Study of Metabolic Adaptation of Red Yeasts to Waste Animal Fat Substrate
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
Lipofungi, Nr.268305
The Research Council of Norway
PubMed
31752339
PubMed Central
PMC6920810
DOI
10.3390/microorganisms7110578
PII: microorganisms7110578
Knihovny.cz E-zdroje
- Klíčová slova
- biosurfactants, carotenogenic yeasts, carotenoids, ergosterol, lipase, lipids, ubiquinone,
- Publikační typ
- časopisecké články MeSH
Carotenogenic yeasts are non-conventional oleaginous microorganisms capable of utilizing various waste substrates. In this work, four red yeast strains (Rhodotorula, Cystofilobasidium, and Sporobolomyces sp.) were cultivated in media containing crude, emulsified, and enzymatically hydrolyzed animal waste fat, compared with glucose and glycerol, as single C-sources. Cell morphology (cryo-SEM (cryo-scanning electron microscopy), TEM (transmission electron microscopy)), production of biomass, lipase, biosurfactants, lipids (gas chromatography/flame ionization detection, GC/FID) carotenoids, ubiquinone, and ergosterol (high performance liquid chromatography, HPLC/PDA) in yeast cells was studied depending on the medium composition, the C source, and the carbon/nitrogen (C/N) ratio. All studied strains are able to utilize solid and processed fat. Biomass production at C/N = 13 was higher on emulsified/hydrolyzed fat than on glucose/glycerol. The production of lipids and lipidic metabolites was enhanced for several times on fat; the highest yields of carotenoids (24.8 mg/L) and lipids (54.5%/CDW (cell dry weight)) were found in S. pararoseus. Simultaneous induction of lipase and biosurfactants was observed on crude fat substrate. An increased C/N ratio (13-100) led to higher biomass production in fat media. The production of total lipids increased in all strains to C/N = 50. Oppositely, the production of carotenoids, ubiquinone, and ergosterol dramatically decreased with increased C/N in all strains. Compounds accumulated in stressed red yeasts have a great application potential and can be produced efficiently during the valorization of animal waste fat under the biorefinery concept.
Faculty of Chemistry Brno University of Technology 612 00 Brno Czech Republic
Faculty of Science and Technology Norwegian University of Life Sciences 1430 As Norway
Zobrazit více v PubMed
Stephen L. Fats and Oils–Animal Based. In: Clark S., Jung S., Lamsal B., editors. Food Processing: Principles and Applications. John Wiley and Sons; Hoboken, NJ, USA: 2014.
Gunstone F.D. Modifying Lipids for Use in Food. 1st ed. Elsevier; Amsterdam, The Netherlands: 2006. p. 429.
Doppenberg J. All about Feed. Nord. Nutr. Recomm. 2012;23:9–11.
Gupta R., Rathi P., Bradoo S. Lipase mediated upgradation of dietary fats and oils. Crit. Rev. Food Sci. Nutr. 2003;43:635–644. doi: 10.1080/10408690390251147. PubMed DOI
Schneider T., Graeff-Hönninger S., French W.T., Hernandez R., Merkt N., Claupein W., Hetrick M., Pham P. Lipid and carotenoid production by oleaginous red yeast Rhodotorula glutinis cultivated on brewery effluents. Energy. 2013;61:34–43. doi: 10.1016/j.energy.2012.12.026. DOI
Kendrick A., Ratledge C. Lipids of selected moulds grown for production of n-3 and n-6 polyunsaturated fatty acids. Lipids. 1992;20:15–20. doi: 10.1007/BF02537052. PubMed DOI
Papanikolaou S., Aggelis G. Yarrowia lipolytica: A model microorganism used for the production of tailor-made lipids. Eur. J. Lipid Sci. Technol. 2010;112:639–654. doi: 10.1002/ejlt.200900197. DOI
Kosa G., Kohler A., Shapaval V., Zimmermann B., Forfang K., Afseth N.K., Tzimorotas D., Vuoristo K.S., Horn S.J., Mounier J., et al. Microtiter plate cultivation of oleaginous fungi and monitoring of lipogenesis by high-throughput FTIR spectroscopy. Microb. Cell Fact. 2017;16:101. doi: 10.1186/s12934-017-0716-7. PubMed DOI PMC
Papanikolaou S., Dimou A., Fakas S., Diamantopoulou P., Philippoussis A., Galiotou-Panayotou M., Aggelis G. Biotechnological conversion of waste cooking olive oil into lipid-rich biomass using Aspergillus and Penicillium strains. Appl. Microbiol. 2013;56:1138–1150. doi: 10.1111/j.1365-2672.2011.04961.x. PubMed DOI
Papanikolaou S., Aggelis G. Lipid production by Yarrowia lipolytica growing on industrial glycerol in a single-stage continuous culture. Bioresour. Technol. 2002;82:43–49. doi: 10.1016/S0960-8524(01)00149-3. PubMed DOI
Papanikolaou S., Aggelis G. Modeling lipid accumulation and degradation in Yarrowia lipolytica cultivated on industrial fats. Curr. Microbiol. 2003;46:398–402. doi: 10.1007/s00284-002-3907-2. PubMed DOI
Roux-Van der Merwe M.P., Badenhorst J., Britz T.J. Fungal treatment of an edible-oil-containing industrial effluent. World J. Microbiol. Biotechnol. 2005;21:947–953. doi: 10.1007/s11274-004-6962-y. DOI
Latha B.V., Jeevaratnam K., Murali H.S., Manja K.S. Influence of growth factors on carotenoid pigmentation of Rhodotorula glutinis DFR-PDY from natural source. Ind. J. Biotechnol. 2005;4:353–357.
Libkind D., van Broock M. Biomass and carotenoid pigment production by patagonian native yeasts. World J. Microbiol. Biotechnol. 2006;22:687–692. doi: 10.1007/s11274-005-9091-3. DOI
Yurkov A.M., Vustin M.M., Tyaglov B.V., Maksimova I.A., Sinekoiy S.P. Pigmented Basidiomycetous yeasts are a promising source of carotenoids and ubiquinone Q10. Microbiology. 2008;77:1–6. doi: 10.1134/S0026261708010013. PubMed DOI
Cheirsilp B., Louhasakul Y. Industrial wastes as a promising renewable source for production of microbial lipid and direct transesterification of the lipid into biodiesel. Bioresour. Technol. 2013;142:329–337. doi: 10.1016/j.biortech.2013.05.012. PubMed DOI
Lopes M., Gomes A.S., Silva C.M., Belo I. Microbial lipids and added value metabolites production by Yarrowia lipolytica from pork lard. J. Biotechnol. 2018;265:76–85. doi: 10.1016/j.jbiotec.2017.11.007. PubMed DOI
Marova I., Szotkowski M., Vanek M., Rapta M., Byrtusova D., Mikheichyk N., Haronikova A., Certik M., Shapaval V. Utilization of animal fat waste as carbon source by carotenogenic yeasts–a screening study. EuroBiotech J. 2017;1:310–318. doi: 10.24190/ISSN2564-615X/2017/04.08. DOI
Petrik S., Hároniková A., Márová I., Kostovová I., Breierová E. Production of biomass, carotenoids and other lipid metabolites by several red yeast strains cultivated on waste glycerol from biofuel production-a comparative screening study. Ann. Microbiol. 2013;63:1537–1551. doi: 10.1007/s13213-013-0617-x. DOI
Obruca S., Sedlacek P., Mravec F., Krzyzanek V., Nebesarova J., Samek O., Kucera D., Benesova P., Hrubanova K., Milerova M., et al. The presence of PHB granules in cytoplasm protects non-halophilic bacterial cells against the harmful impact of hypertonic environments. New Biotechnol. 2017;39:68–80. doi: 10.1016/j.nbt.2017.07.008. PubMed DOI
Kucera D., Pernicova I., Kovalcik A., Koller M., Mullerova L., Sedlacek P., Mravec F., Nebesarova J., Kalina M., Marova I., et al. Characterization of the promising poly(3-hydroxybutyrate) producing halophilic bacterium Halomonas halophila. Bioresour. Technol. 2018;256:552–556. doi: 10.1016/j.biortech.2018.02.062. PubMed DOI
Rossi M., Amaretti A., Raimondi S., Leonardi A. Biodiesel-Feedstocks and Processing Technologies. InTech, IntechOpen Limited; London, UK: 2011. Getting lipids for biodiesel production from oleaginous fungi.
Schiavone M., Sieczkowski N., Castex M., Dague E., François J.M. Effects of the strain background and autolysis process on the composition and biophysical properties of the cell wall from two different industrial yeasts. FEMS Yeast Res. 2015;15:fou012. doi: 10.1093/femsyr/fou012. PubMed DOI
Gründemann C., Garcia-Käufer M., Sauer B., Scheer R., Merdivan S., Bettin P., Huber R., Lindequist U. Comparative chemical and biological investigations of β-glucan-containing products from shiitake mushrooms. J. Funct. Foods. 2015;18:692–702. doi: 10.1016/j.jff.2015.08.022. DOI
Aguilar-Uscanga B., Francois J.M. A study of the yeast cell wall composition and structure in response to growth conditions and mode of cultivation. Lett. Appl. Microbiol. 2003;37:268–274. doi: 10.1046/j.1472-765X.2003.01394.x. PubMed DOI
Meng X., Yang J., Xu X., Zhang L., Nie Q., Xian M. Biodiesel production from oleaginous microorganisms. Renew. Energy. 2009;34:1–5. doi: 10.1016/j.renene.2008.04.014. DOI
Braunwald T., Schwemmlein L., Graeff-Hönninger S. Effect of different C/N ratios on carotenoid and lipid production by Rhodotorula glutinis. Appl. Microbiol. Biotechnol. 2013;97:6581–6588. doi: 10.1007/s00253-013-5005-8. PubMed DOI
Jiru T.M., Groenewald M., Pohl C., Steyn L., Kiggundu N., Abate D. Optimization of cultivation conditions for biotechnological production of lipid by Rhodotorula kratochvilovae (syn, Rhodosporidium kratochvilovae) SY89 for biodiesel preparation. 3 Biotech. 2017;3:145. doi: 10.1007/s13205-017-0769-7. PubMed DOI PMC
Kempka A.P., Lipke N.R., Pinheiro T.L.F., Menoncin S., Treichel H., Freire D.M.G. Response surface method to optimize the production and characterization of lipase from Penicillium verrucosum in solid-state fermentation. Bioprocess Biosyst. Eng. 2008;31:119–125. doi: 10.1007/s00449-007-0154-8. PubMed DOI
Kosa G., Vuoristo K.S., Horn S., Zimmermann B., Afseth N.K., Kohler A., Shapaval V. FTIR spectroscopy as a unified method for simultaneous analysis of intra- and extracellular metabolites in high-throughput screening of microbial bioprocesses. Microb. Cell Fact. 2017;16:195–206. doi: 10.1186/s12934-017-0817-3. PubMed DOI PMC
Kosa G., Zimmermann B., Kohler A., Ekeberg D., Afseth N.K., Mounier J., Shapaval V. High-throughput screening of Mucoromycota fungi for production of low- and high-value lipids. Biotechnol. Biofuels. 2018;11:66. doi: 10.1186/s13068-018-1070-7. PubMed DOI PMC
El-Banna A., El-Razek A., El-Mahdy A. Some Factors Affecting the Production of Carotenoids by Rhodotorula glutinis var. glutinis. Food Nutr. Sci. 2012;2:10–18.
Xiao W. Yeast Protocols (Methods in Molecular Biology) 2nd ed. Humana Press; Totowa, NJ, USA: 2005. p. 392.
Frengova G.I., Beshkova D.M. Carotenoids from Rhodotorula and Phaffia: Yeasts of biotechnological importance. J. Ind. Microbiol.Biotechnol. 2009;36:163–180. doi: 10.1007/s10295-008-0492-9. PubMed DOI
Lee J.J.L., Chen L., Shi J., Trzcinski A., Chen W.N. Metabolic profiling of Rhodosporidium toruloides grown on glycerol for carotenoid production during different growth phases. J. Agric. Food Chem. 2014;62:10203–10209. doi: 10.1021/jf502987q. PubMed DOI
Amaral P.F.F., Coelho M.A., Marrucho I.M.J., Countinho J.A.P. Biosurfactants from Yeasts: Characteristics, Production and Application. In: Sen R., editor. Biosurfactants. Springer; New York, NY, USA: 2010. pp. 236–249. Chapter 18. PubMed
Conversion of Mixed Waste Food Substrates by Carotenogenic Yeasts of Rhodotorula sp. Genus
Oleaginous Yeast Extracts and Their Possible Effects on Human Health
Rhodotorula kratochvilovae CCY 20-2-26-The Source of Multifunctional Metabolites
The Use of Raman Spectroscopy to Monitor Metabolic Changes in Stressed Metschnikowia sp. Yeasts
Revealing the Potential of Lipid and β-Glucans Coproduction in Basidiomycetes Yeast