Revealing the Potential of Lipid and β-Glucans Coproduction in Basidiomycetes Yeast

. 2020 Jul 13 ; 8 (7) : . [epub] 20200713

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32668638

Grantová podpora
NFR-BIONÆR 268305 Lipofungi
NFR-FMETEKN 257622 Bio4Fuels

Odkazy

PubMed 32668638
PubMed Central PMC7409317
DOI 10.3390/microorganisms8071034
PII: microorganisms8071034
Knihovny.cz E-zdroje

Beta (β)-glucans are polysaccharides composed of D-glucose monomers. Nowadays, β-glucans are gaining attention due to their attractive immunomodulatory biological activities, which can be utilized in pharmaceutical or food supplementation industries. Some carotenogenic Basidiomycetes yeasts, previously explored for lipid and carotenoid coproduction, could potentially coproduce a significant amount of β-glucans. In the present study, we screened eleven Basidiomycetes for the coproduction of lipids and β-glucans. We examined the effect of four different C/N ratios and eight different osmolarity conditions on the coproduction of lipids and β-glucans. A high-throughput screening approach employing microcultivation in microtiter plates, Fourier Transform Infrared (FTIR) spectroscopy and reference analysis was utilized in the study. Yeast strains C. infirmominiatum CCY 17-18-4 and R. kratochvilovae CCY 20-2-26 were identified as the best coproducers of lipids and β-glucans. In addition, C. infirmominiatum CCY 17-18-4, R. kratochvilovae CCY 20-2-26 and P. rhodozyma CCY 77-1-1 were identified as the best alternative producers of β-glucans. Increased C/N ratio led to increased biomass, lipid and β-glucans production for several yeast strains. Increased osmolarity had a negative effect on biomass and lipid production while the β-glucan production was positively affected.

Zobrazit více v PubMed

Nair A.S., Al-Bahry S., Nallusamy S. Co-production of microbial lipids and biosurfactant from waste office paper hydrolysate using a novel strain Bacillus velezensis ASN1. Biomass Convers. Biorefin. 2019;10:383–391. doi: 10.1007/s13399-019-00420-6. DOI

Tiukova I.A., Brandenburg J., Blomqvist J., Sampels S., Mikkelsen N., Skaugen M., Arntzen M., Nielsen J., Sandgren M., Kerkhoven E.J. Proteome analysis of xylose metabolism in Rhodotorula toruloides during lipid production. Biotechnol. Biofuels. 2019;12:137. doi: 10.1186/s13068-019-1478-8. PubMed DOI PMC

Braunwald T., Schwemmlein L., Graeff-Hönninger S., French W.T., Hernandez R., Holmes W.E., Claupein W. Effect of different C/N ratios on carotenoid and lipid production by Rhodotorula glutinis. Appl. Microbiol. 2013;97:6581–6588. doi: 10.1007/s00253-013-5005-8. PubMed DOI

Johnson V.W., Singh M., Yadav N.K. Influence of growth conditions on the accumulation of ergosterol by Rhodotorula glutinis. World J. Microb. Biot. 1994;10:114–115. doi: 10.1007/BF00357576. PubMed DOI

Valasques G.L., O. de Lima F., Boffo E.F., Santos J.D.G., da Silva B.C., de Assis S.A. Extraction optimization and antinociceptive activity of (1⟶3)-β-d-glucan from Rhodotorula mucilaginosa: An overview. Carbohydr. Polym. 2014;105:293–299. doi: 10.1016/j.carbpol.2014.01.064. PubMed DOI

Szotkowski M., Byrtusova D., Haronikova A., Vysoka M., Rapta M., Shapaval V., Marova I. Study of metabolic adaptation of red yeast to waste animal fat substrate. Microorganisms. 2019;7:578. doi: 10.3390/microorganisms7110578. PubMed DOI PMC

Elfeky N., Elmahmoudy M., Zhang Y., Guo J.L., Bao Y. Lipid and carotenoid production by Rhodotorula glutinis with a combined cultivation mode of nitrogen, sulfur, and aluminium stress. Appl. Sci. 2019;9:2444. doi: 10.3390/app9122444. DOI

Saini R.K., Keum Y.S. Carotenoids extraction methods: A review of recent developments. Food chemistry. 2017;240:90–103. doi: 10.1016/j.foodchem.2017.07.099. PubMed DOI

Global Beta Glucan Market. [(accessed on 3 February 2020)]; Available online: https://www.bccresearch.com/partners/verified-market-research/global-beta-glucan-market.html.

