The Use of Raman Spectroscopy to Monitor Metabolic Changes in Stressed Metschnikowia sp. Yeasts
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
268305
The Research Council of Norway
PubMed
33572773
PubMed Central
PMC7912579
DOI
10.3390/microorganisms9020277
PII: microorganisms9020277
Knihovny.cz E-zdroje
- Klíčová slova
- Metschnikowia, Raman spectroscopy, lipids, pulcherrimin, yeasts,
- Publikační typ
- časopisecké články MeSH
Raman spectroscopy is a universal method designed for the analysis of a wide range of physical, chemical and biological systems or various surfaces. This technique is suitable to monitor various components of cells, tissues or microorganisms. The advantages include very fast non-contact and non-destructive analysis and no or minimal need for sample treatment. The yeasts Metschnikowia can be considered as industrially usable producers of pulcherrimin or single-cell lipids, depending on cultivation conditions and external stress. In the present study, Raman spectroscopy was used as an effective tool to identify both pulcherrimin and lipids in single yeast cells. The analysis of pulcherrimin is very demanding; so far, there is no optimal procedure to analyze or identify this pigment. Based on results, the strong dependence of pulcherrimin production on the ferric ion concentration was found with the highest yield in media containing 0.1 g/L iron. Further, production of lipids in Metschnikowia cells was studied at different temperatures and C:N ratios, using Raman spectroscopy to follow fatty acids composition, under different regimes, by monitoring the iodine number. The results of Raman spectroscopy were comparable with the fatty acid analysis obtained by gas chromatography. This study therefore supported use of Raman spectroscopy for biotechnological applications as a simple tool in the identification and analysis both the pulcherrimin and microbial lipids. This method provides a quick and relatively accurate estimation of targeted metabolites with minimal sample modification and allows to monitor metabolic changes over time of cultivation.
Faculty of Chemistry Brno University of Technology Purkyňova 464 118 612 00 Brno Czech Republic
Institute of Chemistry Slovak Academy of Sciences Dúbravská Cesta 9 845 38 Bratislava Slovakia
Zobrazit více v PubMed
Schie I.W., Huser T. Methods and applications of Raman microspectroscopy to single-cell analysis. Appl. Spectrosc. 2013;67:813–828. doi: 10.1366/12-06971. PubMed DOI
Notingher I. Raman Spectroscopy Cell-based Biosensors. Sensors. 2007;7:1343–1358. doi: 10.3390/s7081343. DOI
Almarashi J., Kapel N., Wilkinson T.S., Telle H. Raman Spectroscopy of Bacterial Species and Strains Cultivated under Reproducible Conditions. Spectrosc. Int. J. 2012;27:361–365. doi: 10.1155/2012/540490. DOI
De Gelder J., De Gussem K., Vandenabeele P., Moens L. Reference database of Raman spectra of biological molecules. J. Raman Spectrosc. 2007;38:1133–1147. doi: 10.1002/jrs.1734. DOI
Brauchle E., Schenke-Layland K. Raman spectroscopy in biomedicine—Non-invasive in vitro analysis of cells and extracellular matrix components in tissues. Biotechnol. J. 2012;8:288–297. doi: 10.1002/biot.201200163. PubMed DOI PMC
Samek O., Al-Marashi J., Telle H. The potential of Raman spectroscopy for the identification of biofilm formation by Staphylococcus epidermidis. Laser Phys. Lett. 2010;7:378–383. doi: 10.1002/lapl.200910154. DOI
Stuart B. Gas Chromatography. Royal Society of Chemistry; Cambridge, UK: 2003.
Littlewood A.B. Gas Chromatography: Principles, Techniques, and Applications. 2nd ed. Academic Press; New York, NY, USA: 1970.
Li-Chan E. The applications of Raman spectroscopy in food science. Trends Food Sci. Technol. 1996;7:361–370. doi: 10.1016/S0924-2244(96)10037-6. DOI
Bumbrah G.S., Sharma R.M. Raman spectroscopy—Basic principle, instrumentation and selected applications for the characterization of drugs of abuse. Egypt. J. Forensic. Sci. 2016;6:209–215. doi: 10.1016/j.ejfs.2015.06.001. DOI
Kang Y., Choi J.E., Komakech R., Park J.H., Kim D.W., Cho K.M., Kang S.M., Choi S.H., Song K.C., Ryu C.-M., et al. Characterization of a novel yeast species Metschnikowia persimmonesis KCTC 12991BP (KIOM G15050 type strain) isolated from a medicinal plant, Korean persimmon calyx (Diospyros kaki Thumb) AMB Express. 2017;7:199. doi: 10.1186/s13568-017-0503-1. PubMed DOI PMC
Lachance M.-A. Metschnikowia: Half tetrads, a regicide and the fountain of youth. Yeast. 2016;33:563–574. doi: 10.1002/yea.3208. PubMed DOI
Manso T., Nunes C. Metschnikowia andauensis as a new biocontrol agent of fruit postharvest diseases. Postharvest Biol. Technol. 2011;61:64–71. doi: 10.1016/j.postharvbio.2011.02.004. DOI
Kluyver A.J., van der Walt J.P., van Triet A.J. Pulcherrimin, the Pigment of Candida Pulcherrima. Proc. Natl. Acad. Sci. USA. 1953;39:583–593. doi: 10.1073/pnas.39.7.583. PubMed DOI PMC
Macdonald J. Biosynthesis of pulcherriminic acid. Biochem. J. 1965;96:533–538. doi: 10.1042/bj0960533. PubMed DOI PMC
Cook A.H., Slater C.A. Metabolism of “Wild” Yeasts I. The Chemical Nature of Pulcherrimin. J. Inst. Brew. 1954;60:213–217. doi: 10.1002/j.2050-0416.1954.tb06226.x. DOI
Cook A.H., Slater C.A. Pulcherrimin: A synthesis of 1:4-dihydroxy-2:5-dioxopiperazines. J. Chem. Soc. 1956;797:4130–4133. doi: 10.1039/jr9560004130. DOI
Cook A.H., Slater C.A. The structure of pulcherrimin. J. Chem. Soc. 1956;798:4133. doi: 10.1039/jr9560004133. DOI
Van der Walt J.P. On the Yeast Candida Pulcherrima and Its Pigment. Excelsiors Foto-Offset; Delft, The Netherlands: The Hague, The Netherlands: 1952.
Kupfer D.G., Uffen R.L., Canale-Parola E. The role of iron and molecular oxygen in pulcherrimin synthesis by bacteria. Arch. Microbiol. 1967;56:9–21. doi: 10.1007/BF00406050. PubMed DOI
Bonnefond L., Arai T., Sakaguchi Y., Suzuki T., Ishitani R., Nureki O. Structural basis for nonribosomal peptide synthesis by an aminoacyl-tRNA synthetase paralog. Proc. Natl. Acad. Sci. USA. 2011;108:3912–3917. doi: 10.1073/pnas.1019480108. PubMed DOI PMC
Sipiczki M. Metschnikowia Strains Isolated from Botrytized Grapes Antagonize Fungal and Bacterial Growth by Iron Depletion. Appl. Environ. Microbiol. 2006;72:6716–6724. doi: 10.1128/AEM.01275-06. PubMed DOI PMC
Certik M., Shimizu S. Biosynthesis and regulation of microbial poly-unsaturated fatty acid production. J. Biosci. Bioeng. 1999;87:1–14. doi: 10.1016/S1389-1723(99)80001-2. PubMed DOI
Ochsenreither K., Glück C., Stressler T., Fischer L., Syldatk C. Production Strategies and Applications of Microbial Single Cell Oils. Front. Microbiol. 2016;7:1539. doi: 10.3389/fmicb.2016.01539. PubMed DOI PMC
Garay L.A., Boundy-Mills K.L., German J.B. Accumulation of High-Value Lipids in Single-Cell Microorganisms: A Mechanistic Approach and Future Perspectives. J. Agric. Food Chem. 2014;62:2709–2727. doi: 10.1021/jf4042134. PubMed DOI PMC
