Oleaginous Yeast Extracts and Their Possible Effects on Human Health
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.2.69/0.0/0.0/19_073/0016948 specifically by KInG No. 7746.
Ministry of Education Youth and Sports
" Nr.301834 , Byprovalue
Norges Fiskarlag
PubMed
36838460
PubMed Central
PMC9965212
DOI
10.3390/microorganisms11020492
PII: microorganisms11020492
Knihovny.cz E-zdroje
- Klíčová slova
- antimicrobial effect, apoptosis, bioactive compounds, cytotoxic effect, oleaginous yeast, pigmented yeasts,
- Publikační typ
- časopisecké články MeSH
Four non-conventional oleaginous and pigmented yeast strains of Metschnikowia pulcherrima, Cystofilobasidium infirmominiatum, Phaffia rhodozyma, and Rhodotorula kratochvilovae were used in this study. Complex yeast extracts were prepared and tested for biological activity, safety, and effect on human health. In this paper, we measured the antioxidant activity and antimicrobial effect of yeast biomass as a whole and their extracts to compare the influence of carotenoids and other bioactive substances in the studied biomass. All yeast extracts exhibited a significant dose-dependent antimicrobial effect against both G+ and G- bacteria and had a strong antioxidant effect. No cytotoxicity in the mouse melanoma B16F1 cell line was found in concentrations up to 20% of rehydrated biomass in cell medium. All of the extracts were cytotoxic at a concentration of 5 mg of extract/g of dry biomass. All the pigmented yeast extracts showed some positive results for apoptosis of murine melanoma cell lines and are therefore strong candidates positively effect human health. Red yeast cell biomass is a prospective material with many attractive biological functions and can be used in the food industry, as a pharmaceutical material, or in the feed industry.
Zobrazit více v PubMed
Adedayo M.R., Ajiboye E.A., Akintudne J.K., Odaibo A. Single cell proteins: As nutritional enhancer. Adv. Appl. Sci. Res. 2011;2:396–409.
Reed G., Nagodawithana T.W. Technology of Yeast Usage in Winemaking. Am. J. Enol. Vitic. 1988;39:83–90. doi: 10.5344/ajev.1988.39.1.83. DOI
Ferreira I., Pinho O., Vieira E., Tavarela J. Brewer’s Saccharomyces yeast biomass: Characteristics and potential applications. Trends Food Sci. Technol. 2010;21:77–84. doi: 10.1016/j.tifs.2009.10.008. DOI
Gonçalves F.A.G., Colen G., Takahashi J.A. Yarrowia lipolytica and its multiple applications in the biotechnological industry. Sci. World J. 2014;2014:476207. doi: 10.1155/2014/476207. PubMed DOI PMC
Jach M.E., Malm A. Yarrowia lipolytica as a valuable source of bioactive compounds. Molecules. 2022;27:2300. doi: 10.3390/molecules27072300. PubMed DOI PMC
Groenewald M., Boekhout T., Neuveglise C., Gaillardin C., Van Dijck P.W.M., Wyss M. Yarrowia lipolytica: Safety assessment of an oleaginous yeast with a great industrial potential. Crit. Rev. Microbiol. 2014;40:187–206. doi: 10.3109/1040841X.2013.770386. PubMed DOI
Ramos O.L., Santos A.C., Leao M.V., Pereira J.O., Silva S.I., Fernandes J.C., Franco M.I., Pintado M.E., Malcata F.X. Antimicrobial activity of edible coatings prepared from whey protein isolate and formulated with various antimicrobial agents. Int. Dairy J. 2012;25:132–141. doi: 10.1016/j.idairyj.2012.02.008. DOI
Monnet C., Bleicher A., Neuhaus K., Sarthou A.-S., Leclercq-Perlat M.-N., Irlinger F. Assessment of the anti-listerial activity of microfloras from the surface of smear-ripened cheeses. Food Microbiol. 2010;27:302–310. doi: 10.1016/j.fm.2009.11.009. PubMed DOI
Knutsen A.K., Robert V., Poot G.A., Epping W., Figge M., Holst-Jensen A., Skaar I., Smith M.T. Polyphasic re-examination of Yarrowia lipolytica strains and the description of three novel Candida species: Candida oslonensis sp. nov., Candida alimentaria sp. nov. and Candida hollandica sp. nov. Int. J. Syst. Evol. Microbiol. 2007;57:2426–2435. doi: 10.1099/ijs.0.65200-0. PubMed DOI
Leme F.C.O., Negreiros M.M.D.B., Koga F.A., Bosco S.D.M.G., Bagagli E., Haddad V., Jr. Evaluation of pathogenic fungi occurrence in traumatogenic structures of freshwater fish. Rev. Soc. Brasil. Med. Trop. 2011;44:182–185. doi: 10.1590/S0037-86822011005000007. PubMed DOI
Stratford M. Food and beverage spoilage yeasts. In: Querol A., Fleet G.H., editors. The Yeast Handbook: Yeasts in Food and Beverages. Springer; Berlin, Germany: 2006. pp. 335–379.