Aimanianda V.C., Clavaud C., Simenel C., Fontaine T., Delepierre M., Latgé J.P. Cell Wall β-(1,6)-Glucan of Saccharomyces cerevisiae. J. Biol. 2009;284:13401–13412. PubMed PMC

Thammakiti S., Suphantharika M., Phaesuwan T., Verduyn C. Preparation of spent brewer’s yeast beta-glucans for potential applications in the food industry. Int. J. Food Sci. Tech. 2004;39:1. doi: 10.1111/j.1365-2621.2004.00742.x. DOI

Piotrowska A., Waszkiewicz-Robak B., Swiderski F. Possibility of beta-glucan from spent brewer’s yeast addition to yoghurts. Pol. J. Food Nutr. Sci. 2009;59:299–302.

Mata-Goméz L.C., Montañez J.C., Méndez-Zavala A., Aguilar C.N. Biotechnological production of carotenoids by yeasts: An overview. Microb Cell Fact. 2014;13:12. doi: 10.1186/1475-2859-13-12. PubMed DOI PMC

Santamauro F., Whiffin F.M., Scott R.J., Chuck C.J. Low-cost lipid production by an oleaginous yeast cultured in non-sterile conditions using model waste resources. Biotechnol. Biofuels. 2014;7:34. doi: 10.1186/1754-6834-7-34. PubMed DOI PMC

Kosa G., Zimmermann B., Kohler A., Ekeberg D., Afseth N.K., Mounier J., Shapaval V. High-throughput screening of Mucoromycota fungi for production of low- and high-value lipids: Structure and potential prebiotic activity. Biotechnol. Biofuels. 2018;11:66. doi: 10.1186/s13068-018-1070-7. PubMed DOI PMC

Dzurendova S., Zimmermann B., Kohler A., Tafintseva V., Slany O., Certik M., Shapaval O. Microcultivation and and FTIR spectroscopy-based screening revealed a nutrient-induced co-production of high-value metabolites in oleaginous Mucoromycota fungi. PLoS ONE. 2020 doi: 10.1371/journal.pone.0234870. Accepted. PubMed DOI PMC

Kohler A., Böcker U., Shapaval V., Forsmark A., Andersson M., Warringer J., Martens H., Omholt S.W., Blomberg A. High-throughput biochemical fingerprints of Saccharomyces cerevisiae by Fourier transform infrared spectroscopy. PLoS ONE. 2015;10:2. doi: 10.1371/journal.pone.0118052. PubMed DOI PMC

Shapaval V., Brandenburg J., Blomqvist J., Tafintseva V., Passoth V., Sandgren M., Kohler A. Biochemical profiling, prediction of total lipid content and fatty acid profile in oleaginous yeasts by FTIR spectroscopy. Biotechnol Biofuels. 2019;12:140. doi: 10.1186/s13068-019-1481-0. PubMed DOI PMC

Shapaval V., Møretrø T., Suso H.P., Åsli A.E., Schmitt J., Lilehaug D., Martens H., Boecker U., Hohler A. A high-throughput microcultivation protocol for FTIR spectroscopic characterization and identification of fungi. J. Biophotonics. 2010;3:512–521. doi: 10.1002/jbio.201000014. PubMed DOI

Shapaval V., Schmitt J., Møretrø T., Suso H.P., Åsli A.E., Belarbi A., Kohler A. FTIR spectroscopic characterization of differently cultivated food related yeasts. Analyst. 2012;138:4129–4138. doi: 10.1039/c3an00304c. PubMed DOI

Shapaval V., Schmitt J., Møretrø T., Suso H.P., Skaar I., Åsli A.E., Lilehaug D., Kohler A. Characterization of food spoilage fungi by FTIR. J. Appl Microbiol. 2013;114:788–796. doi: 10.1111/jam.12092. PubMed DOI

Kosa G., Kohler A., Tafintseva V., Zimmermann B., Forfang K., Afseth N.K., Tzimorotas D., Vuoristo K.S., Horn S.J., Mounier J., et al. Microtiter plate cultivation of oleaginous fungi and monitoring of lipogenesis by high-throughput FTIR spectroscopy. Microb Cell Fact. 2017;16:101. doi: 10.1186/s12934-017-0716-7. PubMed DOI PMC

Kosa G., Vuoristo K.S., Horn S.J., Zimmermann B., Afseth N.K., Kohler A., Shapaval V. Assessment of the scalability of a microtiter plate system for screening of oleaginous microorganisms: An overview. Applm Microbiol. 2018;102:4915–4925. doi: 10.1007/s00253-018-8920-x. PubMed DOI PMC

Sari M., Prange A., Lelley J.I., Hambitzer R. Screening of beta-glucan contents in commercially cultivated and wild growing mushrooms: An overview. Food Chem. 2017;216:45–51. doi: 10.1016/j.foodchem.2016.08.010. PubMed DOI

Gründemann C., Garcia-Kaufer M., Sauer B., Scheer R., Merdivan S., Bettin P., Huber R., Lindequist U. Comparative chemical and biological investigations of β-glucan-containing products from shiitake mushrooms: An overview. J. Funct. 2015;18:692–702. doi: 10.1016/j.jff.2015.08.022. DOI

Synytsya A., Míčková K., Synytsya A., Jablonský I., Spěváček J., Erban V., Kovaříková E., Čopíková J. Glucans from fruit bodies of cultivated mushrooms Pleurotus ostreatus and Pleurotus eryngii: Structure and potential prebiotic activity. Carbohydr. Polym. 2009;76:548–556. doi: 10.1016/j.carbpol.2008.11.021. DOI

Zimmermann B., Kohler A. Optimizing Savitzky-Golay parameters for improving spectral resolution and quantification in infrarwd spectroscopy. Appl Spectrosc. 2013;67:892–902. doi: 10.1366/12-06723. PubMed DOI

Afseth N.K., Kohler A. Extended multiplicative signal correction in vibrational spectroscopy, a tutorial. Chemom. Intell. Lab. Syst. 2012;117:13–21. doi: 10.1016/j.chemolab.2012.03.004. DOI

Kohler A., Kirschner C., Oust A., Martens H. Extended multiplicative signal correction as a tool for separation and characterization of physical and chemical information in fourier transform infrared microscopy images of Cryo-section of beef loin. Appl Spectrosc. 2005;59:707–716. doi: 10.1366/0003702054280649. PubMed DOI

Demšar J., Curk T. Orange: Data Mining Toolbox in Python. J. Mach. Learn. Res. 2013;14:2349–2353.

Toplak M., Birarda G., Read S., Sandt C., Rosendahl S.M., Vaccari L., Demšar J., Borondics F. Infrared Orange: Connecting Hyperspectral Data with Machine Learning. Synchrotron Radiat. News. 2017;30:40–45. doi: 10.1080/08940886.2017.1338424. DOI

Guillén D.M., Cabo N. Relationships between the Composition of Edible Oils and Lard and the Ratio of the Absorbance of Specific Bands of Their Fourier Transform Infrared Spectra. Role of Some Bands of the Fingerprint Region. J. Agric. Food Chem. 1998;46:1788–1793. doi: 10.1021/jf9705274. DOI

Hong K., Sun S., Tian W., Chen G.Q., Huang W. A rapid method for detecting bacterial polyhydroxyalkanoates in intact cells by Fourier transform infrared spectroscopy. Appl. Microbiol. 1999;51:523–526. doi: 10.1007/s002530051427. DOI

Jackson M., Mantsch H.H. The Use and Misuse of FTIR Spectroscopy in the Determination of Protein Structure. Crit. Rev. Biochem. Mol. 2008;30:95–120. doi: 10.3109/10409239509085140. PubMed DOI

Mayers R.A. Encyclopedia of Analytical Chemistry. John Wiley & Sons; Chichester, UK: 2006.

Sima P., Vannucci L., Vetvicka V., Pradhan B.B., Chatterjee S., Nilsson L., Wang W. Β-glucans and cholesterol (Review) Int. J. Mol. Med. 2018;41:1799–1808. doi: 10.3892/ijmm.2018.3411. PubMed DOI PMC

Ruiz-Herrera J., Ortiz-Castellanos L. Cell wall glucans of fungi. A review. Cell Surface. 2019;5:100022. doi: 10.1016/j.tcsw.2019.100022. PubMed DOI PMC

Cescut J., Fillaudeau L., Molina-Jouve C., Uribelarrea J.L. Carbon accumulation in Rhodotorula glutinis induced by nitrogen limitation: Connecting Hyperspectral Data with Machine Learning. Biotechnol. Biofuels. 2014;7:164. doi: 10.1186/s13068-014-0164-0. PubMed DOI PMC

Singh G., Jawed A., Paul D., Bandyopadhyay K.K., Kumari A., Haque S. Concomitant Production of Lipids and Carotenoids in Rhodosporidium toruloides under Osmotic Stress Using Response Surface Methodology. Front. Microbiol. 2016;7:1686. doi: 10.3389/fmicb.2016.01686. PubMed DOI PMC

Kot A.M., Błażejak S., Kieliszek M., Gientka I., Bryś J., Reczek L., Pobiega K. Effect of exogenous stress factors on the biosynthesis of carotenoids and lipids by Rhodotorula yeast strains in media containing agro-industrial waste. World J. Microb Biot. 2019;35:157. doi: 10.1007/s11274-019-2732-8. PubMed DOI PMC

Narumeon M., Romanee S., Cheunjit P., Xiao H., McLandsborough L.A., Pawadee M. Influence on Additives on Saccharomyces cerevisiae β-glucan production. Int Food Res. J. 2013;20:1953–1959.

Varelas V., Sotiropoulou E., Karambini X., Liouni M., Nerantzis E. Impact of Glucose Concentration and NaCl Osmotic Stress on Yeast Cell Wall β-d-Glucan Formation during Anaerobic Fermentation Process. Fermentation. 2017;3:44. doi: 10.3390/fermentation3030044. DOI

Kim Y.H., Kang S.W., Lee J.H., Chang H.I., Yun C.W., Paik H.D., Kang C.W., Kim S.W. High cell density fermentation of Saccharomyces cerevisiae JUL3 in fed-batch culture for the production of β-Glucan. J. Ind Eng Chem. 2007;13:153–158.

Aguilar-Uscanga B., Francois J.M. A study of the yeast cell wall composition and structure in response to growth conditions and mode of cultivation. Lett Appl Microbiol. 2003;37:268–274. doi: 10.1046/j.1472-765X.2003.01394.x. PubMed DOI

Bzducha-Wróbel A., Kieliszek M., Błażejak S. Chemical composition of the cell wall of probiotic and brewer’s yeast in responce to cultivate medium with glycerol as a carbon source. Eur. Food Res. Technol. 2013;237:489–499.

Kim K.S., Yun S.H. Production of soluble β-glucan from the cell wall of Saccharomyces cerevisiae. Enzyme Microb Tech. 2006;39:496–500. doi: 10.1016/j.enzmictec.2005.12.020. DOI

Klis F.M., Mol P., Hellingwerf K., Brul S. Dynamics of cell wall structure in Saccharomyces cerevisiae. FEMS Microbiol. Rev. 2002;26:239–256. doi: 10.1111/j.1574-6976.2002.tb00613.x. PubMed DOI

Klis F.M., Boorsma A., De Groot P.W.J. Cell wall contruction in Saccharomyces cerevisiae. Yeast. 2006;23:185–202. doi: 10.1002/yea.1349. PubMed DOI

McMurrough I., Rose A.H. Effect of growth rate and substrate limitation on the composition and structure of the cell wall of Saccharomyces cerevisiae. Biochem J. 1967;105:189–203. doi: 10.1042/bj1050189. PubMed DOI PMC

Pengkumsrip N., Sivamaruthi B.S., Sirilun S., Peerajan S., Kesika P., Chaiyasut K., Chaiyasut C. Extraction of β-glucan from Saccharomyces cerevisiae: Comparison of different extraction methods and in vivo assessment of immunomodulatory effect in mice. Food Sci. Technol. 2011;37:124–130. doi: 10.1590/1678-457x.10716. DOI

Zhou X., He J., Wang L., Wang Y., Du G., Kang Z. Metabolic engineering of Saccharomyces cerevisiae to improve glucan biosynthesis. J. Microbiol. Biotechnol. 2019;29:758–764. doi: 10.4014/jmb.1812.12049. PubMed DOI

Mongkontanawat N., Wasikadilok N., Phuangborisut S., Chanawanno T., Khunphutthiraphi T. β-glucans production of saccharomyces cerevisiae by using malva nut juice production wastewater. Int. Food Res. J. 2018;25:499–503.

Many J.N., Vizhi K. Analysis of different extraction methods on the yield and recovery of β-glucan from baker’s yeast (Saccharomyces cerevisiae) Int. j. innov. Res. Sci. eng. 2014;1:2348–7968.

Bzducha-Wróbel A., Błażejak S., Molenda M., Reczek L. Biosynthesis of β(1,3)/(1,6)-glucans f cell wall of the yeast Candida utilis ATCC 9950 strains in the culture media supplemented with deproteinated potato juice water and glycerol. Eur Food Res. Technol. 2014;240:1023–1034. doi: 10.1007/s00217-014-2406-6. DOI

Bzducha-Wróbel A., Pobiega K., Błażejak S., Kieliszek M. The scale-up cultivation od Candida utilis in waste potato juice water with glycerol affects biomass and β(1,3)/(1,6)-glucan characteristic and yield. Appl. Microbiol. 2018;102:9131–9145. PubMed PMC

Rossi M., Amaretti A., Raimondi S., Leonardi A. Biodiesel—Feedstocks and Processing Technologies. InTechOpen; London, UK: 2011. Getting Lipids for Biodiesel Production from Oleaginous Fungi. DOI

Márova I., Szotkowski M., Byrtusova D., Rapta M., Hároniková A., Čertík M., Shapaval V. Pigmented yeasts as biotechnological factories for food and feed supplements. J. Biotechnol. 2018;280

Vanek M., Mravec F., Szotkowski M., Byrtusova D., Haronikova A., Certik M., Shapaval V., Marova I. Fluorescence lifetime imaging of red yeast Cystofilobasidium capitatum during growth. EuroBiotech. J. 2018;2:114–120. doi: 10.2478/ebtj-2018-0015. DOI

Jiru T.M., Groenewald M., Pohl C., Steyn L., Kiggundu N., Abate D. Optimization of cultivation conditions for biotechnological production of lipid by Rhodotorula kratochvilovae (syn, Rhodosporidium kratochvilovae) SY89 for biodiesel preparation. 3 Biotech. 2017;7:145. doi: 10.1007/s13205-017-0769-7. PubMed DOI PMC

Pan J.G., Kwak M.Y., Rhee J.S. High density cell culture of Rhodotorula glutinis using oxygen-enriched air. Biotechnol. Lett. 1986;8:715–718. doi: 10.1007/BF01032568. DOI

Cao Y., Liu W., Xu X., Zhang H., Wang J., Xian M. Production of free monounsaturated fatty acids by metabolically engineered Escherichia coli. Biotechnol. Biofuels. 2014;7:59. doi: 10.1186/1754-6834-7-59. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...