1228-0. DOI

Hilal N., Ismail A.F., Matsuura T., Oatley-Radcliffe D. Raman Spectroscopy. Membrane Characterization. Elsevier; Amsterdam, The Netherlands: 2017. pp. 31–46. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace