Study of Metabolic Adaptation of Red Yeasts to Waste Animal Fat Substrate

. 2019 Nov 19 ; 7 (11) : . [epub] 20191119

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31752339

Grantová podpora
Lipofungi, Nr.268305 The Research Council of Norway

Odkazy

PubMed 31752339
PubMed Central PMC6920810
DOI 10.3390/microorganisms7110578
PII: microorganisms7110578
Knihovny.cz E-zdroje

Carotenogenic yeasts are non-conventional oleaginous microorganisms capable of utilizing various waste substrates. In this work, four red yeast strains (Rhodotorula, Cystofilobasidium, and Sporobolomyces sp.) were cultivated in media containing crude, emulsified, and enzymatically hydrolyzed animal waste fat, compared with glucose and glycerol, as single C-sources. Cell morphology (cryo-SEM (cryo-scanning electron microscopy), TEM (transmission electron microscopy)), production of biomass, lipase, biosurfactants, lipids (gas chromatography/flame ionization detection, GC/FID) carotenoids, ubiquinone, and ergosterol (high performance liquid chromatography, HPLC/PDA) in yeast cells was studied depending on the medium composition, the C source, and the carbon/nitrogen (C/N) ratio. All studied strains are able to utilize solid and processed fat. Biomass production at C/N = 13 was higher on emulsified/hydrolyzed fat than on glucose/glycerol. The production of lipids and lipidic metabolites was enhanced for several times on fat; the highest yields of carotenoids (24.8 mg/L) and lipids (54.5%/CDW (cell dry weight)) were found in S. pararoseus. Simultaneous induction of lipase and biosurfactants was observed on crude fat substrate. An increased C/N ratio (13-100) led to higher biomass production in fat media. The production of total lipids increased in all strains to C/N = 50. Oppositely, the production of carotenoids, ubiquinone, and ergosterol dramatically decreased with increased C/N in all strains. Compounds accumulated in stressed red yeasts have a great application potential and can be produced efficiently during the valorization of animal waste fat under the biorefinery concept.

Zobrazit více v PubMed

Stephen L. Fats and Oils–Animal Based. In: Clark S., Jung S., Lamsal B., editors. Food Processing: Principles and Applications. John Wiley and Sons; Hoboken, NJ, USA: 2014.

Gunstone F.D. Modifying Lipids for Use in Food. 1st ed. Elsevier; Amsterdam, The Netherlands: 2006. p. 429.

Doppenberg J. All about Feed. Nord. Nutr. Recomm. 2012;23:9–11.

Gupta R., Rathi P., Bradoo S. Lipase mediated upgradation of dietary fats and oils. Crit. Rev. Food Sci. Nutr. 2003;43:635–644. doi: 10.1080/10408690390251147. PubMed DOI

Schneider T., Graeff-Hönninger S., French W.T., Hernandez R., Merkt N., Claupein W., Hetrick M., Pham P. Lipid and carotenoid production by oleaginous red yeast Rhodotorula glutinis cultivated on brewery effluents. Energy. 2013;61:34–43. doi: 10.1016/j.energy.2012.12.026. DOI

Kendrick A., Ratledge C. Lipids of selected moulds grown for production of n-3 and n-6 polyunsaturated fatty acids. Lipids. 1992;20:15–20. doi: 10.1007/BF02537052. PubMed DOI

Papanikolaou S., Aggelis G. Yarrowia lipolytica: A model microorganism used for the production of tailor-made lipids. Eur. J. Lipid Sci. Technol. 2010;112:639–654. doi: 10.1002/ejlt.200900197. DOI

Kosa G., Kohler A., Shapaval V., Zimmermann B., Forfang K., Afseth N.K., Tzimorotas D., Vuoristo K.S., Horn S.J., Mounier J., et al. Microtiter plate cultivation of oleaginous fungi and monitoring of lipogenesis by high-throughput FTIR spectroscopy. Microb. Cell Fact. 2017;16:101. doi: 10.1186/s12934-017-0716-7. PubMed DOI PMC

Papanikolaou S., Dimou A., Fakas S., Diamantopoulou P., Philippoussis A., Galiotou-Panayotou M., Aggelis G. Biotechnological conversion of waste cooking olive oil into lipid-rich biomass using Aspergillus and Penicillium strains. Appl. Microbiol. 2013;56:1138–1150. doi: 10.1111/j.1365-2672.2011.04961.x. PubMed DOI

Papanikolaou S., Aggelis G. Lipid production by Yarrowia lipolytica growing on industrial glycerol in a single-stage continuous culture. Bioresour. Technol. 2002;82:43–49. doi: 10.1016/S0960-8524(01)00149-3. PubMed DOI

Papanikolaou S., Aggelis G. Modeling lipid accumulation and degradation in Yarrowia lipolytica cultivated on industrial fats. Curr. Microbiol. 2003;46:398–402. doi: 10.1007/s00284-002-3907-2. PubMed DOI

Roux-Van der Merwe M.P., Badenhorst J., Britz T.J. Fungal treatment of an edible-oil-containing industrial effluent. World J. Microbiol. Biotechnol. 2005;21:947–953. doi: 10.1007/s11274-004-6962-y. DOI

Latha B.V., Jeevaratnam K., Murali H.S., Manja K.S. Influence of growth factors on carotenoid pigmentation of Rhodotorula glutinis DFR-PDY from natural source. Ind. J. Biotechnol. 2005;4:353–357.

Libkind D., van Broock M. Biomass and carotenoid pigment production by patagonian native yeasts. World J. Microbiol. Biotechnol. 2006;22:687–692. doi: 10.1007/s11274-005-9091-3. DOI

Yurkov A.M., Vustin M.M., Tyaglov B.V., Maksimova I.A., Sinekoiy S.P. Pigmented Basidiomycetous yeasts are a promising source of carotenoids and ubiquinone Q10. Microbiology. 2008;77:1–6. doi: 10.1134/S0026261708010013. PubMed DOI

Cheirsilp B., Louhasakul Y. Industrial wastes as a promising renewable source for production of microbial lipid and direct transesterification of the lipid into biodiesel. Bioresour. Technol. 2013;142:329–337. doi: 10.1016/j.biortech.2013.05.012. PubMed DOI

Lopes M., Gomes A.S., Silva C.M., Belo I. Microbial lipids and added value metabolites production by Yarrowia lipolytica from pork lard. J. Biotechnol. 2018;265:76–85. doi: 10.1016/j.jbiotec.2017.11.007. PubMed DOI

Marova I., Szotkowski M., Vanek M., Rapta M., Byrtusova D., Mikheichyk N., Haronikova A., Certik M., Shapaval V. Utilization of animal fat waste as carbon source by carotenogenic yeasts–a screening study. EuroBiotech J. 2017;1:310–318. doi: 10.24190/ISSN2564-615X/2017/04.08. DOI

Petrik S., Hároniková A., Márová I., Kostovová I., Breierová E. Production of biomass, carotenoids and other lipid metabolites by several red yeast strains cultivated on waste glycerol from biofuel production-a comparative screening study. Ann. Microbiol. 2013;63:1537–1551. doi: 10.1007/s13213-013-0617-x. DOI

Obruca S., Sedlacek P., Mravec F., Krzyzanek V., Nebesarova J., Samek O., Kucera D., Benesova P., Hrubanova K., Milerova M., et al. The presence of PHB granules in cytoplasm protects non-halophilic bacterial cells against the harmful impact of hypertonic environments. New Biotechnol. 2017;39:68–80. doi: 10.1016/j.nbt.2017.07.008. PubMed DOI

Kucera D., Pernicova I., Kovalcik A., Koller M., Mullerova L., Sedlacek P., Mravec F., Nebesarova J., Kalina M., Marova I., et al. Characterization of the promising poly(3-hydroxybutyrate) producing halophilic bacterium Halomonas halophila. Bioresour. Technol. 2018;256:552–556. doi: 10.1016/j.biortech.2018.02.062. PubMed DOI

Rossi M., Amaretti A., Raimondi S., Leonardi A. Biodiesel-Feedstocks and Processing Technologies. InTech, IntechOpen Limited; London, UK: 2011. Getting lipids for biodiesel production from oleaginous fungi.

Schiavone M., Sieczkowski N., Castex M., Dague E., François J.M. Effects of the strain background and autolysis process on the composition and biophysical properties of the cell wall from two different industrial yeasts. FEMS Yeast Res. 2015;15:fou012. doi: 10.1093/femsyr/fou012. PubMed DOI

Gründemann C., Garcia-Käufer M., Sauer B., Scheer R., Merdivan S., Bettin P., Huber R., Lindequist U. Comparative chemical and biological investigations of β-glucan-containing products from shiitake mushrooms. J. Funct. Foods. 2015;18:692–702. doi: 10.1016/j.jff.2015.08.022. DOI

Aguilar-Uscanga B., Francois J.M. A study of the yeast cell wall composition and structure in response to growth conditions and mode of cultivation. Lett. Appl. Microbiol. 2003;37:268–274. doi: 10.1046/j.1472-765X.2003.01394.x. PubMed DOI

Meng X., Yang J., Xu X., Zhang L., Nie Q., Xian M. Biodiesel production from oleaginous microorganisms. Renew. Energy. 2009;34:1–5. doi: 10.1016/j.renene.2008.04.014. DOI

Braunwald T., Schwemmlein L., Graeff-Hönninger S. Effect of different C/N ratios on carotenoid and lipid production by Rhodotorula glutinis. Appl. Microbiol. Biotechnol. 2013;97:6581–6588. doi: 10.1007/s00253-013-5005-8. PubMed DOI

Jiru T.M., Groenewald M., Pohl C., Steyn L., Kiggundu N., Abate D. Optimization of cultivation conditions for biotechnological production of lipid by Rhodotorula kratochvilovae (syn, Rhodosporidium kratochvilovae) SY89 for biodiesel preparation. 3 Biotech. 2017;3:145. doi: 10.1007/s13205-017-0769-7. PubMed DOI PMC

Kempka A.P., Lipke N.R., Pinheiro T.L.F., Menoncin S., Treichel H., Freire D.M.G. Response surface method to optimize the production and characterization of lipase from Penicillium verrucosum in solid-state fermentation. Bioprocess Biosyst. Eng. 2008;31:119–125. doi: 10.1007/s00449-007-0154-8. PubMed DOI

Kosa G., Vuoristo K.S., Horn S., Zimmermann B., Afseth N.K., Kohler A., Shapaval V. FTIR spectroscopy as a unified method for simultaneous analysis of intra- and extracellular metabolites in high-throughput screening of microbial bioprocesses. Microb. Cell Fact. 2017;16:195–206. doi: 10.1186/s12934-017-0817-3. PubMed DOI PMC

Kosa G., Zimmermann B., Kohler A., Ekeberg D., Afseth N.K., Mounier J., Shapaval V. High-throughput screening of Mucoromycota fungi for production of low- and high-value lipids. Biotechnol. Biofuels. 2018;11:66. doi: 10.1186/s13068-018-1070-7. PubMed DOI PMC

El-Banna A., El-Razek A., El-Mahdy A. Some Factors Affecting the Production of Carotenoids by Rhodotorula glutinis var. glutinis. Food Nutr. Sci. 2012;2:10–18.

Xiao W. Yeast Protocols (Methods in Molecular Biology) 2nd ed. Humana Press; Totowa, NJ, USA: 2005. p. 392.

Frengova G.I., Beshkova D.M. Carotenoids from Rhodotorula and Phaffia: Yeasts of biotechnological importance. J. Ind. Microbiol.Biotechnol. 2009;36:163–180. doi: 10.1007/s10295-008-0492-9. PubMed DOI

Lee J.J.L., Chen L., Shi J., Trzcinski A., Chen W.N. Metabolic profiling of Rhodosporidium toruloides grown on glycerol for carotenoid production during different growth phases. J. Agric. Food Chem. 2014;62:10203–10209. doi: 10.1021/jf502987q. PubMed DOI

Amaral P.F.F., Coelho M.A., Marrucho I.M.J., Countinho J.A.P. Biosurfactants from Yeasts: Characteristics, Production and Application. In: Sen R., editor. Biosurfactants. Springer; New York, NY, USA: 2010. pp. 236–249. Chapter 18. PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Raman spectroscopy online monitoring of biomass production, intracellular metabolites and carbon substrates during submerged fermentation of oleaginous and carotenogenic microorganisms

. 2023 Dec 18 ; 22 (1) : 261. [epub] 20231218

The Effect of Oil-Rich Food Waste Substrates, Used as an Alternative Carbon Source, on the Cultivation of Microalgae-A Pilot Study

. 2023 Jun 21 ; 11 (7) : . [epub] 20230621

Conversion of Mixed Waste Food Substrates by Carotenogenic Yeasts of Rhodotorula sp. Genus

. 2023 Apr 13 ; 11 (4) : . [epub] 20230413

Oleaginous Yeast Extracts and Their Possible Effects on Human Health

. 2023 Feb 16 ; 11 (2) : . [epub] 20230216

Production of Enriched Biomass by Carotenogenic Yeasts Cultivated on by-Products of Poultry Processing-A Screening Study

. 2023 Jan 27 ; 11 (2) : . [epub] 20230127

Use of Waste Substrates for the Lipid Production by Yeasts of the Genus Metschnikowia-Screening Study

. 2021 Nov 04 ; 9 (11) : . [epub] 20211104

Production of Enriched Sporidiobolus sp. Yeast Biomass Cultivated on Mixed Coffee Hydrolyzate and Fat/Oil Waste Materials

. 2021 Aug 31 ; 9 (9) : . [epub] 20210831

Rhodotorula kratochvilovae CCY 20-2-26-The Source of Multifunctional Metabolites

. 2021 Jun 11 ; 9 (6) : . [epub] 20210611

Bioreactor Co-Cultivation of High Lipid and Carotenoid Producing Yeast Rhodotorula kratochvilovae and Several Microalgae under Stress

. 2021 May 28 ; 9 (6) : . [epub] 20210528

The Use of Raman Spectroscopy to Monitor Metabolic Changes in Stressed Metschnikowia sp. Yeasts

. 2021 Jan 29 ; 9 (2) : . [epub] 20210129

Revealing the Potential of Lipid and β-Glucans Coproduction in Basidiomycetes Yeast

. 2020 Jul 13 ; 8 (7) : . [epub] 20200713

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...