Bourdichon F., Casaregola S., Farrokh C., Frisvad J.C., Gerds M.L., Hammes W.P., Harnett J., Huys G., Laulund S., Ouwehand A., et al. Food fermentations: Microorganisms with technological beneficial use. Int. J. Food Micro. 2012;154:87–97. doi: 10.1016/j.ijfoodmicro.2011.12.030. PubMed DOI
Wirth F., Goldani L.Z. Epidemiology of Rhodotorula: An Emerging Pathogen. Interdisciplinar. Persp. Infect. Dis. 2012;2012:465717. doi: 10.1155/2012/465717. PubMed DOI PMC
Senses-Ergul S., Agoston R., Belak A., Deak T. Characterization of some yeasts isolated from foods by traditional and molecular tests. Int. J. Food Micro. 2006;108:120–124. doi: 10.1016/j.ijfoodmicro.2005.10.014. PubMed DOI
Zoz L., Carvalho J.C., Soccol V.T., Casagrande T.C., Cardoso L. Torularhodin and Torulene: Bioproduction, Properties and Prospective Applications in Food and Cosmetics—A Review. Brazil. Arch. Biol. Technol. 2015;58:278–288. doi: 10.1590/S1516-8913201400152. DOI
Byrtusova D., Szotkowski M., Kurowska K., Shapaval V., Marova I. Rhodotorula kratochvilovae CCY 20-2-26—The Source of Multifunctional Metabolites. Microorganisms. 2021;9:1280. doi: 10.3390/microorganisms9061280. PubMed DOI PMC
Szotkowski M., Byrtusova D., Haronikova A., Vysoka M., Rapta M., Shapaval V., Marova I. Study of Metabolic Adaptation of Red Yeasts to Waste Animal Fat Substrate. Microorganisms. 2019;7:578. doi: 10.3390/microorganisms7110578. PubMed DOI PMC
Szotkowski M., Holub J., Simansky S.A., Hubacova K., Hladka D., Nemcova A., Marova I. Production of Enriched Sporidiobolus sp. Yeast Biomass Cultivated on Mixed Coffee Hydrolyzate and Fat/Oil Waste Materials. Microorganisms. 2021;9:1848. doi: 10.3390/microorganisms9091848. PubMed DOI PMC
Byrtusova D., Shapaval V., Holub J., Simansky S., Rapta M., Szotkowski M., Kohler A., Marova I. Revealing the Potential of Lipid and β-Glucans Coproduction in Basidiomycetes Yeast. Microorganisms. 2020;8:1034. doi: 10.3390/microorganisms8071034. PubMed DOI PMC
Li X., Turánek J., Knötigová P., Kudláčková H., Masek J., Parkin S., Rankin S., Knutson B.L., Lehmler H.-J. Hydrophobic tail length, degree of fluorination and headgroup stereochemistry are determinants of the biocompatibility of (fluorinated) carbohydrate surfactants. Colloids Surf. B Biointerfaces. 2009;73:65–74. doi: 10.1016/j.colsurfb.2009.04.023. PubMed DOI PMC
Jiang L., Wang W., He Q., Wu Y., Lu Z., Sun J., Liu Z., Shao Y., Wang A. Oleic acid induces apoptosis and autophagy in the treatment of Tongue Squamous cell carcinomas. Sci. Rep. 2017;7:11277. doi: 10.1038/s41598-017-11842-5. PubMed DOI PMC
Moona H.S., Batirel S., Mantzoros C.S. Alpha linolenic acid and oleic acid additively down-regulate malignant potential and positively cross-regulate AMPK/S6 axis in OE19 and OE33 esophageal cancer cells. Metabolism. 2014;63:1447–14454. doi: 10.1016/j.metabol.2014.07.009. PubMed DOI
Farag M.A., Gad M.Z. Omega-9 fatty acids: Potential roles in infammation and cancer management. J. Gen. Eng. Biotec. 2022;20:48. doi: 10.1186/s43141-022-00329-0. PubMed DOI PMC
Westheim J.F., Stoffels L.M., Dubois L.J., van Bergenhenegouwen J., van Helvoort A., Langen R.C.J., Shiri-Sverdlov R., Theys J. Fatty Acids as a Tool to Boost Cancer Immunotherapy Efficacy. Front. Nutr. 2022;9:868436. doi: 10.3389/fnut.2022.868436. PubMed DOI PMC