Papanikolaou S., Aggelis G. Yarrowia lipolytica: A model microorganism used for the production of tailor-made lipids. Eur. J. Lipid. Sci. Technol. 2010;112:639–654. doi: 10.1002/ejlt.200900197. DOI
Maina S., Pateraki C., Kopsahelis N., Paramithiotis S., Drosinos E.H., Papanikolaou S., Koutinas A. Microbial oil production from various carbon sources by newly isolated oleaginous yeasts. Eng. Life Sci. 2017;17:333–344. doi: 10.1002/elsc.201500153. PubMed DOI PMC
Folch J., Lees M., Stanley G.S. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 1957;226:497–509. doi: 10.1016/S0021-9258(18)64849-5. PubMed DOI
Szotkowski M., Byrtusová D., Haronikova A., Vysoka M., Rapta M., Shapaval V., Marova I. Study of Metabolic Adaptation of Red Yeasts to Waste Animal Fat Substrate. Microorganisms. 2019;7:578. doi: 10.3390/microorganisms7110578. PubMed DOI PMC
Brandt N.N., Brovko O.O., Chikishev A.Y., Paraschuk O.D. Optimization of the Rolling-Circle Filter for Raman Background Subtraction. Appl. Spectrosc. 2006;60:288–293. doi: 10.1366/000370206776342553. PubMed DOI
Samek O., Jonáš A., Pilát Z., Zemánek P., Nedbal L., Triska J., Kotas P., Trtilek M. Raman Microspectroscopy of Individual Algal Cells: Sensing Unsaturation of Storage Lipids in vivo. Sensors. 2010;10:8635–8651. doi: 10.3390/s100908635. PubMed DOI PMC
TÜRKEL S., Ener B. Isolation and Characterization of New Metschnikowia pulcherrima Strains as Producers of the Antimicrobial Pigment Pulcherrimin. Z. Naturforsch. C. 2009;64:405–410. doi: 10.1515/znc-2009-5-618. PubMed DOI
Macdonald J.C. The Structure of Pulcherriminic Acid. Can. J. Chem. 1963;41:165–172. doi: 10.1139/v63-021. DOI
Zdaniauskienėa A., Charkovaa T., Ignatjeva I., Melvydasb V., Garjonytėa R., Matulaitienėa I., Talaikisc M., Niaura G. Shell-isolated nanoparticle-enhanced Raman spectroscopy for characterization of living yeast cells. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020;240:118560. doi: 10.1016/j.saa.2020.118560. PubMed DOI
Vicente J., Ruiz J., Belda I., Benito-Vázquez I., Marquina D., Calderón F., Santos A., Benito S. The Genus Metschnikowia in Enology. Microorganisms. 2020;8:1038. doi: 10.3390/microorganisms8071038. PubMed DOI PMC
Sipiczki M. Metschnikowia pulcherrima and Related Pulcherrimin-Producing Yeasts: Fuzzy Species Boundaries and Complex Antimicrobial Antagonism. Microorganisms. 2020;8:1029. doi: 10.3390/microorganisms8071029. PubMed DOI PMC
Santamauro F., Whiffin F.M., Scott R.J., Chuck C.J., Antonucci M., Truzzi C., Scarponi G., Ciani M. Low-cost lipid production by an oleaginous yeast cultured in non-sterile conditions using model waste resources. Biotechnol. Biofuels. 2014;7:34. doi: 10.1186/1754-6834-7-34. PubMed DOI PMC
Canonico L., Ashoor S., Taccari M., Comitini F., Antonucci M., Truzzi C., Scarponi G., Ciani M. Conversion of raw glycerol to microbial lipids by new Metschnikowia and Yarrowia lipolytica strains. Ann. Microbiol. 2016;66:1409–1418. doi: 10.1007/s13213-016-1228-0. DOI
Hilal N., Ismail A.F., Matsuura T., Oatley-Radcliffe D. Raman Spectroscopy. Membrane Characterization. Elsevier; Amsterdam, The Netherlands: 2017. pp. 31–46. DOI